首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A biosensor based on surface plasmon resonance (SPR) is developed for the detection of 2-hydroxybiphenyl (HBP). A monoclonal antibody against HBP (abbreviated hereafter as HBP-mAb) is developed and used for the detection of HBP by competitive SPR-based immunoassay and enzyme linked immunosorbent assay (ELISA) methods. A novel HBP-hapten compound, HBP-bovine serum albumin conjugate (HBP-BSA), derived by binding several HBP units with BSA by an aliphatic chain spacer is used in the development of antibody and for the functionalization of immunoprobes. HBP-BSA linked to the Au surface of the SPR sensor chip undergoes inhibitive immunoreaction with HBP-mAb in the presence of free HBP. The SPR-based immunoassay provides a rapid determination (response time: approximately 20 min) of the concentration of HBP in the range of 0.1-1000 ppb (ng/ml). Regeneration of the sensor chip is gained by treating the antibody-anchored SPR sensor chip with a pepsin solution (100 ppm (microg/ml); pH 2.0) for few minutes. The SPR sensor chip is reusable for the detection of HBP for more than 20 cycles with average loss of 0.35% reactivity per regeneration step. HBP concentration is determined as low as 0.1 and 3 ppb using the SPR sensor and ELISA measurements, respectively. The developed SPR sensor for HBP is free from interference by coexisting benzo[a]pyrene (BaP), 2,4-dichlorophenoxyacetic acid (2,4-D) and benz[a]anthracene; SPR angle shift obtained to the flow of HBP is almost same irrespective to the presence or absence of a same concentration of these carcinogenic polycyclic aromatic hydrocarbons together. The SPR sensor for HBP is proved to be applicable in simultaneous detection of HBP and BaP in parallel with another SPR sensor for BaP.  相似文献   

2.
A simple and rapid continuous-flow immunosensor based on surface plasmon resonance (SPR) has been developed for detection of insulin as low as 1 ng ml-1 (ppb) with a response time of less than 5 min. At first, a heterobifunctional oligo(ethyleneglycol)-dithiocarboxylic acid derivative (OEG-DCA) containing dithiol and carboxyl end groups was used to functionalize the thin Au-film of SPR chip. Insulin was covalently bound to the Au-thiolate monolayer of OEG-DCA for activating the sensor surface to immunoaffinity interactions. An on-line competitive immunosensing principle is examined for detection of insulin, in which the direct affinity binding of anti-insulin antibody to the insulin on sensor surface is examined in the presence and absence of various concentrations of insulin. Immunoreaction of anti-insulin antibody with the sensor surface was optimized with reference to antibody concentration, sample analysis time and flow-rate to provide the desired detection limit and determination range. With the immunosensor developed, the lowest detectable concentration of insulin is 1 ng ml-1 and the determination range covers a wide concentration of 1-300 ng ml-1. The developed OEG-monolayer based sensor chip exhibited high resistance to non-specific adsorption of proteins, and an uninterrupted highly sensitive detection of insulin from insulin-impregnated serum samples has been demonstrated. After an immunoreaction cycle, active sensor surface was regenerated simply by a brief flow of an acidic buffer (glycine.HCl; pH 2.0) for less than 1 min. A same sensor chip was found reusable for more than 25 cycles without an appreciable change in the original sensor activity.  相似文献   

3.
We have examined the sensing characteristics of a surface plasmon resonance (SPR) immunoassay for the detection of 2,4,6-trinitrotoluene (TNT) using an immunoreaction between 2,4,6-trinitrophenol-ovalbumin (TNP-OVA) conjugate and anti-2,4,6-trinitrophenol antibody (anti-TNP antibody). TNP-OVA conjugate was attached to a SPR-gold sensing surface by means of physical immobilization, which undergoes binding interaction with anti-TNP antibody. Both the immobilization and binding processes were studied from a change in the SPR-resonance angle. The quantification of TNT is based on the principle of indirect competitive immunoassay, in which the immunoreaction between the TNP-OVA conjugate and anti-TNP antibody was inhibited in the presence of free TNT in solution. The decrease in the resonance angle shift is proportional to an increase in concentration of TNT used for incubation. The immunoassay exhibited excellent sensitivity for the detection of TNT in the concentration range from 0.09 to 1000 ng/ml with good stability and reproducibility. The immunosensor developed could detect TNT as low as 0.09 ng/ml, within a response time of approximately 22 min. The sensor surface was regenerated by a brief flow of pepsin solution, which disrupts the antigen-antibody complex without destroying the conjugate biofilm. Cross-reactivity of the SPR sensor to some structurally related nitroaromatic derivative and the detection of TNT in the presence of these nitroaromatic compounds were investigated. The cross-reactivity of the SPR sensor to 2,4-dinitrotoluene (2,4-DNT), 1,3-dinitrobenzene (1,3-DNB), 2-amino-4,6-dinitrotoluene (2A-4,6-DNT) and 4-amino-2,6-dinitrotoluene (4A-2,6-DNT) were very low (< or =1.1%). The analytical characteristics of the proposed immunosensor are highly promising for the development of new field-portable sensors for on-site detection of landmines.  相似文献   

4.
The concept of a competitive enzyme immunoassay that utilizes simultaneously the bound and the free analyte-enzyme conjugate (heterobifunctional conjugate) for signal generation in response to varying analyte concentrations in samples has been investigated. Two antigenic sites of the heterobifunctional conjugate are used in the assay for binding to immunoglobulins: the analyte derivative binds to an immobilized antibody, Ab(1), and the enzyme component binds to a spatially separated immobilized antibody, Ab(2). The analytical system is set up such that in the absence of analyte, the conjugate is predominantly bound in the compartment that contains Ab(1). With increasing concentration of native analyte in samples, an increasing concentration of native analyte in samples, an increasing amount of conjugate migrates to the second compartment that contains Ab(2). The enzyme bound in each compartment is used for signal generation. Mathematical models have been developed to determine the optimal conditions and to predict the performance of such dual-antibody systems. The theoretical predictions are supported by experimental results. The dual-antibody system has been compared with a conventional competitive enzyme immunoassay using the same reagents.  相似文献   

5.
Surface plasmons resonance (SPR) architectures based on grating coupler/disperser combination is an attractive alternative for spectral-based biochemical sensing. In this paper, we investigate theoretically and experimentally a new concept where the plasmon coupling occurs through a thin film grating and sensing occurs via the first evanescent diffraction order in transmitive mode. The surface plasmon wave excitation induces a peak in the wavelength as well as in the angular spectra of the detected first transmitted diffraction order. Accordingly, a change in SPR spectrum of the detected diffraction order can be used to quantify the amount of the target molecules immobilized on the sensor surface, and therefore, the concentration of these molecules in the analyte solution. The developed sensor architecture is dedicated to droplet biochemical sensing and appears to be especially suitable for biosensor integration and miniaturization. The presented sensor concept is perfectly suited for mass production of low-cost and reproducible SPR sensor chip for biochemical analysis. The implemented setup gives access to multichannel biosensing with the potential for efficient internal referencing essential to achieve sufficiently high reproducibility and accuracy of the measurements.  相似文献   

6.
Toward future applications to the discovery of drugs against membrane receptors on pathological cells, an intact-cell-based surface plasmon resonance (SPR) methodology has been developed. The injection of a suspension of epidermal carcinoma A431 cells (5×10(7)cells/ml), as an analyte, generated clear SPR responses to epidermal growth factor (EGF) immobilized on the sensor chip. Because the responses were competitively reduced by the free ligand EGF, added to the analyte cell suspension, they certainly reflect the specific interaction of the immobilized EGF with the extracellular region of its receptor, which is highly expressed on the surface of the A431 cells.  相似文献   

7.
Surface plasmon resonance (SPR) is routinely applied on determining association or dissociation constant rates of antigen-antibody complexes. In a SPR system such as Biacore, the capture method is a widely accepted procedure in kinetic analysis for association or dissociation of soluble antigen analytes with antibody ligands initially captured by anti-Fc molecules immobilized on the sensor chip. Appropriate preparations of anti-immunoglobulin G (IgG)-Fc molecules on sensor chips have not been examined yet for stable kinetic analysis of antibodies with several affinities to soluble antigens. Here, we constructed murine monoclonal antibodies (MoAbs) with various affinities to hen egg lysozyme (HEL) and performed kinetic analysis of these MoAbs captured by rat MoAbs against mouse IgG-Fc immobilized on the sensor chip. When capture molecules maximally immobilized on the sensor chip, we observed no apparent dissociation of MoAbs with extremely high affinity to soluble HEL antigens. In contrast, on the limited amount (1000-2000 response units) of capture molecule immobilized on the sensor chip, we could perform stable kinetic analysis of MoAbs with highest affinities to the antigen as well as those with lower or moderate binding affinities. Thus, in some cases, accurate kinetic analysis of high-affinity antibodies can be performed by minimization of capture molecule densities on the sensor chip in SPR.  相似文献   

8.
In modern biomedical technology, development of high performance sensing methods for dopamine (DA) is a critical issue because of its vital role in human metabolism. We report here, a new kind of bioaffinity sensor for DA based on surface plasmon resonance (SPR) using a D(3) dopamine receptor (DA-RC) as a recognition element. A conjugate of DA was synthesized using bovine serum albumin (BSA) protein and was characterized by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The biosensor surface was constructed by the immobilization of the DA-BSA conjugate onto an SPR gold surface by physical adsorption. Atomic force microscopy (AFM) investigations revealed that the DA-BSA conjugate was homogeneously distributed over the sensor surface. Specific interaction of the DA-RC with the immobilized DA-BSA conjugate was studied by SPR. Based on the principle of indirect competitive inhibition, the biosensor could detect DA in a linear dynamic range from 85 pg/ml (ppt) to 700 ng/ml (ppb). The biosensor was highly specific for DA and showed no significant interference from potent interferences such as ascorbic acid (AA), uric acid (UA) and other DA analogues viz., 3,4 dihydroxyphenyl acetic acid (DOPAC) and 3-(3,4 dihydroxyphenyl)-alanine (DOPA). The sensor surface displayed a high level of stability during repeated regeneration and affinity reaction cycles. Since this biosensor is simple, effective and is based on utilization of natural receptor, our study presents an encouraging scope for development of portable detection systems for in-vitro and in-vivo measurement of DA in clinical and medical diagnostics.  相似文献   

9.
A simple and versatile miniaturized surface plasmon resonance (SPR) immunosensor enabling parallel analysis of multiple analytes or multiple samples of an analyte has been investigated for detection of a low-molecular-weight (lmw) toxin, 2,4-dichlorophenoxyacetic acid (2,4-D). A specially designed multi-microchannel SPR sensor module, integrating an optical-prism coated with an array of thin Au-films, a multi-microchannel plate (eight channels) and a flow-cell together, has been fabricated. The sensing surface was fabricated simply by physical adsorption of a protein conjugate of 2,4-D, and an indirect competitive immunoassay principle has been applied for the quantification of 2,4-D. Multiple 2,4-D samples were analyzed in a single step and a low-detection-limit (LDL) of 0.1 ppb (ng ml(-1)) 2,4-D was established. Competence of the portable SPR immunosensor for selective detection of 2,4-D despite the presence of various structurally resemblant interferents and from river-water samples has been demonstrated. The independent all-in-one sensor module highly favors shelf-storage between multiple determinations, and reusability of a same multi-microchannel flow-module for more than 35 days with intermittent storage (4-8 degrees C) has been confirmed. The LDL of 2,4-D could be enhanced further by introducing a simple avidin-biotin interaction-based sandwich immunoassay, with which the sensor signal multiplied enormously by a factor of ca. 10 and the LDL enhanced to 0.008 ppb. The miniature SPR sensor demonstrated here for simultaneous analysis of multiple samples with reusability and good storage ability is an important consideration for the advancement of biosensor technology.  相似文献   

10.
Factors that control the performance of a reversible immunosensor with an analyte (progesterone)-enzyme (horseradish peroxidase) conjugate as signal generator have been investigated. The conjugate is used in conjunction with two antibodies, which are specific to progesterone and to horseradish peroxidase, immobilized on two spatially separated polypropylene mesh discs. The conjugate and two antibodies are confined to an internal compartment of a microdialyzer by a semipermeable membrane. The small analyte from an external medium permeates across the membrane into the internal compartment where the analyte concentration determines the relative amounts of the bound conjugate on the two solid surfaces. By measuring two signals from the conjugate bound at two separate sites, we experimentally obtained time-response curves to a concentration pulse of the external analyte. A mathematical (kinetic) model describing the sensor system was developed and used for the determination of rate-limiting factors. In semicontinuous monitoring of the analyte concentrations, operation of the immunosensor with the enzyme conjugate as signal generator required special attention to (a) enzyme stability, (b) analyte permeation (dependence on medium components), and (c) kinetics related to the different accessibility to the same antibody of the small analyte (to be measured) vs. the larger counterpart on the enzyme conjugate (for signal generation). (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 56: 221-231, 1997.  相似文献   

11.
Nanodiscs are small-sized and flat model membranes that provide a close to native environment for reconstitution of integral membrane proteins. Incorporation of membrane proteins into nanodiscs results in water-soluble proteolipid particles making the membrane proteins amenable to a multitude of bioanalytical techniques originally developed for soluble proteins. The transmembrane domain of the human CD4 receptor was fused to ubiquitin with a preceding N-terminal decahistidine tag. The resulting integral membrane protein was incorporated into nanodiscs. Binding of the nanodisc-inserted histidine-tagged protein to a monoclonal anti-pentahistidine antibody was quantified using surface plasmon resonance (SPR) experiments. For the first time, a membrane-inserted transmembrane protein was employed as analyte while the antibody served as ligand immobilized on the sensor chip surface. SPR experiments were conducted in single-cycle mode. We demonstrate that the nanodisc-incorporated membrane protein showed nearly identical affinity toward the antibody as did the soluble decahistidine-tagged ubiquitin studied in a comparative experiment. Advantages of the new experimental setup and potential applications are discussed.  相似文献   

12.
We have investigated the application of a modified, heterogeneous, competitive enzyme immunoassay for the continuous measurement of small analytes in a medium stream. The analytical system contains two antibodies that are immobilized on spatially separated areas, one binding the analyte (Ab1) and the other binding the enzyme (Ab2). An analyte-enzyme conjugate serves as signal generator. The analyte-enzyme conjugate functions as a heterobifunctional shuttle that can bind to either antibody. A semipermeable membrane retains the enzyme shuttle in the internal volume of the sensor but permits the passage of small analytes from the medium stream. The amount of enzyme bound to Ab1 is inversely proportional and the amount of enzyme bound to Ab2 is directly proportional to the analyte concentration. We have demonstrated that this analytical system (1) can provide a larger total signal; (2) has a sensitivity comparable with conventional competitive immunoassays; (3) does not require the separation of bound from free antigens; and (4) is therefore suitable for the continuous measurement of analytes in a medium stream. With a model system, an increase from 0 ng ml-1 to 20 ng ml-1 of the steroid hormone progesterone and the subsequent fall to 0 ng ml-1 could be monitored.  相似文献   

13.
A fractal analysis is presented for the binding and dissociation of different heart-related compounds in solution to receptors immobilized on biosensor surfaces. The data analyzed include LCAT (lecithin cholesterol acyl transferase) concentrations in solution to egg white apoA-I rHDL immobilized on a biosensor chip surface (), native, mildly oxidized, and strongly oxidized LDL in solution to a heparin-modified Au-surface of a surface plasmon resonance (SPR) biosensor (), and TRITC-labeled HDL in solution to a bare optical fiber surface (). Single-and dual-fractal models were used to fit the data. Values of the binding and the dissociation rate coefficient(s), affinity values, and the fractal dimensions were obtained from the regression analysis provided by Corel Quattro Pro 8.0 (). The binding rate coefficients are quite sensitive to the degree of heterogeneity on the sensor chip surface. Predictive equations are developed for the binding rate coefficient as a function of the degree of heterogeneity present on the sensor chip surface and on the LCAT concentration in solution and for the affinity as a function of the ratio of fractal dimensions present in the binding and the dissociation phases. The analysis presented provided physical insights into these analyte-receptor reactions occurring on different biosensor surfaces.  相似文献   

14.
In this study, a direct detection system for herbicides inhibiting photosynthetic electron transfer was developed using the photosynthetic reaction center (RC) from the purple bacterium, Rhodobacter sphaeroides, and surface plasmon resonance (SPR) apparatus. The heavy-subunit-histidine-tagged RCs (HHisRCs) were immobilized on an SPR sensor chip via nickel chelation chemistry as a binder for one of the triazine herbicides, atrazine. Immediately after injection of atrazine solution on the HHisRCs-immobilized chip, the SPR responses increased and reached plateaus within 1 min. The SPR signals were proportional to the sample concentrations of atrazine in the range 1-100 microg/ml. To evaluate the binding specificity to atrazine, chlorinated aromatic herbicides, DCMU and MCPP, were investigated using the HHisRCs-immobilized chip. An RC inhibitor, DCMU, could also be detected with a higher detection limit of 20 microg/ml than atrazine (1 microg/ml). MCPP showed no signals because its inhibition mechanism against plants is different from that of atrazine and DCMU. These results indicated that the sensor chip immobilized RCs could be used for the specific detection of photosynthetic inhibitors.  相似文献   

15.
We developed a surface plasmon resonance (SPR) assay to estimate the competitive inhibition by pharmaceuticals for thyroxine (T4) binding to thyroid hormone transport proteins, transthyretin (TTR) and thyroxine binding globulin (TBG). In this SPR assay, the competitive inhibition of pharmaceuticals for introducing T4 into immobilized TTR or TBG on the sensor chip can be estimated using a running buffer containing pharmaceuticals. The SPR assay showed reproducible immobilization of TTR and TBG, and the kinetic binding parameters of T4 to TTR or TBG were estimated. The equilibrium dissociation constants of TTR or TBG measured by SPR did not clearly differ from data reported for other binding assays. To estimate the competitive inhibition of tetraiodothyroacetic acid, diclofenac, genistein, ibuprofen, carbamazepine, and furosemide, reported to be competitive or noncompetitive pharmaceuticals for T4 binding to TTR or TBG, their 50% inhibition concentrations (IC50) (or 80% inhibition concentration, IC80) were calculated from the change of T4 responses in sensorgrams obtained with various concentrations of the pharmaceuticals. Our SPR method should be a useful tool for predicting the potential of thyroid toxicity of pharmaceuticals by evaluating the competitive inhibition of T4 binding to thyroid hormone binding proteins, TTR and TBG.  相似文献   

16.
A SPR-based immunosensor for the detection of isoproturon   总被引:1,自引:0,他引:1  
The proof of principle of a reusable surface plasmon resonance (SPR)-based immunosensor for the monitoring of isoproturon (IPU), a selective and systemic herbicide, is presented. The detecting rat monoclonal anti-isoproturon antibody (mAb IOC 7E1) was reversibly immobilized through the use of a capture mouse anti-rat (kappa-chain) monoclonal antibody (mAb TIB 172), which was covalently immobilized on the sensor chip surface. Such strategy features a controlled binding of the captured detecting antibody as well as facilitates the surface regeneration. The capture of the anti-IPU mAb by the antibody (TIB 172) coated sensor surface could be carried out up to 120 times (immobilization/regeneration cycles) without any evidence of activity loss. With a high test midpoint and a low associated SPR signal, the direct detection format was shown to be unsuitable for the routine analysis of isoproturon. However, the limit of detection (LOD) could be easily enhanced by using a strategy based on a surface competition assay, which improved all immunosensor parameters. Moreover, the sensitivity and working range of the indirect format were found to be dependent on the surface density of the anti-IPU mAb IOC 7E1. As expected for competitive formats, the lowest surface coverage (0.5 ng/mm(2)) allowed a lower detection of the herbicide isoproturon with a calculated LOD of 0.1 microg/l, an IC(50) (50% inhibition) of 5.3+/-0.6 microg/l, and a working range (20-80% inhibition) of 1.3-16.3 microg/l.  相似文献   

17.
Naphthyridine dimer is a unique molecule that strongly, and selectively, binds to the guanine-guanine mismatch in duplex DNA. We have synthesized naphthyridine dimers possessing a different length of poly(ethylene oxide) (PEO) linker, and immobilized them to CM5 sensor chip to carry out a surface plasmon resonance (SPR) assay of DNA duplexes containing a single base mismatch. The sensitivity of the sensor remarkably increased with increasing numbers of PEO units incorporated into the linker. With the sensor surface immobilized naphthyridine dimer for 1.5 x 10(3) response unit (RU) through three PEO units, the distinct SPR signal was observed at a concentration of 1 nM of the 27-mer G-G mismatch.  相似文献   

18.
A novel sensor chip for use in surface plasmon resonance (SPR) biosensors has been developed to capture vesicles which may contain membrane-bound receptors. Sulforhodamine-containing vesicles were shown by fluorescence microscopy to be immobilized intact on the sensor chip. Binding of cholera toxin to captured vesicles containing ganglioside GM(1) was demonstrated using SPR, and the derived kinetic and affinity constants were similar to literature values. Biotinylated vesicles captured on the sensor chip were used to bind streptavidin and then biotinylated ss-DNA. The hybridization of complementary ss-DNA to the immobilized ss-DNA was then analyzed using SPR. The values obtained were similar to those obtained for an identical interaction analyzed using a commercially available streptavidin-containing sensor chip. Binding of vancomycin-group antibiotics to captured vesicles containing a bacterial cell wall mucopeptide analogue was demonstrated. No binding of the bacterial endotoxin Cry1A(c) to captured vesicles containing its cell surface receptor could be demonstrated.  相似文献   

19.
We performed a basic experiment for the rapid, on-line, real-time measurement of hepatitis B surface antigen using a surface plasmon resonance biosensor. We immobilized anti-HBsAg (hepatitis B surface antigen) polyclonal antibody, as a ligand, to the dextran layer on a CM5 chip surface that had previously been activated byN-hydroxysuccinimide. A sample solution containing HBsAg was fed through a microfluidic channel, and the reflecting angle change due to the mass increase from the binding was detected. The binding characteristics between HBsAg and its polyclonal antibody followed the typical monolayer adsorption isotherm. When the entire immobilized antibody had interacted, no additional, non-specific binding occurred, suggesting the immunoreaction was very specific. The bound antigen per unit mass of the antibody was independent of the immobilized ligand density. No significant steric hindrance was observed at an immobilization density of approximately 17.6 ng/mm2. The relationship between the HBsAg concentration in the sample solution and the antigen bound to the ligand was linear up to ca. 40 μg/mL. This linearity was much higher than that of the ELISA method. It appeared the antigen-antibody binding increased as the immobilized ligand density increased. In summary, this study showed the potential of this SPR biosensor-based method as a rapid, simple and multi-sample on-line assay. Once properly validated, it may serve as a more efficient method for HBsAg quantification for replacing the ELISA.  相似文献   

20.
F(ab) fragments imprinted surface plasmon resonance (SPR) chip was prepared for the real-time detection of human immunoglobulin G (IgG). In order to attach polymerization precursor on SPR chip, the SPR chip surface was modified with allyl mercaptan. F(ab) fragments of the IgG molecules were prepared by papain digestion procedure and collected by fast protein liquid chromatography (FPLC) system using Hi-Trap_r Protein A FF column. The collected F(ab) fragments were complexed with histidine containing specific monomer, N-methacryloyl-l-histidine methyl ester (MAH). Molecular imprinted polymeric nanofilm was prepared on SPR chip in the presence of ethylene glycol dimethacrylate and 2-hydroxyethylmethacrylate. The template molecules, F(ab) fragments, were removed from the polymeric nanofilm using 1M NaCl solution (pH: 7.4, phosphate buffer system). The molecular imprinted SPR chip was characterized by contact angle, atomic force microscopy and Fourier transform infrared spectroscopy. By the real-time IgG detection studies carried out using aqueous IgG solutions in different concentrations, the kinetics and isotherm parameters of the molecular imprinted SPR chip-IgG system were calculated. To show selectivity and specificity of the molecular imprinted SPR chip, competitive kinetic analyses were performed using bovine serum albumin (BSA), IgG, F(ab) and F(c) fragments in singular and competitive manner. As last step, IgG detection studies from human plasma were performed and the measured IgG concentrations were well matched with the results determined by enzyme-linked immunosorbent assay (ELISA). The results obtained with the molecular imprinted SPR chip were well fitted to Langmuir isotherm and the detection limit was found as 56 ng/mL. In the light of the results, we can conclude that the proposed molecular imprinted SPR chip can detect IgG molecules from both aqueous solutions and complex natural samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号