首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Eukaryotic organisms use conserved checkpoint mechanisms that regulate Cdk1 by inhibitory phosphorylation to prevent mitosis from interfering with DNA replication or repair. In metazoans, this checkpoint mechanism is also used for coordinating mitosis with dynamic developmental processes. Inhibitory phosphorylation of Cdk1 is catalyzed by Wee1 kinases that phosphorylate tyrosine 15 (Y15) and dual-specificity Myt1 kinases found only in metazoans that phosphorylate Y15 and the adjacent threonine (T14) residue. Despite partially redundant roles in Cdk1 inhibitory phosphorylation, Wee1 and Myt1 serve specialized developmental functions that are not well understood. Here, we expressed wild-type and phospho-acceptor mutant Cdk1 proteins to investigate how biochemical differences in Cdk1 inhibitory phosphorylation influence Drosophila imaginal development. Phosphorylation of Cdk1 on Y15 appeared to be crucial for developmental and DNA damage-induced G2-phase checkpoint arrest, consistent with other evidence that Myt1 is the major Y15-directed Cdk1 inhibitory kinase at this stage of development. Expression of non-inhibitable Cdk1 also caused chromosome defects in larval neuroblasts that were not observed with Cdk1(Y15F) mutant proteins that were phosphorylated on T14, implicating Myt1 in a novel mechanism promoting genome stability. Collectively, these results suggest that dual inhibitory phosphorylation of Cdk1 by Myt1 serves at least two functions during development. Phosphorylation of Y15 is essential for the premitotic checkpoint mechanism, whereas T14 phosphorylation facilitates accumulation of dually inhibited Cdk1–Cyclin B complexes that can be rapidly activated once checkpoint-arrested G2-phase cells are ready for mitosis.  相似文献   

2.
《Fly》2013,7(3):140-147
ABSTRACT

Cell cycle checkpoints prevent mitosis from occurring before DNA replication and repair are completed during S and G2 phases. The checkpoint mechanism involves inhibitory phosphorylation of Cdk1, a conserved kinase that regulates the onset of mitosis. Metazoans have two distinct Cdk1 inhibitory kinases with specialized developmental functions: Wee1 and Myt1. Ayeni et al used transgenic Cdk1 phospho-acceptor mutants to analyze how the distinct biochemical properties of these kinases affected their functions. They concluded from their results that phosphorylation of Cdk1 on Y15 was necessary and sufficient for G2/M checkpoint arrest in imaginal wing discs, whereas phosphorylation on T14 promoted chromosome stability by a different mechanism. A curious relationship was also noted between Y15 inhibitory phosphorylation and T161 activating phosphorylation. These unexpected complexities in Cdk1 inhibitory phosphorylation demonstrate that the checkpoint mechanism is not a simple binary “off/on” switch, but has at least three distinct states: “Ready”, to prevent chromosome damage and apoptosis, “Set”, for developmentally regulated G2 phase arrest, and “Go”, when Cdc25 phosphatases remove inhibitory phosphates to trigger Cdk1 activation at the G2/M transition.  相似文献   

3.
Entry into mitosis is regulated by inhibitory phosphorylation of cdc2/cyclin B, and these phosphorylations can be mediated by the Wee kinase family. Here, we present the identification of Drosophila Myt1 (dMyt1) kinase and examine the relationship of Myt1 and Wee1 activities in the context of cdc2 phosphorylation. dMyt1 kinase was found by BLAST-searching the complete Drosophila genome using the amino acid sequence of human Myt1 kinase. A single predicted polypeptide was identified that shared a 48% identity within the kinase domain with human and Xenopus Myt1. Consistent with its putative role as negative regulator of mitotic entry, overexpression of this protein in Drosophila S2 cells resulted in a reduced rate of cellular proliferation while the loss of expression via RNA interference (RNAi) resulted in an increased rate of proliferation. In addition, loss of dMyt1 alone or in combination with Drosophila Wee1 (dWee1) resulted in a reduction of cells in G2/M phase and an increase in G1 phase cells. Finally, loss of dMyt1 alone resulted in a significant reduction of phosphorylation of cdc2 on the threonine-14 (Thr-14) residue as expected. Surprisingly however, a reduction in the phosphorylation of cdc2 on the tyrosine-15 (Tyr-15) residue was only observed when both dMyt1 and dWee1 expression was reduced via RNAi and not by Wee1 alone. Most strikingly, in the absence of dMyt1, Golgi fragmentation during mitosis was incomplete. Our findings suggest that dMyt1 and dWee1 have distinct roles in the regulation of cdc2 phosphorylation and the regulation of mitotic events.  相似文献   

4.
The metazoan Wee1-like kinases Wee1 and Myt1 regulate the essential mitotic regulator Cdk1 by inhibitory phosphorylation. This regulatory mechanism, which prevents Cdk1 from triggering premature mitotic events, is also induced during the DNA damage response and used to coordinate cell proliferation with crucial developmental events. Despite the previously demonstrated role for Myt1 regulation of Cdk1 during meiosis, relatively little is known of how Myt1 functions at other developmental stages. To address this issue, we have undertaken a functional analysis of Drosophila Myt1 that has revealed novel developmental roles for this conserved cell cycle regulator during gametogenesis. Notably, more proliferating cells were observed in myt1 mutant testes and ovaries than controls. This can partly be attributed to ectopic division of germline-associated somatic cells in myt1 mutants, suggesting that Myt1 serves a role in regulating exit from the cell cycle. Moreover, mitotic index measurements suggested that germline stem cells proliferate more rapidly, in myt1 mutant females. In addition, male myt1 germline cells occasionally undergo an extra mitotic division, resulting in meiotic cysts with twice the normal numbers of cells. Based on these observations, we propose that Myt1 serves unique Cdk1 regulatory functions required for efficient coupling of cell differentiation with cell cycle progression.  相似文献   

5.
BACKGROUND: Wee1 kinases delay entry into mitosis by phosphorylating and inactivating cyclin-dependent kinase 1 (Cdk1). Loss of this activity in many systems, including Drosophila, leads to premature mitotic entry. RESULTS: We report here that Drosophila Wee1 (dwee1) mutant embryos show mitotic-spindle defects that include ectopic foci of microtubule organization, formation of multipolar spindles from adjacent centrosome pairs, and promiscuous interactions between neighboring spindles. Furthermore, centrosomes are displaced from the embryo cortex in dwee1 mutants. These defects are not observed to the same extent in embryos in which nuclei also enter mitosis prematurely as a result of a lack of checkpoint control or in embryos with elevated Cdk1 activity. dWee1 physically interacts with members of the gamma-tubulin ring complex (gammaTuRC), and gamma-tubulin is phosphorylated in a dwee1-dependent manner in embryo extracts. CONCLUSIONS: Some of the abnormalities in dwee1 mutant embryos cannot be explained by premature entry into mitosis or bulk elevation of Cdk1 activity. Instead, dWee1 is also required for phosphorylation of gamma-tubulin, centrosome positioning, and mitotic-spindle integrity. We propose a model to account for these requirements.  相似文献   

6.
Entry into mitosis is universally controlled by cyclin-dependent kinases (CDKs). A key regulatory event in metazoans and fission yeast is CDK activation by the removal of inhibitory phosphate groups in the ATP binding pocket catalyzed by Cdc25 phosphatases. In contrast with other multicellular organisms, we show here that in the flowering plant Arabidopsis thaliana, cell cycle control does not depend on sudden changes in the phosphorylation pattern of the PSTAIRE-containing Cdk1 homolog CDKA;1. Consistently, we found that neither mutants in a previously identified CDC25 candidate gene nor plants in which it is overexpressed display cell cycle defects. Inhibitory phosphorylation of CDKs is also the key event in metazoans to arrest cell cycle progression upon DNA damage. However, we show here that the DNA damage checkpoint in Arabidopsis can also operate independently of the phosphorylation of CDKA;1. These observations reveal a surprising degree of divergence in the circuitry of highly conserved core cell cycle regulators in multicellular organisms. Based on biomathematical simulations, we propose a plant-specific model of how progression through the cell cycle could be wired in Arabidopsis.  相似文献   

7.
Kirchner J  Gross S  Bennett D  Alphey L 《Genetics》2007,175(4):1741-1749
Drosophila flapwing (flw) codes for serine/threonine protein phosphatase type 1β (PP1β). Regulation of nonmuscle myosin activity is the single essential flw function that is nonredundant with the three closely related PP1α genes. Flw is thought to dephosphorylate the nonmuscle myosin regulatory light chain, Spaghetti Squash (Sqh); this inactivates the nonmuscle myosin heavy chain, Zipper (Zip). Thus, strong flw mutants lead to hyperphosphorylation of Sqh and hyperactivation of nonmuscle myosin activity. Here, we show genetically that a Jun N-terminal kinase (JNK) mutant suppresses the semilethality of a strong flw allele. Alleles of the JNK phosphatase puckered (puc) genetically enhance the weak allele flw1, leading to severe wing defects. Introducing a mutant of the nonmuscle myosin-binding subunit (Mbs) further enhances this genetic interaction to lethality. We show that puc expression is upregulated in wing imaginal discs mutant for flw1 and pucA251 and that this upregulation is modified by JNK and Zip. The level of phosphorylated (active) JNK is elevated in flw1 enhanced by puc. Together, we show that disruption of nonmuscle myosin activates JNK and puc expression in wing imaginal discs.  相似文献   

8.
Mitotic spindle assembly and maintenance relies on kinesin-5 motors that act as bipolar homotetramers to crosslink microtubules [1], [2], [3], [4] and [5]. Kinesin-5 motors have been the subject of extensive structure-function analysis [5], but the regulation of their activity in the context of mitotic progression remains less well understood [2]. We report here that Drosophila kinesin-5 (KLP61F) is regulated by Drosophila Wee1 (dWee1). Wee1 tyrosine kinases are known to regulate mitotic entry via inhibitory phosphorylation of Cdk1 [6], [7], [8], [9] and [10]. Recently, we showed that dWee1 also plays a role in mitotic spindle positioning through γ-tubulin and spindle fidelity through an unknown mechanism [11]. Here, we investigated whether a KLP61F-dWee1 interaction could explain the latter role of dWee1. We found that dWee1 phosphorylates KLP61F in vitro on three tyrosines within the head domain, the catalytic region that mediates movement along microtubules. In vivo, KLP61F with tyrosine→phenylalanine mutations fails to complement a klp61f mutant and dominantly induces spindle defects similar to ones seen in dwee1 mutants. We propose that phosphorylation of the KLP61F catalytic domain by dWee1 is important for the motor's function. This study identifies a second substrate for a Wee1 kinase and provides evidence for phosphoregulation of a kinesin in the head domain.  相似文献   

9.
In higher eukaryotes, cyclin E is thought to control the progression from G1 into S phase of the cell cycle by associating as a regulatory subunit with cdk2. To identify genes interacting with cyclin E, we have screened in Drosophila melanogaster for mutations that act as dominant modifiers of an eye phenotype caused by a Sevenless-CycE transgene that directs ectopic Cyclin E expression in postmitotic cells of eye imaginal disc and causes a rough eye phenotype in adult flies. The majority of the EMS-induced mutations that we have identified fall into four complementation groups corresponding to the genes split ends, dacapo, dE2F1, and Cdk2(Cdc2c). The Cdk2 mutations in combination with mutant Cdk2 transgenes have allowed us to address the regulatory significance of potential phosphorylation sites in Cdk2 (Thr 18 and Tyr 19). The corresponding sites in the closely related Cdk1 (Thr 14 and Tyr 15) are of crucial importance for regulation of the G2/M transition by myt1 and wee1 kinases and cdc25 phosphatases. In contrast, our results demonstrate that the equivalent sites in Cdk2 play no essential role.  相似文献   

10.
Homozygosity for recessive mutations inDrosophila tumour suppressor genes likelethal giant larvae (Igl), lethal giant discs (Igd) orfat (ft) induce uncontrolled cell proliferations in the imaginal discs of the mutant larvae. Imaginal discs of larvae mutant forIgl tumour suppressor gene display neoplastic growths while those mutant forIgd orfat display hyperplastic growths. Results presented in this study reveal that mutant wing imaginal discs with neoplastic or hyperplastic overgrowths display high mitotic activity primarily during the extended period of larval life when their wild-type siblings have already pupariated. Both these categories of overgrowths show overall stability of the karyotypes and only low frequency of aneuploidy. The hyperplastic imaginal discs ofIgd orft mutant larvae displayed normal chromosome condensation. In contrast, the neoplastic imaginal discs ofIgl mutants showed high frequency of mitotic cells with undercondensed chromosomes. In this respect the neoplastic discs resemble malignant neuroblastomas of theIgl larvae which also display undercondensed chromosomes. These results thus suggest an indirect role of the cytoskeletal protein encoded byIgl tumour suppressor gene in aspects of normal chromosome condensation during mitosis.  相似文献   

11.
Cyclin-dependent kinases (Cdks) are the central regulators of the cell division cycle. Inhibitors of Cdks ensure proper coordination of cell cycle events and help regulate cell proliferation in the context of tissues and organs. Wee1 homologs phosphorylate a conserved tyrosine to inhibit the mitotic cyclin-dependent kinase Cdk1. Loss of Wee1 function in fission or budding yeast causes premature entry into mitosis. The importance of metazoan Wee1 homologs for timing mitosis, however, has been demonstrated only in Xenopus egg extracts and via ectopic Cdk1 activation . Here, we report that Drosophila Wee1 (dWee1) regulates Cdk1 via phosphorylation of tyrosine 15 and times mitotic entry during the cortical nuclear cycles of syncytial blastoderm embryos, which lack gap phases. Loss of maternal dwee1 leads to premature entry into mitosis, mitotic spindle defects, chromosome condensation problems, and a Chk2-dependent block of subsequent development, and then embryonic lethality. These findings modify previous models about cell cycle regulation in syncytial embryos and demonstrate that Wee1 kinases can regulate mitotic entry in vivo during metazoan development even in cycles that lack a G2 phase.  相似文献   

12.
Highly reproducible tissue development is achieved by robust, time-dependent coordination of cell proliferation and cell death. To study the mechanisms underlying robust tissue growth, we analyzed the developmental process of wing imaginal discs in Drosophila Minute mutants, a series of heterozygous mutants for a ribosomal protein gene. Minute animals show significant developmental delay during the larval period but develop into essentially normal flies, suggesting there exists a mechanism ensuring robust tissue growth during abnormally prolonged developmental time. Surprisingly, we found that both cell death and compensatory cell proliferation were dramatically increased in developing wing pouches of Minute animals. Blocking the cell-turnover by inhibiting cell death resulted in morphological defects, indicating the essential role of cell-turnover in Minute wing morphogenesis. Our analyses showed that Minute wing discs elevate Wg expression and JNK-mediated Dilp8 expression that causes developmental delay, both of which are necessary for the induction of cell-turnover. Furthermore, forced increase in Wg expression together with developmental delay caused by ecdysone depletion induced cell-turnover in the wing pouches of non-Minute animals. Our findings suggest a novel paradigm for robust coordination of tissue growth by cell-turnover, which is induced when developmental time axis is distorted.  相似文献   

13.
14.
15.
The Neuroepithelial transforming gene 1 (Net1) is a RhoA subfamily guanine nucleotide exchange factor that is overexpressed in a number of cancers and contributes to cancer cell motility and proliferation. Net1 also plays a Rho GTPase independent role in mitotic progression, where it promotes centrosomal activation of Aurora A and Pak2, and aids in chromosome alignment during prometaphase. To understand regulatory mechanisms controlling the mitotic function of Net1, we examined whether it was phosphorylated by the mitotic kinase Cdk1. We observed that Cdk1 phosphorylated Net1 on multiple sites in its N-terminal regulatory domain and C-terminus in vitro. By raising phospho-specific antibodies to two of these sites, we also demonstrated that both endogenous and transfected Net1 were phosphorylated by Cdk1 in cells. Substitution of the major Cdk1 phosphorylation sites with aliphatic or acidic residues inhibited the interaction of Net1 with RhoA, and treatment of metaphase cells with a Cdk1 inhibitor increased Net1 activity. Cdk1 inhibition also increased Net1 localization to the plasma membrane and stimulated cortical F-actin accumulation. Moreover, Net1 overexpression caused spindle polarity defects that were reduced in frequency by acidic substitution of the major Cdk1 phosphorylation sites. These data indicate that Cdk1 phosphorylates Net1 during mitosis and suggest that this negatively regulates its ability to signal to RhoA and alter actin cytoskeletal organization.  相似文献   

16.
Tubulin polymerization promoting protein 1 (Tppp1) regulates microtubule (MT) dynamics via promoting MT polymerization and inhibiting histone deacetylase 6 (Hdac6) activity to increase MT acetylation. Our results reveal that as a consequence, Tppp1 inhibits cell proliferation by delaying the G1/S-phase and the mitosis to G1-phase transitions. We show that phosphorylation of Tppp1 by Rho-associated coiled-coil kinase (Rock) prevents its Hdac6 inhibitory activity to enable cells to enter S-phase. Whereas, our analysis of the role of Tppp1 during mitosis revealed that inhibition of its MT polymerizing and Hdac6 regulatory activities were necessary for cells to re-enter the G1-phase. During this investigation, we also discovered that Tppp1 is a novel Cyclin B/Cdk1 (cyclin-dependent kinase) substrate and that Cdk phosphorylation of Tppp1 inhibits its MT polymerizing activity. Overall, our results show that dual Rock and Cdk phosphorylation of Tppp1 inhibits its regulation of the cell cycle to increase cell proliferation.  相似文献   

17.
18.
The heat-sensitive, lethal mutation l(3)c43hs1 (3–49.0) produces wide variety of defects in the imaginal discs of Drosophila melanogaster. At permissive temperatures (20°C or lower), homozygotes are viable, but sterile. At 22°C, lethality occurs during the late pupal stage, and at 25°C or higher, lethality occurs during the third larval instar. The imaginal-disc abnormalities observed after exposure to restrictive temperatures include: deficiencies of head structures, duplications and deficiencies of the antenna, a homeotic transformation of the arista to tarsus, duplications and deficiencies of wing and haltere structures, differentiation of amorphous cuticular material in the wing blade, an increase in the number of sex-comb teeth, and disruption of the normal segmentation of the tarsus. Exposure to 27°C for 24 hr at different times in the life cycle revealed that each of these defects has a characteristic temperature-sensitive period (TSP) during the larval stages. Injection of wing discs before and after their TSP showed that the mutation is expressed autonomously. These results are discussed in relation to the role that the l(3)c43+ gene plays in the development of imaginal discs.  相似文献   

19.
20.
This study was undertaken to evaluate the range of 20-hydroxyecdysone (20HE) concentrations which induce cell proliferation and imaginal differentiation in lepidopteran wing discs in vitro . Wing discs were cultured in medium containing various doses of 20HE. During imaginal differentiation in vitro , wing discs were observed histologically and the number of mitosis was counted every day. Wing discs differentiated adult features in medium containing 0.02–0.2 μg/mL 20HE, and these doses also increased the number of mitosis in disc cells. Wing discs developed the same in vitro as they do in vivo . The concentration of 20HE over 0.2 μg/mL inhibited both mitosis and imaginal differentiation. Cell proliferation, cuticle deposition and tissue elongation were successively observed in vitro the same as observed in vivo . These results suggest that a moderate concentration of ecdysteroid can induce cell proliferation followed by imaginal differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号