首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We tested the hypothesis that nitric oxide (NO) and prostaglandins (PGs) contribute to the rapid vasodilation that accompanies a transition from mild to moderate exercise. Nine healthy volunteers (2 women and 7 men) lay supine with forearm at heart level. Subjects were instrumented for continuous brachial artery infusion of saline (control condition) or combined infusion of N(G)-nitro-L-arginine methyl ester (L-NAME) and ketorolac (drug condition) to inhibit NO synthase and cyclooxygenase, respectively. A step increase from 5 min of steady-state mild (5.4 kg) rhythmic, dynamic forearm handgrip exercise (1 s of contraction followed by 2 s of relaxation) to moderate (10.9 kg) exercise for 30 s was performed. Steady-state forearm blood flow (FBF; Doppler ultrasound) and forearm vascular conductance (FVC) were attenuated in drug compared with saline (control) treatment: FBF = 196.8 +/- 30.8 vs. 281.4 +/- 34.3 ml/min and FVC = 179.3 +/- 29.4 vs. 277.8 +/- 34.8 ml.min(-1).100 mmHg(-1) (both P < 0.01). FBF and FVC increased from steady state after release of the initial contraction at the higher workload in saline and drug conditions: DeltaFBF = 72.4 +/- 8.7 and 52.9 +/- 7.8 ml/min, respectively, and DeltaFVC = 66.3 +/- 7.3 and 44.1 +/- 7.0 ml.min(-1).100 mmHg(-1), respectively (all P < 0.05). The percent DeltaFBF and DeltaFVC were not different during saline infusion or combined inhibition of NO and PGs: DeltaFBF = 27.2 +/- 3.1 and 28.1 +/- 3.8%, respectively (P = 0.78) and DeltaFVC = 25.7 +/- 3.2 and 26.0 +/- 4.0%, respectively (P = 0.94). The data suggest that NO and vasodilatory PGs are not obligatory for rapid vasodilation at the onset of a step increase from mild- to moderate-intensity forearm exercise. Additional vasodilatory mechanisms not dependent on NO and PG release contribute to the immediate and early increase in blood flow in an exercise-to-exercise transition.  相似文献   

2.
Bradykinin is an important endogenous mediator exerting acute protective effects in the ischemic myocardium. The aims of this study were to investigate whether exogenously administered bradykinin could evoke delayed myocardial protection and to determine whether any protection observed might be dependent on nitric oxide (NO) generation. Conscious rats received bradykinin (40 microg/kg iv) or saline, preceded 15-20 min earlier by the NO synthase inhibitor N(omega)-nitro-L-arginine methyl ester (L-NAME, 10 mg/kg ip) or saline. Twenty-four hours later, hearts were Langendorff perfused and subjected to 35 min of regional ischemia and 120 min of reperfusion. Infarct size was assessed using tetrazolium staining and expressed as a percentage of the risk zone. Bradykinin pretreatment reduced the infarct-to-risk ratio from 53.5 +/- 3.2% to 29.1 +/- 4.7% (P < 0.01). The administration of L-NAME before bradykinin abrogated the delayed protection (infarct size 52.3 +/- 5.0%) but alone did not influence infarct size (53.5 +/- 4.8%). These results are the first to demonstrate that bradykinin can evoke a delayed ("second window") enhancement of myocardial tolerance to ischemia, an action that is dependent on the early generation of NO.  相似文献   

3.
Ischemia followed by reperfusion (I/R) in the presence of polymorphonuclear leukocytes (PMNs) results in marked cardiac contractile dysfunction. A cell-permeable PKC-zeta peptide inhibitor was used to test the hypothesis that PKC-zeta inhibition could attenuate PMN-induced cardiac contractile dysfunction by suppression of superoxide production from PMNs and increase nitric oxide (NO) release from vascular endothelium. The effects of the PKC-zeta peptide inhibitor were examined in isolated ischemic (20 min) and reperfused (45 min) rat hearts reperfused with PMNs. The PKC-zeta inhibitor (2.5 or 5 microM, n = 6) significantly attenuated PMN-induced cardiac dysfunction compared with I/R hearts (n = 6) receiving PMNs alone in left ventricular developed pressure (LVDP) and the maximal rate of LVDP (+dP/dt(max)) cardiac function indexes (P < 0.01), and these cardioprotective effects were blocked by the NO synthase inhibitor, N(G)-nitro-L-arginine methyl ester (50 microM). Furthermore, the PKC-zeta inhibitor significantly increased endothelial NO release 47 +/- 2% (2.5 microM, P < 0.05) and 54 +/- 5% (5 microM, P < 0.01) over basal values from the rat aorta and significantly inhibited superoxide release from phorbol-12-myristate-13-acetate-stimulated rat PMNs by 33 +/- 12% (2.5 microM) and 40 +/- 8% (5 microM) (P < 0.01). The PKC-zeta inhibitor significantly attenuated PMN infiltration into the myocardium by 46-48 +/- 4% (P < 0.01) at 2.5 and 5 microM, respectively. In conclusion, these results suggest that the PKC-zeta peptide inhibitor attenuates PMN-induced post-I/R cardiac contractile dysfunction by increasing endothelial NO release and by inhibiting superoxide release from PMNs thereby attenuating PMN infiltration into I/R myocardium.  相似文献   

4.
Microinjection of acetylcholine chloride (ACh) in the nucleus of the solitary tract (NTS) of awake rats caused a transient and dose-dependent hypotension and bradycardia. Because it is known that cardiovascular reflexes are affected by nitric oxide (NO) produced in the NTS, we investigated whether these ACh-induced responses depend on NO in the NTS. Responses to ACh (500 pmol in 100 nl) were strongly reduced by ipsilateral microinjection of the NOS inhibitor NG-nitro-L-arginine methyl ester (L-NAME; 10 nmol in 100 nl) in the NTS: mean arterial pressure (MAP) fell by 50 +/- 5 mmHg before L-NAME to 9 +/- 4 mmHg, 10 min after L-NAME, and HR fell by 100 +/- 26 bpm before L-NAME to 20 +/- 10 bpm, 10 min after L-NAME (both P < 0.05). Microinjection of the selective inhibitor of neuronal nitric oxide synthase (nNOS), 1-(2-trifluoromethylphenyl) imidazole (TRIM; 13.3 nmol in 100 nl), in the NTS also reduced responses to ACh: MAP fell from 42 +/- 3 mmHg before TRIM to 27 +/- 6 mmHg, 10 min after TRIM (P < 0.05). TRIM also tended to reduce ACh-induced bradycardia, but this effect was not statistically significant. ACh-induced hypotension and bradycardia returned to control levels 30-45 min after NOS inhibition. Control injections with D-NAME and saline did not affect resting values or the response to ACh. In conclusion, injection of ACh into the NTS of conscious rats induces hypotension and bradycardia, and these effects may be mediated at least partly by NO produced in NTS neurons.  相似文献   

5.
The effects of ambient O(2) tension on epithelial metabolism and nitric oxide (NO) production (VNO) in the nasal airway were examined in nine healthy volunteers. Nasal VNO, O(2) consumption (VO(2)), and CO(2) production (VCO(2)) were measured during normoxia followed by gradual hypoxia from 21 to 0% O(2) concentration. Nasal VO(2), VCO(2), and respiratory quotient during normoxia were determined to be 1.19 +/- 0.04 ml/min, 1.60 +/- 0.04 ml/min, and 1.35 +/- 0.04, respectively. Hypoxia exposure to the nasal cavity significantly decreased both VCO(2) and VNO [VCO(2): 1.60 +/- 0.04 to 0.96 +/- 0.03 ml/min (P < 0.01), VNO: 530 +/- 15 to 336 +/- 9 nl/min (P < 0.01)]. VNO was reduced commensurately with gradual decline in O(2) tension, and the apparent K(m) value for O(2) was determined to be 23.0 microM. These results indicate that the nasal epithelial cells exchange O(2) and CO(2) with ambient air in the course of their metabolism and that nasal epithelial cells can synthesize NO by using ambient O(2) as a substrate. We conclude that air-borne O(2) diffuses into the epithelium where it may be utilized for either cell metabolism or NO synthesis.  相似文献   

6.
The effects of hypercapnia (CO(2)) confined to either the alveolar space or the intravascular perfusate on exhaled nitric oxide (NO), perfusate NO metabolites (NOx), and pulmonary arterial pressure (Ppa) were examined during normoxia and progressive 20-min hypoxia in isolated blood- and buffer-perfused rabbit lungs. In blood-perfused lungs, when alveolar CO(2) concentration was increased from 0 to 12%, exhaled NO decreased, whereas Ppa increased. Increments of intravascular CO(2) levels increased Ppa without changes in exhaled NO. In buffer-perfused lungs, alveolar CO(2) increased Ppa with reductions in both exhaled NO from 93.8 to 61.7 (SE) nl/min (P < 0.01) and perfusate NOx from 4.8 to 1.8 nmol/min (P < 0.01). In contrast, intravascular CO(2) did not affect either exhaled NO or Ppa despite a tendency for perfusate NOx to decline. Progressive hypoxia elevated Ppa by 28% from baseline with a reduction in exhaled NO during normocapnia. Alveolar hypercapnia enhanced hypoxic Ppa response up to 50% with a further decline in exhaled NO. Hypercapnia did not alter the apparent K(m) for O(2), whereas it significantly decreased the V(max) from 66.7 to 55.6 nl/min. These results suggest that alveolar CO(2) inhibits epithelial NO synthase activity noncompetitively and that the suppressed NO production by hypercapnia augments hypoxic pulmonary vasoconstriction, resulting in improved ventilation-perfusion matching.  相似文献   

7.
To investigatewhether relevant levels of nasal nitric oxide (NO) are produced in theabsence of paranasal sinuses, we studied 17 healthy baboons, mammalswithout any paranasal sinuses. The animals were anesthetized withketamine hydrochloride and breathed spontaneously. While the baboonsbreathed through a face mask (mouths closed) connected to a respirator,NO concentrations in exhaled gas were sampled from the expiratory limband analyzed by chemiluminescence. While the animals were breathingambient air, nasal gas was sampled via a thin plastic tube and analyzed for NO concentrations by chemiluminescence. Mean NO concentration inthe exhaled gas was 1.00 ± 0.59 parts/billion, and NO release was4.28 ± 2.72 nl/min. A NO concentration of 4.79 ± 2.08 parts/billion was found in the nasal gas (NO release: 7.18 ± 3.13 nl/min). An age-dependent increase in nasal NO levelswas not observed. Exhaled and nasal NO concentrations in baboons weremarkedly lower than in mammals with paranasal sinuses, suggesting thatparanasal sinuses might be an anatomic requirement for production ofrelevant nasal NO levels.

  相似文献   

8.
Nerve terminals containing neuronal nitric oxide synthase (nNOS) are localized in the renal pelvic wall where the sensory nerves containing substance P and calcitonin gene-related peptide (CGRP) are found. We examined whether nNOS is colocalized with substance P and CGRP. All renal pelvic nerve fibers that contained nNOS-like immunoreactivity (-LI) also contained substance P-LI and CGRP-LI. In anesthetized rats, renal pelvic perfusion with the nNOS inhibitor S-methyl-L-thiocitrulline (L-SMTC, 20 microM) prolonged the afferent renal nerve activity (ARNA) response to a 3-min period of increased renal pelvic pressure from 5 +/- 0.4 to 21 +/- 2 min (P < 0.01, n = 14). The magnitude of the ARNA response was unaffected by L-SMTC. Similar effects were produced by N(omega)-nitro-L-arginine methyl ester (L-NAME) but not D-NAME. Increasing renal pelvic pressure produced similar increases in renal pelvic release of substance P before and during L-SMTC, from 5.9 +/- 1.4 to 13.6 +/- 4.2 pg/min before and from 4.9 +/- to 12.6 +/- 2.7 pg/min during L-SMTC. L-SMTC also prolonged the ARNA response to renal pelvic perfusion with substance P (3 microM) from 1.2 +/- 0.2 to 5.6 +/- 1.1 min (P < 0.01, n = 9) without affecting the magnitude of the ARNA response. In conclusion: activation of NO may function as an inhibitory neurotransmitter regulating the activation of renal mechanosensory nerve fibers by mechanisms related to activation of substance P receptors.  相似文献   

9.
Adenosine A(2) receptors have been suggested to modulate tubuloglomerular feedback (TGF) responses by counteracting adenosine A(1) receptor-mediated vasoconstriction, but the mechanisms are unclear. We tested the hypothesis that A(2A) receptor activation blunts TGF by release of nitric oxide in the juxtaglomerular apparatus (JGA). Maximal TGF responses were measured in male Sprague-Dawley rats as changes in proximal stop-flow pressure (ΔP(SF)) in response to increased perfusion of the loop of Henle (0 to 40 nl/min) with artificial tubular fluid (ATF). The maximal TGF response was studied after 5 min intratubular perfusion (10 nl/min) with ATF or ATF + A(2A) receptor agonist (CGS-21680; 10(-7) mol/l). The interaction with nitric oxide synthase (NOS) isoforms was tested by perfusion with a nonselective NOS inhibitor [N(ω)-nitro-L-arginine methyl ester hydrochloride (L-NAME); 10(-3) mol/l] or a selective neuronal NOS (nNOS) inhibitor [N(ω)-propyl-L-arginine (L-NPA); 10(-6) mol/l] alone, and with the A(2A) agonist. Blood pressure, urine flow, and P(SF) at 0 nl/min were similar among the groups. The maximal TGF response (ΔP(SF)) with ATF alone (12.3 ± 0.6 mmHg) was attenuated by selective A(2A) stimulation (9.5 ± 0.4 mmHg). L-NAME enhanced maximal TGF responses (18.9 ± 0.4 mmHg) significantly more than L-NPA (15.2 ± 0.7 mmHg). Stimulation of A(2A) receptors did not influence maximal TGF response during nonselective NOS inhibition (19.0 ± 0.4) but attenuated responses during nNOS inhibition (10.3 ± 0.4 mmHg). In conclusion, adenosine A(2A) receptor activation attenuated TGF responses by stimulation of endothelial NOS (eNOS), presumably in the afferent arteriole. Moreover, NO derived from both eNOS and nNOS in the JGA may blunt TGF responses.  相似文献   

10.
Ischemia followed by reperfusion in the presence of polymorphonuclear leukocytes (PMNs) results in cardiac dysfunction. C-peptide, a cleavage product of proinsulin to insulin processing, induces nitric oxide (NO)-mediated vasodilation. NO is reported to attenuate cardiac dysfunction caused by PMNs after ischemia-reperfusion (I/R). Therefore, we hypothesized that C-peptide could attenuate PMN-induced cardiac dysfunction. We examined the effects of C-peptide in isolated ischemic (20 min) and reperfused (45 min) rat hearts perfused with PMNs. C-peptide (70 nmol/kg iv) given 4 or 24 h before I/R significantly improved coronary flow (P < 0.05), left ventricular developed pressure (LVDP) (P < 0.01), and the maximal rate of development of LVDP (+dP/dt(max)) compared with I/R hearts obtained from rats given 0.9% NaCl (P < 0.01). N(G)-nitro-L-arginine methyl ester (L-NAME) (50 micromol/l) blocked these cardioprotective effects. In addition, C-peptide significantly reduced cardiac PMN infiltration from 183 +/- 24 PMNs/mm(2) in untreated hearts to 44 +/- 10 and 58 +/- 25 PMNs/mm(2) in hearts from 4- and 24-h C-peptide-treated rats, respectively. Rat PMN adherence to rat superior mesenteric artery exposed to 2 U/ml thrombin was significantly reduced in rats given C-peptide compared with rats given 0.9% NaCl (P < 0.001). Moreover, C-peptide enhanced basal NO release from rat aortic segments. These results provide evidence that C-peptide can significantly attenuate PMN-induced cardiac contractile dysfunction in the isolated perfused rat heart subjected to I/R at least in part via enhanced NO release.  相似文献   

11.
We have investigated the involvement of Cl(-) in regulating vascular tone in rat isolated coronary arteries mounted on a small vessel myograph. Mechanical removal of the endothelium or inhibition of nitric oxide (NO) synthase with N(omega)-nitro-L-arginine methyl ester (L-NAME, 10(-4) M) led to contraction of rat coronary arteries, and these contractions were sensitive to nicardipine (10(-6) M). This suggests that release of NO tonically inhibits a contractile mechanism that involves voltage-dependent Ca(2+) channels. In arteries contracted with L-NAME, switching the bathing solution to physiological saline solution with a reduced Cl(-) concentration potentiated the contraction. DIDS (5 x 10(-6)-3 x 10(-4) M) caused relaxation of L-NAME-induced tension (IC(50) = 55 +/- 10 microM), providing evidence for a role of Cl(-). SITS (10(-5)-5 x 10(-4) M) did not affect L-NAME-induced tension, suggesting that DIDS is not acting by inhibition of anion exchange. Mechanical removal of the endothelium led to contraction of arteries, which was sensitive to DIDS (IC(50) = 50 +/- 8 microM) and was not affected by SITS. This study suggests that, in rat coronary arteries, NO tonically suppresses a contractile mechanism that involves a Cl(-) conductance.  相似文献   

12.
This study evaluated the effects of progressive nitric oxide (NO) inhibition in the regulation of systemic and regional hemodynamics and renal function in anesthetized dogs. The N(G)-nitro-L-arginine methyl ester group (n = 9) received progressive doses of 0.1, 1, 10, and 50 microg. kg(-1). min(-1). Renal (RBF), mesenteric (MBF), iliac (IBF) blood flows, mean arterial pressure (MAP), pulmonary pressures, cardiac output (CO), and systemic and pulmonary vascular resistances were measured. During N(G)-nitro-L-arginine methyl ester infusion, MAP and systemic vascular resistances increased in a dose-dependent manner. Mean pulmonary pressure and pulmonary vascular resistances increased in both the N(G)-nitro-L-arginine methyl ester and the control group, but the increase was more marked in the N(G)-nitro-L-arginine methyl ester group during the last two infusion periods. CO decreased progressively, before any significant change in blood pressure was noticeable in the N(G)-nitro-L-arginine methyl ester group. IBF decreased significantly from the first N(G)-nitro-L-arginine methyl ester dose, whereas RBF and MBF only decreased significantly during the highest N(G)-nitro-L-arginine methyl ester dose. Urinary volume and sodium excretion only increased significantly in the time control group during the two last time periods. The pulmonary vasculature was more sensitive than the systemic vasculature, whereas skeletal muscle and renal vasculatures showed a greater sensitivity to the inhibition of NO production than the mesenteric vasculature. NO synthesis inhibition induces a progressive antidiuretic and antinatriuretic effect, which is partially offset by the increase in blood pressure.  相似文献   

13.
Increased intra-abdominal pressure (IAP) during laparoscopy adversely affects kidney function. The mechanism underlying this phenomenon is largely unknown. This study was designed to investigate the involvement of endothelin (ET)-1 and nitric oxide (NO) systems in IAP-induced renal dysfunction. Rats were subjected to IAP of 14 mmHg for 1 h, followed by a deflation for 60 min (recovery). Four additional groups were pretreated with 1) ABT-627, an ET(A) antagonist; 2) A-192621, an ET(B) antagonist; 3) nitroglycerine; and 4) N(G)-nitro-L-arginine methyl ester, a NO synthase inhibitor, before IAP. Urine flow rate (V), absolute Na+ excretion (U(Na)V), glomerular filtration rate (GFR), and renal plasma flow (RPF) were determined. Significant reductions in kidney function and hemodynamics were observed when IAP was applied. V decreased from 8.1 +/- 1.0 to 5.8 +/- 0.5 microl/min, U(Na)V from 1.08 +/- 0.31 to 0.43 +/- 0.10 microeq/min, GFR from 1.84 +/- 0.12 to 1.05 +/- 0.06 ml/min (-46.9 +/- 2.7% from baseline), and RPF from 8.62 +/- 0.87 to 3.82 +/- 0.16 ml/min (-54 +/- 3.5% from baseline). When the animals were pretreated with either ABT-627 or A-192621, given alone or combined, the adverse effects of IAP on GFR, RPF, V, and U(Na)V were significantly augmented. When the animals were pretreated with nitroglycerine, the adverse effects of pneumoperitoneum on GFR and RPF were substantially improved. In contrast, pretreatment with N(G)-nitro-L-arginine methyl ester remarkably aggravated pneumoperitoneum-induced renal dysfunction. In conclusion, decreased renal excretory function and hypofiltration are induced by increased IAP. These effects are related to impairment of renal hemodynamics and could be partially ameliorated by pretreatment with nitroglycerine and aggravated by NO and ET blockade.  相似文献   

14.
Microinjection of S-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) in the nucleus of the solitary tract (NTS) of conscious rats causes hypertension, bradycardia, and vasoconstriction in the renal, mesenteric, and hindquarter vascular beds. In the hindquarter, the initial vasoconstriction is followed by vasodilation with AMPA doses >5 pmol/100 nl. To test the hypothesis that this vasodilation is caused by activation of a nitroxidergic pathway in the NTS, we examined the effect of pretreatment with the nitric oxide synthase inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME, 10 nmol/100 nl, microinjected into the NTS) on changes in mean arterial pressure, heart rate, and regional vascular conductance (VC) induced by microinjection of AMPA (10 pmol/100 nl in the NTS) in conscious rats. AMPA increased hindquarter VC by 18 +/- 4%, but after pretreatment with L-NAME, AMPA reduced hindquarter VC by 16 +/- 7% and 17 +/- 9% (5 and 15 min after pretreatment, P < 0.05 compared with before pretreatment). Pretreatment with L-NAME reduced AMPA-induced bradycardia from 122 +/- 40 to 92 +/- 32 beats/min but did not alter the hypertension induced by AMPA (35 +/- 5 mmHg before pretreatment, 43 +/- 6 mmHg after pretreatment). Control injections with D-NAME did not affect resting values or the response to AMPA. The present study shows that stimulation of AMPA receptors in the NTS activates both vasodilatatory and vasoconstrictor mechanisms and that the vasodilatatory mechanism depends on production of nitric oxide in the NTS.  相似文献   

15.
It has been suggested that nitric oxide (NO) is a key regulator of carbohydrate metabolism in skeletal muscle. The present study was undertaken to examine the effects of chronic in vivo competitive antagonism of NO synthase (NOS) by the administration of N(omega)-nitro-L-arginine methyl ester (L-NAME) in the drinking water (1 mg/ml) for 14 days on glucose tolerance and skeletal muscle glucose transport in rats. Oral glucose tolerance tests (OGTT) revealed an impaired glucose tolerance in the L-NAME-treated rats as reflected by the area under the glucose curve (4675 +/- 514 mg% x 120 min (control) vs 6653 +/- 571 mg% x 120 min (L-NAME treated); P < 0.03). While a large rise in plasma insulin concentration was present in the control rats (0.87 +/- 0.34 ng/ml, P < 0.001) during the first 15 min of the OGTT, rises in plasma insulin concentration were absent in the L-NAME-treated rats (0.18 +/- 0.13 ng/ml, P = NS). Intravenous glucose tolerance tests confirmed an impaired insulin secretion in the L-NAME-treated rats. In contrast, insulin-stimulated 2-deoxyglucose transport was enhanced (P < 0.03) by chronic NOS inhibition (5.29 +/- 0.83 nmol/g/min) compared to control rats (2.21 +/- 0.90 nmol/g/min). Plasma sodium concentrations were lower and plasma potassium concentrations were higher in the L-NAME-treated group, indicating an impaired electrolyte status. We conclude that chronic in vivo administration of a NOS inhibitor, while not impairing basal parameters of carbohydrate metabolism, may manifest different responses than acute exposure to the same agent in vitro.  相似文献   

16.
In the present study, follicular fluids of estrous mares treated with saline solution (Control) or nitric oxide synthase (NOS) inhibitors were analyzed for nitric oxide (NO), estradiol-17beta (E2) and progesterone (P4) concentrations before and 36h after administration of human chorionic gonadotropin (hCG). Follicular fluids obtained before (0h) hCG administration from control mares had lower concentrations of NO than those obtained 36h after administration of hCG (58.3+/-17.8 micromol versus 340.4+/-57.7 micromol; P<0.05). A similar pattern was also noted for intrafollicular P4 in control mares, which had lower concentrations of intrafollicular P4 before hCG than 36h post-hCG administration (P<0.05). As expected, E2 concentrations of control follicles sampled before hCG administration were higher than those sampled 36h post-hCG administration (P<0.05). However, the E2 concentrations in follicles of mares treated with the NOS inhibitors N(omega)-nitro-L-arginine methyl ester (L-NAME) or aminoguanidine (AG) did not decrease after hCG administration, unlike those in control mares (P>0.10). In addition, mares treated with NOS inhibitors had lower intrafollicular concentrations of NO and P4 than control mares, both before and after hCG administration (P<0.05). Increased intrafollicular concentrations of NO in control, hCG-stimulated mares provide evidence for the presence of an NO-generating system in the equine preovulatory follicle that is likely upregulated following administration of hCG.  相似文献   

17.
Congestive heart failure (CHF) after myocardial infarction is associated with diminished endothelial nitric oxide (NO)-mediated vasorelaxation. The 3-hydroxy-3-methylglutaryl-CoA reductase inhibitors have been shown to modulate vascular tone independent of the effects on lipid lowering. We hypothesized that simvastatin restores NO-dependent vasorelaxation with CHF. We found that incubation of the normal rat aorta with 0.1 mM simvastatin for 24 h enhanced ACh-mediated vasorelaxation (P < 0.05). Moreover, simvastatin increased (P < 0.05) endothelial NO synthase (eNOS) protein content by >200% (82.0 +/- 14.0 vs. 21.6 +/- 7.9% II/microg). In cultured endothelial cells, simvastatin (10 and 20 microM) increased eNOS levels by 114.7 +/- 39.9 and 212.0 +/- 75.0% II/microg protein, respectively (both P < 0.05; n = 8). In the rat coronary artery ligation model, oral gavage with 20 mg. kg(-1). day(-1) simvastatin for 3 wk decreased (P < 0.05) mean arterial pressure (121 +/- 20 vs. 96.5 +/- 10.8 mmHg) and left ventricular change in pressure with time (4,500 +/- 700 vs. 4,091 +/- 1,064 mmHg/s, n = 6). Simvastatin reduced (P < 0.05) basal vasoconstriction and improved ACh-mediated vasorelaxation in CHF arterial rings. Inhibition of NO generation by N(G)-nitro-L-arginine methyl ester (100 microM) abolished the ACh-induced vasorelaxation in all rats. In conclusion, chronic treatment of CHF with simvastatin restores endothelial NO-dependent dysfunction and upregulates eNOS protein content in arterial tissue.  相似文献   

18.
Nitric oxide (NO)-mediated and NO-independent mechanisms of endothelium-dependent vasodilatation involve Ca(2+)-dependent K(+) (K(Ca)) channels. We examined the role in vivo of K(Ca) channels in NO-independent vasodilatation in hypercholesterolemia. Hindlimb vascular conductance was measured at rest and after aortic injection of ACh, bradykinin (BK), and sodium nitroprusside in anesthetized control and cholesterol-fed rabbits. Conductances were measured before and after treatment with the NO synthase antagonist N(omega)-nitro-L-arginine methyl ester (L-NAME, 10 mg/kg) or K(Ca) blockers tetraethylammonium (30 mg/kg), charybdotoxin (10 microgram/kg), and apamin (50 microgram/kg). The contribution of NO to basal conductance was greater in control than in cholesterol-fed rabbits [2.2 +/- 0.4 vs. 1.1 +/- 0.3 (SE) ml. min(-1). kg(-1). 100 mmHg(-1), P < 0.05], but the NO-independent K(Ca) channel-mediated component was greater in the cholesterol-fed than in the control group (1.1 + 0.4 vs. 0.3 +/- 0.1 ml. min(-1). kg(-1). 100 mmHg(-1), P < 0.05). Maximum conductance response to ACh and BK was less in cholesterol-fed than in control rabbits, and the difference persisted after L-NAME (ACh: 7.7 +/- 0.7 vs. 10.1 +/- 0.5 ml. min(-1). kg(-1). 100 mmHg(-1), P < 0.005). Blockade of K(Ca) channels with tetraethylammonium or charybdotoxin + apamin almost completely abolished L-NAME-resistant vasodilatation after ACh or BK. The magnitude of K(Ca)-mediated vasodilatation after ACh or BK was impaired in hypercholesterolemic rabbits. Vasodilator responses to nitroprusside did not differ between groups. In vivo, hypercholesterolemia is associated with an altered balance between NO-mediated and NO-independent K(Ca) channel contributions to resting vasomotor tone and impairment of both mechanisms of endothelium-dependent vasodilatation.  相似文献   

19.
Contractions of rat thoracic aorta to vasopressin (VP) are threefold higher in females (F) than in males (M), primarily because nitric oxide (NO) attenuation of contraction is greater in M. To determine the role of the androgen receptor (AR) in this mechanism, vascular reactivity to VP was examined in thoracic aorta of the testicular-feminized male (Tfm) rat, which has an X-linked, recessive defect in AR function in affected M. Maximal contraction of normal aortas to VP was fourfold higher in F (4,128 +/- 291 mg/mg ring wt) than in M (971 +/- 133 mg); maximal response of Tfm (3,967 +/- 253 mg) was similar to that of normal F. N(G)-nitro-L-arginine methyl ester increased maximal response to VP threefold in M but had no effect in F or Tfm. In contrast, maximal contraction of normal aortas to phenylephrine was 43% higher in M (4,011 +/- 179 mg) than in F (2,809 +/- 78 mg); maximal response of Tfm (2,716 +/- 126 mg) was similar to that of normal F. N(G)-nitro-L-arginine methyl ester increased maximal response to phenylephrine by >50% in F and Tfm but had no effect in M. Maximal contractile response to 80 mM KCl did not differ among M, F, or Tfm. Thus androgens and normal vascular AR function are important in the greater NO-mediated attenuation of reactivity to VP in M than in F rat aorta, which may involve specific modulation of endothelial VP signal transduction pathways and NO release by androgens. These data also establish the importance of the Tfm rat as a model to study the effects of androgens on cardiovascular function.  相似文献   

20.
Hepatic portal venous infusion of nitric oxide synthase (NOS) inhibitors causes muscle insulin resistance, but the effects on hepatic glucose disposition are unknown. Conscious dogs underwent a hyperinsulinemic (4-fold basal) hyperglycemic (hepatic glucose load 2-fold basal) clamp, with assessment of liver metabolism by arteriovenous difference methods. After 90 min (P1), dogs were divided into two groups: control (receiving intraportal saline infusion; n = 8) and LN [receiving N(G)-nitro-L-arginine methyl ester (L-NAME), a nonspecific NOS inhibitor; n = 11] intraportally at 0.3 mg x kg(-1) x min(-1) for 90 min (P2). During the final 60 min of study (P3), L-NAME was discontinued, and five LN dogs received the NO donor SIN-1 intraportally at 6 mug x kg(-1) x min(-1) while six received saline (LN/SIN-1 and LN/SAL, respectively). Net hepatic fractional glucose extraction (NHFE) in control dogs was 0.034 +/- 0.016, 0.039 +/- 0.015, and 0.056 +/- 0.019 during P1, P2, and P3, respectively. NHFE in LN was 0.045 +/- 0.009 and 0.111 +/- 0.007 during P1 and P2, respectively (P < 0.05 vs. control during P2), and 0.087 +/- 0.009 and 0.122 +/- 0.016 (P < 0.05) during P3 in LN/SIN-1 and LN/SAL, respectively. During P2, arterial glucose was 204 +/- 5 vs. 138 +/- 11 mg/dl (P < 0.05) in LN vs. control to compensate for L-NAME's effect on blood flow. Therefore, another group (LNlow; n = 4) was studied in the same manner as LN/SAL, except that arterial glucose was clamped at the same concentrations as in control. NHFE in LNlow was 0.052 +/- 0.008, 0.093 +/- 0.023, and 0.122 +/- 0.021 during P1, P2, and P3, respectively (P < 0.05 vs. control during P2 and P3), with no significant difference in glucose infusion rates. Thus, NOS inhibition enhanced NHFE, an effect partially reversed by SIN-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号