首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Legionella pneumophila is the predominant cause of Legionnaires' disease in the USA and Europe in contrast to Legionella longbeachaea, which is the leading cause of the disease in Western Australia. The ability of L. pneumophila to replicate intracellularly is triggered at the post-exponential phase along with expression of other virulence traits, such as motility. We show that while motility of L. longbeachaea is triggered upon growth transition into post-exponential phase, its ability to proliferate intracellularly is totally independent of the bacterial growth phase. Within macrophages, L. pneumophila replicates in a phagosome that excludes early and late endocytic markers and is surrounded by the rough endoplasmic reticulum (RER). In contrast, the L. longbeachaea phagosome colocalizes with the early endosomal marker early endosomal antigen 1 (EEA1) and the late endosomal markers lysosomal associated membrane glycoprotein 2 (LAMP-2) and mannose 6-phosphate receptor (M6PR), and is surrounded by the RER. The L. longbeachaea phagosome does not colocalize with the vacuolar ATPase (vATPase) proton pump, and the lysosomal luminal protease Cathepsin D, or the lysosomal tracer Texas red Ovalbumin (TROV). Intracellular proliferation of L. longbeachaea occurs in LAMP-2-positive phagosomes that are remodelled by the RER. Despite their distinct trafficking, both L. longbeachaea and L. pneumophila can replicate in communal phagosomes whose biogenesis is predominantly modulated by L. longbeachaea into LAMP-2-positive phagosomes. In addition, the L. pneumophila dotA mutant is rescued for intracellular replication if it co-inhabits the phagosome with L. longbeachaea. During late stages of infection, L. longbeachaea escape into the cytoplasm, prior to lysis of the macrophage, similar to L. pneumophila. We conclude that the L. longbeachaea phagosome matures to a non-acidified late endosome-like stage that is remodelled by the RER, indicating an idiosyncratic trafficking of L. longbeachaea compared with other intracellular pathogens, and a divergence in its intracellular lifestyle from L. pneumophila. In addition, re-routing biogenesis of the L. pneumophila phagosome into a late endosome controlled by L. longbeachaea has no effect on intracellular replication.  相似文献   

2.
Phagosomal biogenesis is central for microbial killing and antigen presentation by leukocytes. However, the molecular mechanisms governing phagosome maturation are poorly understood. We analyzed the role and site of action of phosphatidylinositol 3-kinases (PI3K) and of Rab GTPases in maturation using both professional and engineered phagocytes. Rab5, which is recruited rapidly and transiently to the phagosome, was found to be essential for the recruitment of Rab7 and for progression to phagolysosomes. Similarly, functional PI3K is required for successful maturation. Remarkably, inhibition of PI3K did not preclude Rab5 recruitment to phagosomes but instead enhanced and prolonged it. Moreover, in the presence of PI3K inhibitors Rab5 was found to be active, as deduced from measurements of early endosome antigen 1 binding and by photobleaching recovery determinations. Though their ability to fuse with late endosomes and lysosomes was virtually eliminated by wortmannin, phagosomes nevertheless recruited a sizable amount of Rab7. Moreover, Rab7 recruited to phagosomes in the presence of PI3K antagonists retained the ability to bind its effector, Rab7-interacting lysosomal protein, suggesting that it is functionally active. These findings imply that (i) dissociation of Rab5 from phagosomes requires products of PI3K, (ii) PI3K-dependent effectors of Rab5 are not essential for the recruitment of Rab7 by phagosomes, and (iii) recruitment and activation of Rab7 are insufficient to induce fusion of phagosomes with late endosomes and lysosomes. Accordingly, transfection of constitutively active Rab7 did not bypass the block of phagolysosome formation exerted by wortmannin. We propose that Rab5 activates both PI3K-dependent and PI3K-independent effectors that act in parallel to promote phagosome maturation.  相似文献   

3.
During phagosome maturation, the late endosomal marker Rab7 and the lysosomal marker LAMP1 localize to the phagosomes. We investigated the mobility of Rab7 and LAMP1 on the phagosomes in macrophages by fluorescence recovery after photobleaching (FRAP) analysis. Rab7 was mobile between the phagosomal membrane and the cytosol in macrophages that ingested latex beads during phagosome maturation. The addition of interferon-γ (IFN-γ) restricted this mobility, suggesting that Rab7 is forced to bind to the phagosomal membrane by IFN-γ-mediated activation. Immobilization of LAMP1 on the phagosomes was observed irrespective of IFN-γ-activation. We further examined the mobility of Rab7 on the phagosomes containing Mycobacterium bovis BCG by FRAP analysis. The rate of fluorescence recovery for Rab7 on mycobacterial phagosomes was lower than that on the phagosomes containing latex beads, suggesting that mycobacteria impaired the mobility of Rab7 and arrested phagosome maturation.  相似文献   

4.
The Francisella tularensis subsp. novicida-containing phagosome (FCP) matures into a late endosome-like stage that acquires the late endosomal marker LAMP-2 but does not fuse to lysosomes, for the first few hours after bacterial entry. This modulation in phagosome biogenesis is followed by disruption of the phagosome and bacterial escape into the cytoplasm where they replicate. Here we examined the role of the Francisella pathogenicity island (FPI) protein IglC and its regulator MglA in the intracellular fate of F. tularensis subsp. novicida within human macrophages. We show that F. tularensis mglA and iglC mutant strains are defective for survival and replication within U937 macrophages and human monocyte-derived macrophages (hMDMs). The defect in intracellular replication of both mutants is associated with a defect in disruption of the phagosome and failure to escape into the cytoplasm. Approximately, 80-90% of the mglA and iglC mutants containing phagosomes acquire the late endosomal/lysosomal marker LAMP-2 similar to the wild-type (WT) strain. Phagosomes harbouring the mglA or iglC mutants acquire the lysosomal enzyme Cathepsin D, which is excluded from the phagosomes harbouring the WT strain. In hMDMs in which the lysosomes are preloaded with BSA-gold or Texas Red Ovalbumin, phagosomes harbouring the mglA or the iglC mutants acquire both lysosomal tracers. We conclude that the FPI protein IglC and its regulator MglA are essential for modulating phagosome biogenesis and subsequent bacterial escape into the cytoplasm. Therefore, acquisition of the FPI, within which iglC is contained, is essential for the pathogenic evolution of F. tularensis to evade lysosomal fusion within human macrophages and cause tularemia. This is the first example of specific virulence factors of F. tularensis that are essential for evasion of fusion of the FCP to lysosomes.  相似文献   

5.
6.
Proteomics has been applied to study intracellular bacteria and phagocytic vacuoles in different host cell lines, especially macrophages (Mφs). For mycobacterial phagosomes, few studies have identified over several hundred proteins for systems assessment of the phagosome maturation and antigen presentation pathways. More importantly, there has been a scarcity in publication on proteomic characterization of mycobacterial phagosomes in dendritic cells (DCs). In this work, we report a global proteomic analysis of Mφ and DC phagosomes infected with a virulent, an attenuated, and a vaccine strain of mycobacteria. We used label-free quantitative proteomics and bioinformatics tools to decipher the regulation of phagosome maturation and antigen presentation pathways in Mφs and DCs. We found that the phagosomal antigen presentation pathways are repressed more in DCs than in Mφs. The results suggest that virulent mycobacteria might co-opt the host immune system to stimulate granuloma formation for persistence while minimizing the antimicrobial immune response to enhance mycobacterial survival. The studies on phagosomal proteomes have also shown promise in discovering new antigen presentation mechanisms that a professional antigen presentation cell might use to overcome the mycobacterial blockade of conventional antigen presentation pathways.  相似文献   

7.
Dendritic cells (DC) take up pathogens through phagocytosis and process them into protein and lipid fragments for presentation to T cells. So far, the proteome of the human DC phagosome, a detrimental compartment for antigen processing and presentation as well as for DC activation, remains largely uncharacterized. Here we have analyzed the protein composition of phagosomes from human monocyte-derived DC. For LC-MS/MS analysis we purified phagosomes from DC using latex beads targeted to DC-SIGN, and quantified proteins using a label-free method. We used organellar enrichment ranking (OER) to select proteins with a high potential to be relevant for phagosome function. The method compares phagosome protein abundance with protein abundance in whole DC. Phagosome enrichment indicates specific recruitment to the phagosome rather than co-purification or passive incorporation. Using OER we extracted the most enriched proteins that we further complemented with functionally associated proteins to define a set of 90 phagosomal proteins that included many proteins with established relevance on DC phagosomes as well as high potential novel candidates. We already experimentally confirmed phagosomal recruitment of Galectin-9, which has not been previously associated with phagocytosis, to both bead and pathogen containing phagosomes, suggesting a role for Galectin-9 in DC phagocytosis.  相似文献   

8.
Phagosomes undergo multiple rounds of fusion with compartments of the endocytic pathway during the course of maturation. Despite the insertion of vast amounts of additional membrane, the phagosomal surface area remains approximately constant, implying active ongoing fission. To investigate the mechanisms underlying phagosomal fission we monitored the fate of Fcgamma receptors (FcgammaR), which are known to be cleared from the phagosome during maturation. FcgammaR, which show a continuous distribution throughout the membrane of nascent phagosomes were found at later times to cluster into punctate, vesicular structures, before disappearing. In situ photoactivation of receptors tagged with a light-sensitive fluorescent protein revealed that some of these vesicles detach, whereas others remain associated with the phagosome. By fusing FcgammaR to pH-sensitive fluorescent proteins, we observed that the cytoplasmic domain of the receptors enters an acidic compartment, indicative of inward budding and formation of multivesicular structures. The topology of the receptor was confirmed by flow cytometry of purified phagosomes. Phagosomal proteins are ubiquitylated, and ubiquitylation was found to be required for formation of acidic multivesicular structures. Remarkably, proteasomal function is also involved in the vesiculation process. Preventing the generation of multivesicular structures did not impair the acquisition of late endosomal and lysosomal markers, indicating that phagosomal fusion and fission are controlled separately.  相似文献   

9.
Mycobacterium tuberculosis survives in the infected host by parasitizing macrophages in which the bacillus resides in a specialized phagosome sequestered from the phagolysosomal degradative pathway. Here we report a role of the stress-induced p38 mitogen-activated protein kinase (p38 MAPK) in the component of M. tuberculosis phagosome maturation arrest that has been linked previously to the reduced recruitment of the endosomal and phagosomal membrane-tethering molecule called early endosome autoantigen 1 (EEA1; Fratti, R. A., Backer, J. M., Gruenberg, J., Corvera, S., and Deretic, V. (2001) J. Cell Biol. 154, 631-644). A pharmacological inhibition of M. tuberculosis var. bovis Bacillus Calmette-Guérin-induced p38 MAPK activity caused a marked increase in EEA1 colocalization with mycobacterial phagosomes. Consistent with the increase in EEA1 association and its role in phagosomal maturation, the pharmacological block of p38 activity caused phagosomal acidification and enrichment of the late endocytic markers lysobisphosphatidic acid and CD63 (lysosomal integral membrane protein 1) on mycobacterial phagosomes. A negative regulatory role of p38 MAPK activation in phagosome maturation was further demonstrated by converse experiments with latex bead phagosomes. Artificial activation of p38 MAPK caused a decrease in EEA1 colocalization with model latex bead phagosomes, which normally acquire EEA1 and subsequently mature into the phagolysosome. These findings show that p38 MAPK activity contributes to the arrest of M. tuberculosis phagosome maturation and demonstrate a negative regulatory role of p38 in phagolysosome biogenesis.  相似文献   

10.
Most disease causing mycobacteria are intramacrophage pathogens which replicate within nonacidified phagosomes that can interact with the early endosomal network but fail to mature to a phagolysosome. The mycobacterial phagosome retain some proteins required for fusion with endocytic vesicles including Rab5 but lack others such as early endosomal autoantigen 1 (EEA1). As the membrane lipid phosphatidylinositol 3-phosphate (PtdIns-3-P) is required for EEA1 membrane association and phagosome maturation, it may be a potential target of pathogenic mycobacteria. To test this hypothesis, macrophage cellular levels of PtdIns-3-P were altered by retroviral introduction of the type III Phosphoinositide 3-Kinase (VPS34) and the PtdIns-3-P phosphatase myotubularin 1 (MTM1). By utilizing the PtdIns-3-P-specific probes FYVE and PX coupled to EGFP (EGFP-2-FYVE and EGFP-PX, respectively), the expression of PtdIns-3-P on the mycobacterial phagosome was addressed. All phagosomes containing viable Mycobacterium avium stained positive for EGFP-2-FYVE and EGFP-PX despite obvious differences in PtdIns-3-P concentrations in cells expressing MTM1 or VPS34. Altering PtdIns-3-P cellular concentrations did not affect trafficking of live bacilli. However, a significant increase in the transport of killed bacilli to a late endosomal/lysosomal compartment was observed in VPS34-compared to MTM1-transduced macrophages. Therefore, although overexpression of PdtIns-3-P in macrophages can facilitate phagosome maturation, its effect on phagosomes containing viable M. avium was negligible.  相似文献   

11.
A morphometric analysis was made to study membrane traffic in bone marrow-derived macrophages, containing phagosomes with partially degraded Bacillus subtilis. Cell surface glycoproteins, labeled with radioactive galactose by terminal glycosylation, provided a covalent autoradiographic membrane marker. Membrane compartments were characterized in terms of cytochemical staining for horseradish peroxidase taken up by receptor-mediated endocytosis. The area, composition, and exchange rates of endocytic membrane compartments were measured as in a previous analysis for non-infected macrophages, devoid of phagosomes. In direct comparison with this earlier study, the present data allowed an assessment of the involvement of phagosomes in the interactions between endocytic membrane compartments. The presence of phagosomes led to a 30% reduction of lysosomal membrane area. The rate at which cell surface-derived label flowed into the lysosomal membrane pool was reduced by the same fractional amount. This suggested a linear relationship between flow rate and membrane area. The initial flow rate of label into phagosomes was higher than expected, based on their membrane area being only about 60% that of lysosomes. This rate could only be measured during the early phase of the experiments when phagosomes were younger, therefore displaying a fast exchange rate, reminiscent of the endosome compartment. However, steady-state conditions, at late times, strongly suggested that phagosomes with degraded contents finally acquire membrane of lysosomal origin. First, the composition of phagosome membrane became the same as that of lysosomes, remaining unchanged as compared to non-infected cells. Second, the membrane area of phagosomes amounted to the loss of lysosomal membrane area in infected cells.  相似文献   

12.
Pathogenic mycobacteria infect macrophages where they replicate in phagosomes that minimize contact with late endosomal/lysosomal compartments. Loading of Ags to MHC class II molecules occurs in specialized compartments with late endosomal characteristics. This points to a sequestration of mycobacteria-containing phagosomes from the sites where Ags meet MHC class II molecules. Indeed, in resting macrophages MHC class II levels decreased strongly in phagosomes containing M. avium during a 4-day infection. Phagosomal MHC class II of early (4 h) infections was partly surface-derived and associated with peptide. Activation of host macrophages led to the appearance of H2-M, a chaperon of Ag loading, and to a strong increase in MHC class II molecules in phagosomes of acute (1 day) infections. Comparison with the kinetics of MHC class II acquisition by IgG-coated bead-containing phagosomes suggests that the arrest in phagosome maturation by mycobacteria limits the intersection of mycobacteria-containing phagosomes with the intracellular trafficking pathways of Ag-presenting molecules.  相似文献   

13.
Mycobacterium tuberculosis is a facultative intracellular pathogen that parasitizes macrophages by modulating properties of the Mycobacterium-containing phagosome. Mycobacterial phagosomes do not fuse with late endosomal/lysosomal organelles but retain access to early endosomal contents by an unknown mechanism. We have previously reported that mycobacterial phosphatidylinositol analog lipoarabinomannan (LAM) blocks a trans-Golgi network-to-phagosome phosphatidylinositol 3-kinase-dependent pathway. In this work, we extend our investigations of the effects of mycobacterial phosphoinositides on host membrane trafficking. We present data demonstrating that phosphatidylinositol mannoside (PIM) specifically stimulated homotypic fusion of early endosomes in an ATP-, cytosol-, and N-ethylmaleimide sensitive factor-dependent manner. The fusion showed absolute requirement for small Rab GTPases, and the stimulatory effect of PIM increased upon partial depletion of membrane Rabs with RabGDI. We found that stimulation of early endosomal fusion by PIM was higher when phosphatidylinositol 3-kinase was inhibited by wortmannin. PIM also stimulated in vitro fusion between model phagosomes and early endosomes. Finally, PIM displayed in vivo effects in macrophages by increasing accumulation of plasma membrane-endosomal syntaxin 4 and transferrin receptor on PIM-coated latex bead phagosomes. In addition, inhibition of phagosomal acidification was detected with PIM-coated beads. The effects of PIM, along with the previously reported action of LAM, suggest that M. tuberculosis has evolved a two-prong strategy to modify its intracellular niche: its products block acquisition of late endosomal/lysosomal constituents, while facilitating fusion with early endosomal compartments.  相似文献   

14.
Mycobacterium tuberculosis persistence in human populations relies on its ability to inhibit phagosomal maturation. M. tuberculosis resides in a pathogen-friendly phagosome escaping lysosomal bactericidal mechanisms and efficient antigen presentation in the host phagocytic cell. M. tuberculosis phagosome maturation arrest includes the action of mycobacterial lipid products, which mimic mammalian phosphatidylinositols, targeting host cell membrane trafficking processes. These products interfere with membrane trafficking and organelle biogenesis processes initiated by Ca(2+) fluxes, and ending with host cell Rab GTP-binding proteins and their effectors. The block includes phosphatidylinositol 3-kinase and membrane tethering molecules that prepare phagosomes for fusion with other organelles. Understanding these processes could provide new targets for pharmacological intervention in tuberculosis.  相似文献   

15.
Internalization of Listeria monocytogenes into non-phagocytic cells is mediated by the interactions between the two bacterial invasion proteins InlA (internalin) and InlB and their cellular surface receptors E-cadherin and c-Met. To get an insight into all the cellular components necessary for uptake and early intracellular life, we undertook a global proteomic characterization of the early listerial phagosome in the human epithelial cell line LoVo. First, we proceeded to an immunocytochemical characterization of intracellular marker recruitment to phagosomes containing latex beads coated with InlA or InlB. E-cadherin and c-Met were, as expected, rapidly recruited to the phagosomal formation site. Phagosomes subsequently acquired the early endosomal antigen 1 (EEA1) and the lysosomal-associated membrane protein 1 (LAMP1), while presenting a more delayed enrichment of the lysosomal hydrolase cathepsin D. Early phagosomes devoid of lysosomal, endoplasmic reticulum and Golgi enzymatic activities could then be isolated by subcellular fractionation of LoVo cells. Two-dimensional gel electrophoresis (2DPAGE) revealed differences between the protein profiles of InlA- or InlB-phagosomes and those of early/late endosomes or lysosomes of naive LoVo cells. One major protein specifically recruited on the InlB-phagosomes was identified by mass spectrometry as MSF, a previously reported member of the septin family of GTPases. MSF forms filaments that co-localize with the actin cytoskeleton in resting cells and it is recruited to the entry site of InlB-coated beads. These results suggest that MSF is a putative effector of the InlB-mediated internalization of L. monocytogenes into host cells.  相似文献   

16.
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), is the leading cause of death due to bacterial infections in mankind, and BCG, an attenuated strain of Mycobacterium bovis, is an approved vaccine. BCG sequesters in immature phagosomes of antigen presenting cells (APCs), which do not fuse with lysosomes, leading to decreased antigen processing and reduced Th1 responses. However, an Mtb derived ΔfbpA attenuated mutant underwent limited phagosome maturation, enhanced immunogenicity and was as effective as BCG in protecting mice against TB. To facilitate phagosome maturation of ΔfbpA, we disrupted an additional gene sapM, which encodes for an acid phosphatase. Compared to the wild type Mtb, the ΔfbpAΔsapM (double knock out; DKO) strain was attenuated for growth in mouse macrophages and PMA activated human THP1 macrophages. Attenuation correlated with increased oxidants in macrophages in response to DKO infection and enhanced labeling of lysosomal markers (CD63 and rab7) on DKO phagosomes. An in vitro Antigen 85B peptide presentation assay was used to determine antigen presentation to T cells by APCs infected with DKO or other mycobacterial strains. This revealed that DKO infected APCs showed the strongest ability to present Ag85B to T cells (>2500 pgs/mL in 4 hrs) as compared to APCs infected with wild type Mtb or ΔfbpA or ΔsapM strain (<1000 pgs/mL in 4 hrs), indicating that DKO strain has enhanced immunogenicity than other strains. The ability of DKO to undergo lysosomal fusion and vacuolar acidification correlated with antigen presentation since bafilomycin, that inhibits acidification in APCs, reduced antigen presentation. Finally, the DKO vaccine elicited a better Th1 response in mice after subcutaneous vaccination than either ΔfbpA or ΔsapM. Since ΔfbpA has been used in mice as a candidate vaccine and the DKO (ΔfbpAΔsapM) mutant is more immunogenic than ΔfbpA, we propose the DKO is a potential anti-tuberculosis vaccine.  相似文献   

17.
It is commonly assumed that all phagosomes have identical molecular composition. This assumption has remained largely unchallenged due to a paucity of methods to distinguish individual phagosomes. We devised an assay that extends the utility of nitro blue tetrazolium for detection and quantification of NAPDH oxidase (NOX) activity in individual phagosomes. Implementation of this assay revealed that in murine macrophages there is heterogeneity in the ability of individual phagosomes to generate superoxide, both between and within cells. To elucidate the molecular basis of the variability in NOX activation, we employed genetically encoded fluorescent biosensors to evaluate the uniformity in the distribution of phospholipid mediators of the oxidative response. Despite variability in superoxide generation, the distribution of phosphatidylinositol 3,4,5-trisphosphate, phosphatidylinositol 3-phosphate, and phosphatidic acid was nearly identical in all phagosomes. In contrast, diacylglycerol (DAG) was not generated uniformly across the phagosomal population, varying in a manner that directly mirrored superoxide production. Modulation of DAG levels suggested that NOX activation is precluded when phagosomes fail to reach a critical DAG concentration. In particular, forced expression of diacylglycerol kinase β abrogated DAG accumulation at the phagosome, leading to impaired respiratory burst. Conversely, pharmacological inhibition of DAG kinases or expression of an inactive diacylglycerol kinase β mutant increased the proportion of DAG-positive phagosomes, concomitantly potentiating phagosomal NOX activity. Our data suggest that diacylglycerol kinases limit the extent of NADPH oxidase activation, curtailing the production of potentially harmful reactive oxygen species. The resulting heterogeneity in phagosome responsiveness could enable the survival of a fraction of invading microorganisms.  相似文献   

18.
As part of their strategy for intracellular survival, mycobacteria prevent maturation of the phagosomes in which they reside inside macrophages. The molecular basis for this inhibition is only now beginning to emerge, by way of the molecular characterisation of the phagosome membrane when it encloses virulent mycobacteria. Our own work has shown that at 15 days after the phagocytic uptake of Mycobacterium avium by mouse bone marrow-derived macrophages, the phagosome membrane is depleted about 4-fold for cell surface-derived membrane glycoconjugates, labelled by exogalactosylation, in comparison to the membrane of early endosomes with which it continues to interact. Here we asked whether this depletion occurred at early or late stages after infection. We found that only about half of the depletion had occurred at about 5 hours after the beginning of phagocytic uptake, with the remainder becoming established thereafter, with a half-time of about 2.5 days. Phagosomes became depleted in relation to early endosomes with which they continued to exchange membrane constituents. Early endosomes themselves became gradually depleted by about 30% during the 15-day post-infection period. In contrast, late endosomes/lysosomes remained unchanged, with a concentration of surface-derived glycoconjugates between that of early endosomes and of phagosomes at day 15 post infection. In view of the slowness of the post-infection change of phagosome membrane composition, we proposed that this change did not play a role in preventing maturation immediately after phagosome formation, but rather correlated with the process of maintaining the phagosomes in an immature state.  相似文献   

19.
Egami Y  Araki N 《PloS one》2012,7(4):e35663
Rab20, a member of the Rab GTPase family, is known to be involved in membrane trafficking, however its implication in FcγR-mediated phagocytosis is unclear. We examined the spatiotemporal localization of Rab20 during phagocytosis of IgG-opsonized erythrocytes (IgG-Es) in RAW264 macrophages. By the live-cell imaging of fluorescent protein-fused Rab20, it was shown that Rab20 was transiently associated with the phagosomal membranes. During the early stage of phagosome formation, Rab20 was not localized on the membranes of phagocytic cups, but was gradually recruited to the newly formed phagosomes. Although Rab20 was colocalized with Rab5 to some extent, the association of Rab20 with the phagosomes persisted even after the loss of Rab5 from the phagosomal membranes. Then, Rab20 was colocalized with Rab7 and Lamp1, late endosomal/lysosomal markers, on the internalized phagosomes. Moreover, our analysis of Rab20 mutant expression revealed that the maturation of phagosomes was significantly delayed in cells expressing the GDP-bound mutant Rab20-T19N. These data suggest that Rab20 is an important component of phagosome and regulates the phagosome maturation during FcγR-mediated phagocytosis.  相似文献   

20.
The late endosomal marker Rab7 has been long believed to be absent from the phagosome containing Mycobacterium tuberculosis (M.tb) in macrophage, but the detail kinetics remains elusive. Here, we found that Rab7 is transiently recruited to and subsequently released from M.tb phagosomes. For further understanding of the effect of Rab7 dissociation from the phagosome, we examined the localization of lysosomal markers on the phagosome in the macrophage expressing a dominant-negative Rab7. The localization of lysosomal associated membrane protein-2 (LAMP-2) on the phagosome was Rab7-independent, while that of cathepsin D was Rab7-dependent. These results agree with the localization of each lysosomal marker on M.tb phagosome at 6 h postinfection-i.e., LAMP-2, but not cathepsin D localized on the majority of M.tb phagosomes. These results suggest that the dissociation of Rab7 from M.tb phagosome is the important process in inhibition of phagolysosome biogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号