首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Numerous mapping studies have implicated genetic intervals from lupus-prone New Zealand Black (NZB) chromosomes 1 and 4 as contributing to lupus pathogenesis. By introgressing NZB chromosomal intervals onto a non-lupus-prone B6 background, we determined that: NZB chromosome 1 congenic mice (denoted B6.NZBc1) developed fatal autoimmune-mediated kidney disease, and NZB chromosome 4 congenic mice (denoted B6.NZBc4) exhibited a marked expansion of B1a and NKT cells in the surprising absence of autoimmunity. In this study, we sought to examine whether epistatic interactions between these two loci would affect lupus autoimmunity by generating bicongenic mice that carry both NZB chromosomal intervals. Compared with B6.NZBc1 mice, bicongenic mice demonstrated significantly decreased mortality, kidney disease, Th1-biased IgG autoantibody isotypes, and differentiation of IFN-γ-producing T cells. Furthermore, a subset of bicongenic mice exhibited a paucity of CD21(+)CD1d(+) B cells and an altered NKT cell activation profile that correlated with greater disease inhibition. Thus, NZBc4 contains suppressive epistatic modifiers that appear to inhibit the development of fatal NZBc1 autoimmunity by promoting a shift away from a proinflammatory cytokine profile, which in some mice may involve NKT cells.  相似文献   

2.
In previous work, we demonstrated linkage between a broad region on New Zealand Black (NZB) chromosome 1 and increased costimulatory molecule expression on B cells and autoantibody production. In this study, we produced C57BL/6 congenic mice with homozygous NZB chromosome 1 intervals of differing lengths. We show that both B6.NZBc1(35-106) (numbers denote chromosomal interval length) and B6.NZBc1(85-106) mice produce IgG anti-nuclear autoantibodies, but B6.NZBc1(35-106) mice develop significantly higher titers of autoantibodies and more severe renal disease than B6.NZBc1(85-106) mice. Cellular analysis of B6.NZBc1(85-106) mice revealed splenomegaly and increased numbers of memory T cells. In addition to these features, B6.NZBc1(35-106) mice had altered B and T cell activation with increased expression of CD69, and for B cells, costimulatory molecules and MHC. Introduction of an anti-hen egg white lysozyme Ig transgene, as a representative nonself-reactive Ig receptor, onto the B6.NZBc1(35-106) background corrected the B cell activation phenotype and led to dramatic normalization of splenomegaly and T cell activation, but had little impact on the increased proportion of memory T cells. These findings indicate that there are multiple lupus susceptibility genes on NZB chromosome 1, and that although B cell defects play an important role in lupus pathogenesis in these mice, they act in concert with T cell activation defects.  相似文献   

3.
The development and progression of systemic lupus erythematosus is mediated by the complex interaction of genetic and environmental factors. To decipher the genetics that contribute to pathogenesis and the production of pathogenic autoantibodies, our lab has focused on the generation of congenic lupus-prone mice derived from the New Zealand Black (NZB) strain. Previous work has shown that an NZB-derived chromosome 4 interval spanning 32 to 151 Mb led to expansion of CD5+ B and Natural Killer T (NKT) cells, and could suppress autoimmunity when crossed with a lupus-prone mouse strain. Subsequently, it was shown that CD5+ B cells but not NKT cells derived from these mice could suppress the development of pro-inflammatory T cells. In this paper, we aimed to further resolve the genetics that leads to expansion of these two innate-like populations through the creation of additional sub-congenic mice and to characterize the role of IL-10 in the suppression of autoimmunity through the generation of IL-10 knockout mice. We show that expansion of CD5+ B cells and NKT cells localizes to a chromosome 4 interval spanning 91 to 123 Mb, which is distinct from the region that mediates the majority of the suppressive phenotype. We also demonstrate that IL-10 is critical to restraining autoantibody production and surprisingly plays a vital role in supporting the expansion of innate-like populations.  相似文献   

4.
Polyclonal B cell activation is a prominent feature of the lupus-prone New Zealand Black (NZB) mouse strain. We have previously demonstrated linkage between a region on NZB chromosome 13 and increased costimulatory molecule expression on B cells. In this study we have produced C57BL/6 congenic mice with an introgressed homozygous NZB interval extending from approximately 24 to 73 cM on chromosome 13 (denoted B6.NZBc13). We show that B6.NZBc13 female mice not only have enhanced B cell activation but also share many other B cell phenotypic characteristics with NZB mice, including expansion of marginal zone and CD5+ B cell populations, increased numbers of IgM ELISPOTs, and increased serum levels of total IgM and IgM autoantibodies. In addition these mice have increased T cell activation, increased numbers of germinal centers, mild glomerulonephritis, and produce high-titer IgM and IgG anti-chromatin Abs. Male B6.NZBc13 mice have a less pronounced cellular phenotype, lacking expansion of the marginal zone B cell population and IgG anti-chromatin Ab production, indicating the presence of gender dimorphism for this locus. Thus, we have identified a genetic locus that recapitulates with fidelity the B cell phenotypic abnormalities in NZB mice, and we demonstrate that this locus is sufficient to induce an autoimmune phenotype. The data provide further support to the contention that immune abnormalities leading to altered B cell activation and selection contribute to the development of autoimmunity in NZB mice.  相似文献   

5.
Pau E  Cheung YH  Loh C  Lajoie G  Wither JE 《PloS one》2012,7(5):e36761
Genetic loci on New Zealand Black (NZB) chromosomes 1 and 13 play a significant role in the development of lupus-like autoimmune disease. We have previously shown that C57BL/6 (B6) congenic mice with homozygous NZB chromosome 1 (B6.NZBc1) or 13 (B6.NZBc13) intervals develop anti-nuclear antibodies and mild glomerulonephritis (GN), together with increased T and B cell activation. Here, we produced B6.NZBc1c13 bicongenic mice with both intervals, and demonstrate several novel phenotypes including: marked plasmacytoid and myeloid dendritic cell expansion, and elevated IgA production. Despite these changes, only minor increases in anti-nuclear antibody production were seen, and the severity of GN was reduced as compared to B6.NZBc1 mice. Although bicongenic mice had increased levels of baff and tnf-α mRNA in their spleens, the levels of IFN-α-induced gene expression were reduced. Splenocytes from bicongenic mice also demonstrated reduced secretion of IFN-α following TLR stimulation in vitro. This reduction was not due to inhibition by TNF-α and IL-10, or regulation by other cellular populations. Because pDC in bicongenic mice are chronically exposed to nuclear antigen-containing immune complexes in vivo, we examined whether repeated stimulation of mouse pDC with TLR ligands leads to impaired IFN-α production, a phenomenon termed TLR tolerance. Bone marrow pDC from both B6 and bicongenic mice demonstrated markedly inhibited secretion of IFN-α following repeated stimulation with a TLR9 ligand. Our findings suggest that the expansion of pDC and production of anti-nuclear antibodies need not be associated with increased IFN-α production and severe kidney disease, revealing additional complexity in the regulation of autoimmunity in systemic lupus erythematosus.  相似文献   

6.
By assessing the development of Y-linked autoimmune acceleration (Yaa) gene-induced systemic lupus erythematosus in C57BL/6 (B6) x (New Zealand Black (NZB) x B6.Yaa)F(1) backcross male mice, we mapped three major susceptibility loci derived from the NZB strain. These three quantitative trait loci (QTL) on NZB chromosomes 1, 7, and 13 differentially regulated three different autoimmune traits: anti-nuclear autoantibody production, gp70-anti-gp70 immune complex (gp70 IC) formation, and glomerulonephritis. Contributions to the disease traits were further confirmed by generating and analyzing three different B6.Yaa congenic mice, each carrying one individual NZB QTL. The chromosome 1 locus that overlapped with the previously identified Nba2 (NZB autoimmunity 2) locus regulated all three traits. A newly identified chromosome 7 locus, designated Nba5, selectively promoted anti-gp70 autoantibody production, hence the formation of gp70 IC and glomerulonephritis. B6.Yaa mice bearing the NZB chromosome 13 locus displayed increased serum gp70 production, but not gp70 IC formation and glomerulonephritis. This locus, called Sgp3 (serum gp70 production 3), selectively regulated the production of serum gp70, thereby contributing to the formation of nephritogenic gp70 IC and glomerulonephritis, in combination with Nba2 and Nba5 in NZB mice. Among these three loci, a major role of Nba2 was demonstrated, because B6.Yaa Nba2 congenic male mice developed the most severe disease. Finally, our analysis revealed the presence in B6 mice of an H2-linked QTL, which regulated autoantibody production. This locus had no apparent individual effect, but most likely modulated disease severity through interaction with NZB-derived susceptibility loci.  相似文献   

7.
Both suppressive and promoting roles of NKT cells have been reported in the pathogenesis of systemic lupus erythematosus (SLE). Herein, we found that although New Zealand mice have normal frequencies of NKT cells, their in vitro potential to produce IL-4 and IFN-gamma in response to alpha-galactosylceramide was remarkably impaired in New Zealand Black (NZB) mice prone to mild SLE, while production was highly up-regulated in nonautoimmune New Zealand White (NZW) mice and at intermediate levels in (NZB x NZW)F(1) mice, which are prone to severe SLE. Because this aberration is evident in young mice before disease onset, genetic mechanisms are thought to be involved. Genome-wide quantitative trait locus analysis and association studies revealed that a locus linked to D11Mit14 on chromosome 11 may be involved in the difference in cytokine-producing potential between NZB and NZW NKT cells. Additionally, (NZB x NZW)F(1) x NZB backcross progeny with the NZW genotype for D11Mit14 showed significantly increased frequencies of age-associated SLE phenotypes, such as high serum levels of IgG, IgG anti-DNA Abs, and lupus nephritis. In coculture studies, alpha-galactosylceramide-stimulated NKT cells from NZW and (NZB x NZW)F(1) mice, but not from NZB mice, showed significantly enhanced Ig synthesis by B cells. These findings suggest that the D11Mit14-linked NZW locus may contribute to the development of SLE in (NZB x NZW)F(1) mice through a mechanism that up-regulates NKT cell function. Thus, this NZW allele may be a candidate of the NZW modifiers that act to promote (NZB x NZW)F(1) disease.  相似文献   

8.
CD1d-restricted NKT cells: an interstrain comparison   总被引:7,自引:0,他引:7  
CD1d-restricted Valpha14-Jalpha281 invariant alphabetaTCR(+) (NKT) cells are well defined in the C57BL/6 mouse strain, but they remain poorly characterized in non-NK1.1-expressing strains. Surrogate markers for NKT cells such as alphabetaTCR(+)CD4(-)CD8(-) and DX5(+)CD3(+) have been used in many studies, although their effectiveness in defining this lineage remains to be verified. Here, we compare NKT cells among C57BL/6, NK1.1-congenic BALB/c, and NK1.1-congenic nonobese diabetic mice. NKT cells were identified and compared using a range of approaches: NK1.1 expression, surrogate phenotypes used in previous studies, labeling with CD1d/alpha-galactosylceramide tetramers, and cytokine production. Our results demonstrate that NKT cells and their CD4/CD8-defined subsets are present in all three strains, and confirm that nonobese diabetic mice have a numerical and functional deficiency in these cells. We also highlight the hazards of using surrogate phenotypes, none of which accurately identify NKT cells, and one in particular (DX5(+)CD3(+)) actually excludes these cells. Finally, our results support the concept that NK1.1 expression may not be an ideal marker for CD1d-restricted NKT cells, many of which are NK1.1-negative, especially within the CD4(+) subset and particularly in NK1.1-congenic BALB/c mice.  相似文献   

9.
We previously reported that the major expanding lymphocytes were intermediate TCR (TCR(int)) cells (mainly NK1.1(-)) during malarial infection in mice. Cell transfer experiments of TCR(int) cells indicated that these T cells mediated resistance to malaria. However, TCR(int) cells always contain NK1.1(+)TCR(int) cells (i.e., NKT cells) and controversial results (NKT cells were effective or not for resistance to malaria) have been reported by different investigators. In this study, we used CD1d((-/-)) mice, which almost completely lack NKT cells in the liver and other immune organs. Parasitemia was prolonged in the blood of CD1d((-/-)) mice and the expansion of lymphocytes in the liver of these mice was more prominent after an injection of Plasmodium yoelii-infected erythrocytes. However, these mice finally recovered from malaria. In contrast to B6 mice, CD4(-)8(-) NKT cells as well as NK1.1(-)CD3(int) cells expanded in CD1d((-/-)) mice after malarial infection, instead of CD4(+) (and CD8(+)) NKT cells. These newly generated CD4(-)8(-)NKT cells in CD1d((-/-)) mice did not use an invariant chain of Valpha14Jalpha281 for TCRalpha. Other evidence was that severe thymic atrophy and autoantibody production were accompanied by malarial infection, irrespective of the mice used. These results suggest that both NK1.1(-) and NK1.1(+) subsets of TCR(int) cells (i.e., constituents of innate immunity) are associated with resistance to malaria and that an autoimmune-like state is induced during malarial infection.  相似文献   

10.
The mechanism of polyclonal expansion of B cells and subsequent autoantibody production in New Zealand mice remains a critical question. We have been studying the requirements for autoantibody production both in NZB mice as well as NZB mice congenic with the Xid gene of CBA/N mice. In this study, we have attempted to alter the immunologic phenotype of NZB.Xid mice by transfer of cells from young and old NZB mice. There was little difficulty in restoring normal levels of serum IgM, IgG3, splenic Lyb-5 cells, and response to DNP-Ficoll in young NZB.Xid mice that were injected with young NZB bone marrow cells. Although such animals had an almost immediate change in their immune profile to values characteristic of NZB mice, they required, much like unmanipulated NZB mice, a latency period of an additional 6 mo before autoantibodies were detected. In contrast, adult NZB.Xid mice, who likewise developed an immune profile similar to NZB after transfer of bone marrow cells from young NZB mice, began to express autoantibodies immediately without any latency period. NZB.Xid mice who were recipients of adult NZB bone marrow cells did not show sustained autoantibody production, reflecting the limited state of B cell precursors in adult NZB mice. Thus, the age of both donor cells and the age of recipient mice are critical factors for determining the latency period and the age at which autoantibodies will appear. Similarly we attempted to alter the production of autoantibodies in NZB mice that were irradiated and injected with bone marrow cells from NZB.Xid animals. NZB mice had a major amelioration of disease when they received cell transfers from young NZB.Xid mice. This amelioration, which included the acquisition of the immune profile of NZB.Xid animals, was not seen in adult NZB mice that were recipient of young NZB cells. We suggest that although Lyb-5 cells may be the effective mechanism for autoantibody production, there are other interacting influences that may selectively turn on or turn off autoantibodies and that are required and are responsible for the latency period.  相似文献   

11.
Cutting edge: a role for CD1 in the pathogenesis of lupus in NZB/NZW mice   总被引:10,自引:0,他引:10  
Since anti-CD1 TCR transgenic T cells can activate syngeneic B cells via CD1 to secrete IgM and IgG and induce lupus in BALB/c mice, we studied the role of CD1 in the pathogenesis of lupus in NZB/NZW mice. Approximately 20% of B cells from the spleens of NZB/NZW mice expressed high levels of CD1 (CD1high B cells). The latter subset spontaneously produced large amounts of IgM anti-dsDNA Abs in vitro that was up to 25-fold higher than that of residual CD1int/low B cells. T cells in the NZB/NZW spleen proliferated vigorously to the CD1-transfected A20 B cell line, but not to the parent line. Treatment of NZB/NZW mice with anti-CD1 mAbs ameliorated the development of lupus. These results suggest that the CD1high B cells and their progeny are a major source of autoantibody production, and activation of B cells via CD1 may play an important role in the pathogenesis of lupus.  相似文献   

12.
The F(1) hybrid of New Zealand Black (NZB) and New Zealand White (NZW) mice develop an autoimmune disease similar to human systemic lupus erythematosus. Because NZB and (NZB x NZW)F(1) mice manifest expansions of marginal zone (MZ) B and B1a cells, it has been postulated that these B cell abnormalities are central to the NZB genetic contribution to lupus. Our previous studies have shown that a major NZB contribution comes from the Nba2 locus on chromosome 1. C57BL/6 (B6) mice congenic for Nba2 produce antinuclear Abs, and (B6.Nba2 x NZW)F(1) mice develop elevated autoantibodies and nephritis similar to (NZB x NZW)F(1) mice. We studied B cell populations of B6.Nba2 mice to better understand the mechanism by which Nba2 leads to disease. The results showed evidence of B cell activation early in life, including increased levels of serum IgM, CD69(+) B cells, and spontaneous IgM production in culture. However, B6.Nba2 compared with B6 mice had a decreased percentage of MZ B cells in spleen, and no increase of B1a cells in the spleen or peritoneum. Expansions of these B cell subsets were also absent in (B6.Nba2 x NZW)F(1) mice. Among the strains studied, B cell expression of beta(1) integrin correlated with differences in MZ B cell development. These results show that expansions of MZ B and B1a cells are not necessary for the NZB contribution to lupus and argue against a major role for these subsets in disease pathogenesis. The data also provide additional insight into how Nba2 contributes to lupus.  相似文献   

13.
The New Zealand Black (NZB) Lbw2 locus (lupus NZB x New Zealand White (NZW) 2 locus) was previously linked to mortality and glomerulonephritis, but not to IgG autoantibodies, suggesting that it played a role in a later disease stage. To define its contribution, (NZB x NZW)F1 hybrids (BWF1) containing two, one, or no copies of this locus were generated. Lack of the NZB Lbw2 indeed reduced mortality and glomerulonephritis, but not serum levels of total and anti-DNA IgG Abs. There were, however, significant reductions in the B cell response to LPS, total and anti-DNA IgM and IgG Ab-forming cells, IgM Ab levels, and glomerular Ig deposits. Furthermore, although serum IgG autoantibody levels correlated poorly with kidney IgG deposits, the number of spontaneous IgG Ab-forming cells had a significant correlation. Genome-wide mapping of IgM anti-chromatin levels identified only Lbw2, and analysis of subinterval congenics tentatively reduced Lbw2 to approximately 5 Mb. Because no known genes associated with B cell activation and lupus are in this interval, Lbw2 probably represents a novel B cell activation gene. These findings establish the importance of Lbw2 in the BWF1 hybrid and indicate that Lbw2, by enhancing B cell hyperactivity, promotes the early polyclonal activation of B cells and subsequent production of autoantibodies.  相似文献   

14.
Sle1c is a sublocus of the NZM2410-derived Sle1 major lupus susceptibility locus. We have shown previously that Sle1c contributes to lupus pathogenesis by conferring increased CD4(+) T cell activation and increased susceptibility to chronic graft-versus-host disease (cGVHD), which mapped to the centromeric portion of the locus. In this study, we have refined the centromeric sublocus to a 675-kb interval, termed Sle1c2. Mice from recombinant congenic strains expressing Sle1c2 exhibited increased CD4(+) T cell intrinsic activation and cGVHD susceptibility, similar to mice with the parental Sle1c. In addition, B6.Sle1c2 mice displayed a robust expansion of IFN-γ-expressing T cells. NZB complementation studies showed that Sle1c2 expression exacerbated B cell activation, autoantibody production, and renal pathology, verifying that Sle1c2 contributes to lupus pathogenesis. The Sle1c2 interval contains two genes, only one of which, Esrrg, is expressed in T cells. B6.Sle1c2 CD4(+) T cells expressed less Esrrg than B6 CD4(+) T cells, and Esrrg expression was correlated negatively with CD4(+) T cell activation. Esrrg encodes an orphan nuclear receptor that regulates oxidative metabolism and mitochondrial functions. In accordance with reduced Esrrg expression, B6.Sle1c2 CD4(+) T cells present reduced mitochondrial mass and altered mitochondrial functions as well as altered metabolic pathway utilization when compared with B6 CD4(+) T cells. Taken together, we propose Esrrg as a novel lupus susceptibility gene regulating CD4(+) T cell function through their mitochondrial metabolism.  相似文献   

15.
Autoantibody production is a hallmark of autoimmune diseases, such as lupus and rheumatoid arthritis. Accumulating evidence suggests a role of invariant NKT (iNKT) cells in their pathogenesis. Mechanisms underlying the role of iNKT cells in these diseases, however, remain unclear. In this study, we show that iNKT cells suppress IgG anti-DNA Ab and rheumatoid factor production and reduce IL-10-secreting B cells in a contact-dependent manner, but increase total IgG production and enhance activation markers on B cells via soluble factors. In vivo reconstitution with iNKT cells also reduces autoantibody production in iNKT-deficient mice and in SCID mice implanted with B cells. Using an anti-DNA transgenic model, we found that autoreactive B cells spontaneously produce IL-10 and are activated in vivo. In the presence of activated iNKT cells, these autoreactive B cells are selectively reduced, whereas nonautoreactive B cells are markedly activated. Because iNKTs recognize CD1d, we reasoned that CD1d might play a role in the differential regulation of autoreactive versus nonautoreactive B cells by iNKT cells. Indeed, autoreactive B cells express more CD1d than nonautoreactive B cells, and CD1d deficiency in lupus mice exacerbates autoantibody production and enhances Ab response to a self-peptide but not to a foreign peptide. Importantly, iNKT cells fail to inhibit autoantibody production by CD1d-deficient B cells. Thus, iNKT cells inhibit autoreactive B cells in a contact- and CD1d-dependent manner but activate nonautoreactive B cells via cytokines. Such ability of iNKTs to suppress autoantibody production, without causing global suppression of B cells, has important implications for the development of iNKT-based therapy for autoimmune diseases.  相似文献   

16.
CD4(+) T cells produce IFN-gamma contributing to corneal perforation in C57BL/6 (B6) mice after Pseudomonas aeruginosa infection. To determine the role of NK and NKT cells, infected corneas of B6 mice were dual immunolabeled. Initially, more NKT than NK cells were detected, but as disease progressed, NK cells increased, while NKT cells decreased. Therefore, B6 mice were depleted of NK/NKT cells with anti-asialo GM1 or anti-NK1.1 Ab. Either treatment accelerated time to perforation, increased bacterial load and polymorphonuclear neutrophils, but decreased IFN-gamma and IL-12p40 mRNA expression vs controls. Next, RAG-1 knockout (-/-; no T/NKT cells), B6.TCR Jalpha281(-/-) (NKT cell deficient), alpha-galactosylceramide (alphaGalCer) (anergized NKT cells) injected and IL-12p40(-/-) vs B6 controls were tested. IFN-gamma mRNA was undetectable in RAG-1(-/-)- and alphaGalCer-treated mice at 5 h and was significantly reduced vs controls at 1 day postinfection. It also was reduced significantly in B6.TCR Jalpha281(-/-), alphaGalCer-treated, and IL-12p40(-/-) (activated CD4(+) T cells also reduced) vs control mice at 5 days postinfection. In vitro studies tested whether endotoxin (LPS) stimulated Langerhans cells and macrophages (Mphi; from B6 mice) provided signals to activate NKT cells. LPS up-regulated mRNA expression for IL-12p40, costimulatory molecules CD80 and CD86, NF-kappaB, and CD1d, and addition of rIFN-gamma potentiated Mphi CD1d levels. Together, these data suggest that Langerhans cell/Mphi recognition of microbial LPS regulates IL-12p40 (and CD1d) driven IFN-gamma production by NKT cells, that IFN-gamma is required to optimally activate NK cells to produce IFN-gamma, and that depletion of both NKT/NK cells results in earlier corneal perforation.  相似文献   

17.
Unlike CD1d-restricted NK1.1(+)TCRalphabeta(+) (NKT) cells, which have been extensively studied, little is known about CD1d-independent NKT cells. To characterize their functions, we analyzed NKT cells in beta(2)-microglobulin (beta(2)m)-deficient B6 mice. They are similar to NK cells and expressed NK cell receptors, including Ly49, CD94/NKG2, NKG2D, and 2B4. NKT cells were found in normal numbers in mice that are deficient in beta(2)m, MHC class II, or both. They were also found in the male HY Ag-specific TCR-transgenic mice independent of positive or negative selection in the thymus. For functional analysis of CD1d-independent NKT cells, we developed a culture system in which CD1d-independent NKT cells, but not NK, T, or most CD1d-restricted NKT cells, grew in the presence of an intermediate dose of IL-2. IL-2-activated CD1d-independent NKT cells were similar to IL-2-activated NK cells and efficiently killed the TAP-mutant murine T lymphoma line RMA-S, but not the parental RMA cells. They also killed beta(2)m-deficient Con A blasts, but not normal B6 Con A blasts, indicating that the cytotoxicity is inhibited by MHC class I on target cells. IL-2-activated NKT cells expressing transgenic TCR specific for the HY peptide presented by D(b) killed RMA-S, but not RMA, cells. They also killed RMA (H-2(b)) cells that were preincubated with the HY peptide. NKT cells from beta(2)m-deficient mice, upon CD3 cross-linking, secreted IFN-gamma and IL-2, but very little IL-4. Thus, CD1d-independent NKT cells are significantly different from CD1d-restricted NKT cells. They have hybrid phenotypes and functions of NK cells and T cells.  相似文献   

18.
The lupus-prone New Zealand Black (NZB) strain uniquely develops a genetically imposed severe spontaneous autoimmune hemolytic anemia (AIHA) that is very similar to the corresponding human disease. Previous studies have mapped anti-erythrocyte Ab (AEA)-promoting NZB loci to several chromosomal locations, including chromosome 4; however, none of these have been analyzed with interval congenics. In this study, we used NZB.NZW-Lbw2 congenic (designated Lbw2 congenic) mice containing an introgressed fragment of New Zealand White (NZW) on chromosome 4 encompassing Lbw2, a locus previously linked to survival, glomerulonephritis, and splenomegaly, to investigate its role in AIHA. Lbw2 congenic mice exhibited marked reductions in AEAs and splenomegaly but not in anti-nuclear Abs. Furthermore, Lbw2 congenics had greater numbers of marginal zone B cells and reduced expansion of peritoneal cells, particularly the B-1a cell subset at early ages, but no reduction in B cell response to LPS. Analysis of a panel of subinterval congenic mice showed that the full effect of Lbw2 on AEA production was dependent on three subloci, with splenomegaly mapping to two of the subloci and expansions of peritoneal cell populations, including B-1a cells to one. These results directly demonstrated the presence of AEA-specific promoting genes on NZB chromosome 4, documented a marked influence of background genes on autoimmune phenotypes related to Lbw2, and further refined the locations of the underlying genetic variants. Delineation of the Lbw2 genes should yield new insights into both the pathogenesis of AIHA and the nature of epistatic interactions of lupus-modifying genetic variants.  相似文献   

19.
CD1d-restricted NKT cells and CD4+CD25+ regulatory T (Treg) cells are thymus-derived subsets of regulatory T cells that have an important role in the maintenance of self-tolerance. Whether NKT cells and Treg cells cooperate functionally in the regulation of autoimmunity is not known. We have explored this possibility in experimental autoimmune myasthenia gravis (EAMG), an animal model of human myasthenia gravis, induced by immunization of C57BL/6 mice with the autoantigen acetylcholine receptor. We have demonstrated that activation of NKT cells by a synthetic glycolipid agonist of NKT cells, alpha-galactosylceramide (alpha-GalCer), inhibits the development of EAMG. alpha-GalCer administration in EAMG mice increased the size of the Treg cell compartment, and augmented the expression of foxp3 and the potency of CD4+CD25+ cells to inhibit proliferation of autoreactive T cells. Furthermore, alpha-GalCer promoted NKT cells to transcribe the IL-2 gene and produce IL-2 protein. Depletion of CD25+ cells or neutralization of IL-2 reduced the therapeutic effect of alpha-GalCer in this model. Thus, alpha-GalCer-activated NKT cells can induce expansion of CD4+CD25+ Treg cells, which in turn mediate the therapeutic effects of alpha-GalCer in EAMG. Induced cooperation of NKT cells and Treg cells may serve as a superior strategy to treat autoimmune disease.  相似文献   

20.
The incidences of positive anti-erythrocyte autoantibodies (AEA) in New Zealand Black (NZB), C57BL/6, their F1, F2 hybrid, and the F1 × NZB backcross mice were 100, 0, 0, 17, and 51%, respectively. This finding is in keeping with the idea that a combined effect of one to three dominant predisposing NZB gene(s) and a single dominant modifying C57BL/6 gene regulates the AEA production. Studies suggested that the modifying locusAem-1 is loosely linked toMup-1 locus on chromosome 4, and the gene order isAem-1: Mup-1: Gpd-1. We analyzed the effects of theAem-1 locus on other autoimmune traits and found that the gene action ofAem-1 is unrelated to the spontaneous productions of dsDNA-specific antibodies, the retroviral gp70-anti-gp70 immune complexes and natural thymocytotoxic autoantibod ies and to the serum level of retroviral gp70. A significant association was observed between the negative AEA and the low (normal) serum IgM level in (C57BL/6 × NZB)F1 × NZB backcross mice. It remains to be determined whether theAem-1 locus also controls the serum IgM level.Abbreviations used in this paper AEA anti-erythrocyte autoantibody - NTA natural thymocytotoxic autoantibody - gp70 major glycoprotein constituent of the murine C type retrovirus envelope - Mup-1 major urinary protein complex-1 - Gpd-1 glucose-6-phosphate dehydrogenase-1 - Akp-1 alkaline phosphatase-1 - Es-1 esterase-1 - Igh-1 immunoglobulin (IgG2a) heavy chain-1  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号