首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
We investigated here the specific role of CGI-58 in the regulation of energy metabolism in skeletal muscle. We first examined CGI-58 protein expression in various muscle types in mice, and next modulated CGI-58 expression during overexpression and knockdown studies in human primary myotubes and evaluated the consequences on oxidative metabolism. We observed a preferential expression of CGI-58 in oxidative muscles in mice consistent with triacylglycerol hydrolase activity. We next showed by pulse-chase that CGI-58 overexpression increased by more than 2-fold the rate of triacylglycerol (TAG) hydrolysis, as well as TAG-derived fatty acid (FA) release and oxidation. Oppositely, CGI-58 silencing reduced TAG hydrolysis and TAG-derived FA release and oxidation (-77%, P < 0.001), whereas it increased glucose oxidation and glycogen synthesis. Interestingly, modulations of CGI-58 expression and FA release are reflected by changes in pyruvate dehydrogenase kinase 4 gene expression. This regulation involves the activation of the peroxisome proliferator activating receptor-δ (PPARδ) by lipolysis products. Altogether, these data reveal that CGI-58 plays a limiting role in the control of oxidative metabolism by modulating FA availability and the expression of PPARδ-target genes, and highlight an important metabolic function of CGI-58 in skeletal muscle.  相似文献   

4.
5.
The aim of this review is to describe the effects induced by local temperature changes on human skeletal muscle metabolism. More specifically, we will consider the influence of temperature on the mechanical properties of muscle contraction, on aerobic metabolism, anaerobic metabolism and on the Lohmann reaction. The text has been voluntarily organized on the basis of a simple bioenergetic model describing the different energy fluxes appearing in the muscle system. This approach should better highlight some of the points that still need to be investigated. Although it was not always possible to restrict the discussion to human muscle, the references report mainly data obtained directly on humans or on isolated human fibres. A short comment on skeletal muscle temperature measurement techniques, on humans, is also included.  相似文献   

6.
Nuclear receptor signaling plays an important role in energy metabolism. In this study we demonstrate that the nuclear receptor corepressor RIP140 is a key regulator of metabolism in skeletal muscle. RIP140 is expressed in a fiber type-specific manner, and manipulation of its levels in null, heterozygous, and transgenic mice demonstrate that low levels promote while increased expression suppresses the formation of oxidative fibers. Expression profiling reveals global changes in the expression of genes implicated in both myofiber phenotype and metabolic functions. Genes involved in fatty-acid oxidation, oxidative phosphorylation, and mitochondrial biogenesis are upregulated in the absence of RIP140. Analysis of cultured myofibers demonstrates that the changes in expression are intrinsic to muscle cells and that nuclear receptor-regulated genes are direct targets for repression by RIP140. Therefore RIP140 is an important signaling factor in the regulation of skeletal muscle function and physiology.  相似文献   

7.
Increasing stimulation frequency has been shown to increase fatigue but not when the changes in force associated with changes in frequency have been controlled. An effect of frequency, independent of force, may be associated with the metabolic cost resulting from the additional activations. Here, two separate experiments were performed on human medial gastrocnemius muscles. The first experiment (n = 8) was designed to test the effect of the number of pulses on fatigue. The declines in force during two repetitive, 150-train stimulation protocols that produced equal initial forces, one using 80-Hz trains and the other using 100-Hz trains, were compared. Despite a difference of 600 pulses (23.5%), the protocols produced similar rates and amounts of fatigue. In the second experiment, designed to test the effect of the number of pulses on the metabolic cost of contraction, 31P-NMR spectra were collected (n = 6) during two ischemic, eight-train stimulation protocols (80- and 100-Hz) that produced comparable forces despite a difference of 320 pulses (24.8%). No differences were found in the changes in P(i) concentration, phosphocreatine concentration, and intracellular pH or in the ATP turnover produced by the two trains. These results suggest that the effect of stimulation frequency on fatigue is related to the force produced, rather than to the number of activations. In addition, within the range of frequencies tested, increasing total activations did not increase metabolic cost.  相似文献   

8.
9.
To use primary cultures of human skeletal muscle cells to establish defects in glucose metabolism that underlie clinical insulin resistance, it is necessary to define the rate-determining steps in glucose metabolism and to improve the insulin response attained in previous studies. We modified experimental conditions to achieve an insulin effect on 3-O-methylglucose transport that was more than twofold over basal. Glucose phosphorylation by hexokinase limits glucose metabolism in these cells, because the apparent Michaelis-Menten constant of coupled glucose transport and phosphorylation is intermediate between that of transport and that of the hexokinase and because rates of 2-deoxyglucose uptake and phosphorylation are less than those of glucose. The latter reflects a preference of hexokinase for glucose over 2-deoxyglucose. Cellular NAD(P)H autofluorescence, measured using two-photon excitation microscopy, is both sensitive to insulin and indicative of additional distal control steps in glucose metabolism. Whereas the predominant effect of insulin in human skeletal muscle cells is to enhance glucose transport, phosphorylation, and steps beyond, it also determines the overall rate of glucose metabolism.  相似文献   

10.
Angiotensin (ANG) and kinin metabolizing enzymes, angiotensin-converting enzyme (ACE; EC 3.4.15.1), neutral endopeptidase-24.11 (NEP-24.11; EC 3.4.24.11), and aminopeptidase M (AmM; EC 3.4.11.2), have recently been identified in a purified skeletal muscle glycoprotein fraction. We have analyzed the cellular localization of these enzymes. In cultured human skeletal muscle adult myoblasts, myotubes, and fibroblasts, kinins and angiotensins were metabolized by NEP-24.11 and AmM but not by ACE. NEP-24.11 degraded ANG II, ANG III, and bradykinin (BK) and converted ANG I to the active metabolite ANG(1–7). ANG III was converted to the novel ANG IV metabolite [des-Arg1]ANG III by AmM. These data suggest that, due to their abundance in the body, skeletal muscle myocytes and fibroblasts may play a major role in modulation of the systemic and local effects of angiotensins and kinins. This role could be particularly important in individuals receiving treatment with ACE inhibitors.  相似文献   

11.
A recent study determined that cultured human skeletal muscle adult myoblasts, myotubes, and fibroblasts degraded angiotensins and kinins via neutral endopeptidase-24.11 (NEP-24.11; EC 3.4.24.11) and aminopeptidase N (APN; EC 3.4.11.2). Due to the possible importance of other peptides to skeletal muscle blood flow and function, the present study looked specifically at the metabolism of the neurokinins substance P (SP) and neurokinin A (NKA) by skeletal muscle peptidases. The results show that SP is degraded not only by NEP-24.11, but also sequentially by dipeptidyl(amino)peptidase IV (DAP IV; EC 3.4.14.5)/APN. NKA is unaffected by DAP IV but is metabolized by NEP-24.11 and APN. NEP-24.11 was inhibited by phosphoramidon (IC50 = 80 nM), thiorphan and ZINCOV, DAP IV by diprotin A (IC50 = 8 μM), and APN by amastatin (IC50 = 50 nM) and bestatin (IC50 = 100 μM). Skeletal muscle myocyte and fibroblast metabolism of SP and NKA may regulate local skeletal muscle vascular and extravascular functions including SP- and NKA-mediated nerve-induced vasodilation. Inhibition of both NEP-24.11 and DAP IV/APN may increase skeletal muscle blood flow and decrease peripheral vascular resistance via potentiation of local neurokinin levels.  相似文献   

12.
A recent report suggests that differences in aerobic capacity exist between concentric and eccentric muscle action in human muscle (T. W. Ryschon, M. D. Fowler, R. E. Wysong, A. R. Anthony, and R. S. Balaban. J. Appl. Physiol. 83: 867-874, 1997). This study compared oxidative response, in the form of phosphocreatine (PCr) resynthesis rates, with matched levels of metabolic strain (i.e., changes in ADP concentration or the free energy of ATP hydrolysis) in tibialis anterior muscle exercised with either muscle action in vivo (n = 7 subjects). Exercise was controlled and metabolic strain measured by a dynamometer and (31)P-magnetic resonance spectroscopy, respectively. Metabolic strain was varied to bring cytosolic ADP concentration up to 55 microM or decrease the free energy of ATP hydrolysis to -55 kJ/mol with no change in cytoplasmic pH. PCr resynthesis rates after exercise ranged from 31.9 to 462.5 and from 21.4 to 405.4 micromol PCr/s for concentric and eccentric action, respectively. PCr resynthesis rates as a function of metabolic strain were not significantly different between muscle actions (P > 0.40), suggesting that oxidative capacity is dependent on metabolic strain, not muscle action. Pooled data were found to more closely conform to previous biochemical measurements when a term for increasing oxidative capacity with metabolic strain was added to models of respiratory control.  相似文献   

13.
14.
The classical concept of ATP-demand control of energy metabolism in skeletal muscle has to be modified on the basis of studies showing the influence of additional controlling parameters (reducing equivalent supply, oxygen availability, proton leak, diffusion restrictions and the creatine kinase system) and on the basis of applications of metabolic control analysis showing very clearly multistep control. This concept of multistep control allows to quantify the individual influence of any parameter on mitochondrial oxidative phosphorylation and is extremely helpful to analyze the metabolic consequences of enzyme deficiencies in skeletal muscle occurring in mitochondrial myopathies.  相似文献   

15.
16.
This review focuses on the ammonia and amino acid metabolic responses of active human skeletal muscle, with a particular emphasis on steady-state exercise. Ammonia production in skeletal muscle involves the purine nucleotide cycle and the amino acids glutamate, glutamine, and alanine and probably also includes the branched chain amino acids as well as aspartate. Ammonia production is greatest during prolonged, steady state exercise that requires 60-80% VO2max and is associated with glutamine and alanine metabolism. Under these circumstances it is unresolved whether the purine nucleotide cycle (AMP deamination) is active; if so, it must be cycling with no IMP accumulation. It is proposed that under these circumstances the ammonia is produced from slow twitch fibers by the deamination of the branched chain amino acids. The ammonia response can be suppressed by increasing the carbohydrate availability and this may be mediated by altering the availability of the branched chain amino acids. The fate of the ammonia released into the circulation is unresolved, but there is indirect evidence that a considerable portion may be excreted by the lung in expired air.  相似文献   

17.
18.
Although previous studies from this and other laboratories have extensively characterized insulin degrading activity in animal tissues, little information has been available on insulin responsive human tissues. The present study describes the insulin degrading activity in skeletal muscle from normal human subjects. Fractionation of a sucrose homogenate of skeletal muscle demonstrated that 97% of the total neutral insulin degrading activity was in the 100 000 × g supernatant with no detectable glutathione-insulin transhydrogenase activity. The 100 000×g pellet contained 85% of the total acid protease activity and all the glutathione-insulin transhydrogenase activity. The soluble insulin degrading activity was purified 1400-fold by ammonium sulfate fractionation, molecular exclusion, ion-exchange and affinity chromatography. Enzymatic activity was determined by measuring an increase in trichloroacetic acid-soluble products of the 125I-labeled hormone substrates. The purified enzyme showed marked proteolytic specificity for insulin with a Km of 1.63·10?7 M (±0.32) and was competitively inhibited by proinsulin and glucagon with Ki values of 2.1 · 10?6 M and 4.0 · 10?6 M, respectively. This insulin protease exhibited a pH optimum between 7 and 8, a molecular weight of 120 000 and was capable of degrading glucagon. Inhibition studies demonstrated that a sulfhydryl group is essential for activity. Molecular exclusion chromatography of [125I]insulin degraded products revealed a time-dependent increase in degradation products with molecular weights intermediate between intact insulin and iodotyrosine. These studies demonstrate that the major enzymatic system responsible for insulin degrading activity is a soluble cysteine protease capable of rapidly metabolizing insulin under physiologic conditions.  相似文献   

19.
Three hundred and sixty male albino rats weighing 180 to 200 g were used to determine the effect of anabolic steroid hormones on adaptive changes in the synthesis of ribosomal RNA both in sedentary animals and in animals involved in a training programme. One injection of Retabolil (0.1 mg/100 g body weight) increased the α-amanitin insensitive RNA polymerase activity of nuclei from skeletal muscles. Fourteen h after this hormone injection the enzyme activity was 45% higher than in control animals and it remained at this level for 4 days. Under these conditions a selective binding of 19-nortestosterone with cytoplasmic proteins of skeletal muscle was found. Physical training increased the RNA polymerase activity by 50% (P < 0.05). It was found that the testosterone binding capacity of a cytoplasmic extract from trained animals was 70% greater than that of the control animals (P < 0.05). Four injections of Retabolil during training resulted in an additional increase of RNA polymerase activity of 40% (P < 0.05) but reduced the testosterone binding capacity of the cytoplasmic proteins that occurred with training by 21%. These results demonstrate the effect of anabolic hormones in the regulations of RNA synthesis in skeletal muscle nuclei in the process of their adaptation to systematic physical training.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号