首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel brain-expressed protein related to carnitine palmitoyltransferase I   总被引:5,自引:0,他引:5  
Malonyl-CoenzymeA acts as a fuel sensor, being both an intermediate of fatty acid synthesis and an inhibitor of the two known isoforms of carnitine palmitoyltransferase I (CPT I), which control mitochondrial fatty acid oxidation. We describe here a novel CPT1 family member whose mRNA is present predominantly in brain and testis. Chromosomal locations and genome organization are reported for the mouse and human genes. The protein sequence contains all the residues known to be important for both carnitine acyltransferase activity and malonyl-CoA binding in other family members. Yeast expressed protein has no detectable catalytic activity with several different acyl-CoA esters that are good substrates for other carnitine acyltransferases, including the liver isoform of CPT I, which is also expressed in brain; however, it displays high-affinity malonyl-CoA binding. Thus this new CPT I related protein may be specialized for the metabolism of a distinct class of fatty acids involved in brain function.  相似文献   

2.
Oxfenicine [S-2-(4-hydroxyphenyl)glycine] is transaminated in heart and liver to 4-hydroxyphenylglyoxylate, an inhibitor of fatty acid oxidation shown in this study to act at the level of carnitine palmitoyltransferase I (EC 2.3.1.21). Oxfenicine was an effective inhibitor of fatty acid oxidation in heart, but not in liver. Tissue specificity of oxfenicine inhibition of fatty acid oxidation was due to greater oxfenicine transaminase activity in heart and to greater sensitivity of heart carnitine palmitoyltransferase I to inhibition by 4-hydroxyphenylglyoxylate [I50 (concentration giving 50% inhibition) of 11 and 510 microM for the enzymes of heart and liver mitochondria, respectively]. Branched-chain-amino-acid aminotransferase (isoenzyme I, EC 2.6.1.42) was responsible for the transamination of oxfenicine in heart. A positive correlation was found between the capacity of various tissues to transaminate oxfenicine and the known content of branched-chain-amino-acid aminotransferase in these tissues. Out of three observed liver oxfenicine aminotransferase activities, one may correspond to asparagine aminotransferase, but the major activity could not be identified by partial purification and characterization. As reported previously for malonyl-CoA inhibition of carnitine palmitoyltransferase I, 4-hydroxyphenylglyoxylate inhibition of this enzyme was found to be very pH-dependent. In striking contrast with the kinetics of malonyl-CoA inhibition, 4-hydroxyphenylglyoxylate inhibition was not affected by oleoyl-CoA concentration, but was partially reversed by increasing carnitine concentrations.  相似文献   

3.
Isolated mouse liver mitochondria were loaded with endogenous free fatty acids by aging in vitro. The oxidation and compartmentation of these fatty acids was studied. ATP-supported carnitine-dependent and carnitine-independent oxidation pathways of about equal activity were identified. The carnitine-dependent activity was abolished by nagarse and tetrathionate. It was also absent in mitoplasts. Hence the endogenous pool of free fatty acids which served as substrate for this pathway was located in the outer membrane. The carnitine-independent pathway was strongly inhibited by low concentrations of atractyloside suggesting that a pool of fatty acids located in the inner membrane was utilized. The occurrence of free fatty acids in the outer and inner membranes was confirmed by direct assay. The endogenous respiratory activity was also stimulated by oligomycin which was insensitive to nagarse, atractyloside, carnitine, and ATP suggesting that the stimulation was due to utilization of endogenous ATP and fatty acids localized within the inner membrane. Bovine serum albumin preferentially reduced the carnitine-independent activity presumably by binding the endogenous fatty acids suggesting that albumin has a higher affinity for free fatty acids of the inner than of the outer membrane.  相似文献   

4.
Implantation of MtT-F4 tumor, a pituitary tumor that secretes large quantities of proclactin, growth hormone and ACTH, enhanced total liver carnitine 9-fold without alteration of the esterified to free carnitine ratio. This ratio increased and the concentration of free and total carnitine decreased in the serum of tumor bearing rats. Cardiac carnitine decreased (23%) when expressed on per unit organ weight but showed an increase on per 100 g body weight basis because of marked cardiac hypertrophy. Besides indicating that lipolytic products of pituitary affect liver carnitine, these results show that hyperlipidemia and fatty livers can exist at times despite elevation of liver carnitine content.  相似文献   

5.
The requirement for carnitine and the malonyl-CoA sensitivity of carnitine palmitoyl-transferase I (EC 2.3.1.21) were measured in isolated mitochondria from eight tissues of animal or human origin using fixed concentrations of palmitoyl-CoA (50 microM) and albumin (147 microM). The Km for carnitine spanned a 20-fold range, rising from about 35 microM in adult rat and human foetal liver to 700 microM in dog heart. Intermediate values of increasing magnitude were found for rat heart, guinea pig liver and skeletal muscle of rat, dog and man. Conversely, the concentration of malonyl-CoA required for 50% suppression of enzyme activity fell from the region of 2-3 microM in human and rat liver to only 20 nM in tissues displaying the highest Km for carnitine. Thus, the requirement for carnitine and sensitivity to malonyl-CoA appeared to be inversely related. The Km of carnitine palmitoyltransferase I for palmitoyl-CoA was similar in tissues showing large differences in requirement for carnitine. Other experiments established that, in addition to liver, heart and skeletal muscle of fed rats contain significant quantities of malonyl-CoA and that in all three tissues the level falls with starvation. Although its intracellular location in heart and skeletal muscle is not known, the possibility is raised that malonyl-CoA (or a related compound) could, under certain circumstances, interact with carnitine palmitoyltransferase I in non-hepatic tissues and thereby exert control over long chain fatty acid oxidation.  相似文献   

6.
Livers of genetically obese Zucker rats showed, compared with lean controls, hypertrophy and enrichment in triacylglycerols, indicating that fatty acid metabolism was directed towards lipogenesis and esterification rather than towards fatty acid oxidation. Mitochondrial activities of cytochrome c oxidase and monoamine oxidase were significantly lower when expressed per g wet wt. of liver, whereas peroxisomal activities of urate oxidase and palmitoyl-CoA-dependent NAD+ reduction were unchanged. Liver mitochondria were able to oxidize oleic acid at the same rate in both obese and lean rats. For reactions occurring inside the mitochondria, e.g. octanoate oxidation and palmitoyl-CoA dehydrogenase, no difference was found between both phenotypes. Total carnitine palmitoyl-, octanoyl- and acetyl-transferase activities were slightly higher in mitochondria from obese rats, whereas the carnitine content of both liver tissue and mitochondria was significantly lower in obese rats compared with their lean littermates. The carnitine palmitoyltransferase I activity was slightly higher in liver mitochondria from obese rats, but this enzyme was more sensitive to malonyl-CoA inhibition in obese than in lean rats. The above results strongly suggest that the impaired fatty acid oxidation observed in the whole liver of obese rats is due to the diminished transport of fatty acids across the mitochondrial inner membrane via the carnitine palmitoyltransferase I. This effect could be reinforced by the decreased mitochondrial content per g wet wt. of liver. The depressed fatty acid oxidation may explain in part the lipid infiltration of liver observed in obese Zucker rats.  相似文献   

7.
The experiments reconfirm the powerful inhibitory effect of malonyl-CoA on carnitine acyltransferase I and fatty acid oxidation in rat liver mitochondria (Ki 1.5 microM). Sensitivity decreased with starvation (Ki after 18 h starvation 3.0 microM, and after 42 h 5.0 microM). Observations by Cook, Otto & Cornell [Biochem. J. (1980) 192, 955--958] and Ontko & Johns [Biochem. J. (1980) 192, 959--962] have cast doubt on the physiological role of malonyl-CoA in the regulation of hepatic fatty acid oxidation and ketogenesis. The high Ki values obtained in the cited studies are shown to be due to incubation conditions that cause substrate depletion, destruction of malonyl-CoA or generation of excessively high concentrations of unbound acyl-CoA (which offsets the competitive inhibition of malonyl-CoA towards carnitine acyltransferase I). The present results are entirely consistent with the postulated role of malonyl-CoA as the primary regulatory of fatty acid synthesis and oxidation in rat liver.  相似文献   

8.
Branched-chain fatty acids (such as phytanic and pristanic acid) are ligands for the nuclear hormone receptor peroxisome proliferator-activated receptor alpha (PPARalpha) in vitro. To investigate the effects of these physiological compounds in vivo, wild-type and PPARalpha-deficient (PPARalpha-/-) mice were fed a phytol-enriched diet. This resulted in increased plasma and liver levels of the phytol metabolites phytanic and pristanic acid. In wild-type mice, plasma fatty acid levels decreased after phytol feeding, whereas in PPARalpha-/- mice, the already elevated fatty acid levels increased. In addition, PPARalpha-/- mice were found to be carnitine deficient in both plasma and liver. Dietary phytol increased liver free carnitine in wild-type animals but not in PPARalpha-/- mice. Investigation of carnitine biosynthesis revealed that PPARalpha is likely involved in the regulation of carnitine homeostasis. Furthermore, phytol feeding resulted in a PPARalpha-dependent induction of various peroxisomal and mitochondrial beta-oxidation enzymes. In addition, a PPARalpha-independent induction of catalase, phytanoyl-CoA hydroxylase, carnitine octanoyltransferase, peroxisomal 3-ketoacyl-CoA thiolase, and straight-chain acyl-CoA oxidase was observed. In conclusion, branched-chain fatty acids are physiologically relevant ligands of PPARalpha in mice. These findings are especially relevant for disorders in which branched-chain fatty acids accumulate, such as Refsum disease and peroxisome biogenesis disorders.  相似文献   

9.
Muscle malonyl-CoA decreases during exercise   总被引:2,自引:0,他引:2  
Malonyl-CoA, the inhibitor of carnitine acyltransferase I, is an important regulator of fatty acid oxidation and ketogenesis in the liver. Muscle carnitine acyltransferase I has previously been reported to be more sensitive to malonyl-CoA inhibition than is liver carnitine acyltransferase I. Fluctuations in malonyl-CoA concentration may therefore be important in regulating the rate of fatty acid oxidation in muscle during exercise. Male rats were anesthetized (pentobarbital via venous catheters) at rest or after 30 min of treadmill exercise (21 m/min, 15% grade). The gastrocnemius/plantaris muscles were frozen at liquid N2 temperature. Muscle malonyl-CoA decreased from 1.66 +/- 0.17 to 0.60 +/- 0.05 nmol/g during the exercise. This change was accompanied by a 31% increase in cAMP in the muscle. The decline in malonyl-CoA occurred before muscle glycogen depletion and before onset of hypoglycemia. Plasma catecholamines, corticosterone, and free fatty acids were all significantly increased during the exercise. This exercise-induced decrease in malonyl-CoA may be important for allowing the increase in muscle fatty acid oxidation during exercise.  相似文献   

10.
Mitochondrial beta-oxidation of fatty acids is vital for energy production in periods of fasting and other metabolic stress. Human patients have been identified with inherited disorders of mitochondrial beta-oxidation of fatty acids with enzyme deficiencies identified at many of the steps in this pathway. Although these patients exhibit a range of disease processes, Reye-like illness (hypoketotic-hypoglycemia, hyperammonemia and fatty liver) and cardiomyopathy are common findings. There have been several mouse models developed to aid in the study of these disease conditions. The characterized mouse models include inherited deficiencies of very long-chain acyl-CoA dehydrogenase, long-chain acyl-CoA dehydrogenase, short-chain acyl-CoA dehydrogenase, mitochondrial trifunctional protein-alpha, and medium-/short-chain hydroxyacyl-CoA dehydrogenase. Mouse mutants developed, but presently incompletely characterized as models, include carnitine palmitoyltransferase-1a and medium-chain acyl-CoA dehydrogenase deficiencies. In general, the mouse models of disorders of mitochondrial fatty acid beta-oxidation have shown clinical signs that include Reye-like syndrome and cardiomyopathy, and many are cold intolerant. It is expected that these mouse models will provide vital contributions in understanding the mechanisms of disease pathogenesis of fatty acid oxidation disorders and the development of appropriate treatments and supportive care.  相似文献   

11.
Liver mitochondria prepared by differential centrifugation are contaminated by significant quantities of peroxisomes and microsomal fractions. 'Easily solubilized carnitine palmitoyltransferase' prepared from liver mitochondria is thought to originate from the outer surface of the mitochondrial inner membrane. We have characterized the carnitine palmitoyltransferase activities of freeze-thaw extracts of rat liver mitochondrial preparations. Chromatography on Sephadex G-100 yields two broad peaks of carnitine decanoyltransferase activity: one eluted at the end of the void volume, which can be removed (precipitated) by ultracentrifugation; the second peak represents the soluble activity and is eluted at an Mr near 70,000. The activity in the soluble peak is precipitated by an antibody raised against carnitine octanoyltransferase purified from mouse liver peroxisomes. In contrast, antibody raised against carnitine palmitoyltransferase purified from liver mitochondrial membranes had no effect (P. Brady & L. Brady, personal communication). The carnitine acyltransferase activities of the Mr-70,000 peak in the presence or absence of Tween 20 showed maximum activity with decanoyl-CoA and about one-third of this activity with palmitoyl-CoA, similar to peroxisomal carnitine octanoyltransferase. These data show that 7500 g preparations of liver mitochondria isolated by differential centrifugation are enriched by peroxisomal carnitine octanoyltransferase (approx. 20% of the protein of the fraction is peroxisomal) and indicate that this enzyme may be the one reported as 'overt' or 'easily solubilized' mitochondrial carnitine palmitoyltransferase.  相似文献   

12.
Rats with carnitine deficiency due to trimethylhydrazinium propionate (mildronate) administered at 80 mg/100 g body weight per day for 10 days developed liver steatosis only upon fasting. This study aimed to determine whether the transient steatosis resulted from triglyceride accumulation due to the amount of fatty acids preserved through impaired fatty acid oxidation and/or from up-regulation of lipid exchange between liver and adipose tissue. In liver, mildronate decreased the carnitine content by approximately 13-fold and, in fasted rats, lowered the palmitate oxidation rate by 50% in the perfused organ, increased 9-fold the triglyceride content, and doubled the hepatic very low density lipoprotein secretion rate. Concomitantly, triglyceridemia was 13-fold greater than in controls. Hepatic carnitine palmitoyltransferase I activity and palmitate oxidation capacities measured in vitro were increased after treatment. Gene expression of hepatic proteins involved in fatty acid oxidation, triglyceride formation, and lipid uptake were all increased and were associated with increased hepatic free fatty acid content in treated rats. In periepididymal adipose tissue, mildronate markedly increased lipoprotein lipase and hormone-sensitive lipase activities in fed and fasted rats, respectively. On refeeding, carnitine-depleted rats exhibited a rapid decrease in blood triglycerides and free fatty acids, then after approximately 2 h, a marked drop of liver triglycerides and a progressive decrease in liver free fatty acids. Data show that up-regulation of liver activities, peripheral lipolysis, and lipoprotein lipase activity were likely essential factors for excess fat deposit and release alternately occurring in liver and adipose tissue of carnitine-depleted rats during the fed/fasted transition.  相似文献   

13.
Carnitine and derivatives in rat tissues   总被引:22,自引:22,他引:0       下载免费PDF全文
1. Free carnitine, acetylcarnitine, short-chain acylcarnitine and acid-insoluble carnitine (probably long-chain acylcarnitine) have been measured in rat tissues. 2. Starvation caused an increase in the proportion of carnitine that was acetylated in liver and kidney; at least in liver fat-feeding had the same effect, whereas a carbohydrate diet caused a very low acetylcarnitine content. 3. In heart, on the other hand, starvation did not cause an increase in the acetylcarnitine/carnitine ratio, whereas fat-feeding caused a decrease. The acetylcarnitine content of heart was diminished by alloxan-diabetes or a fatty diet, but not by re-feeding with carbohydrate. 4. Under conditions of increased fatty acid supply the acid-insoluble carnitine content was increased in heart, liver and kidney. 5. The acylation state of carnitine was capable of very rapid change. Concentrations of carnitine derivatives varied with different methods of obtaining tissue samples, and very little acid-insoluble carnitine was found in tissues of rats anaesthetized with Nembutal. In liver the acetylcarnitine (and acetyl-CoA) content decreased if freezing of tissue samples was delayed; in heart this caused an increase in acetylcarnitine. 6. Incubation of diaphragms with acetate or dl-β-hydroxybutyrate caused the acetylcarnitine content to become elevated. 7. Perfusion of hearts with fatty acids containing an even number of carbon atoms, dl-β-hydroxybutyrate or pyruvate resulted in increased contents of acetylcarnitine and acetyl-CoA. Accumulation of these acetyl compounds was prevented by the additional presence of propionate or pentanoate in the perfusion medium; this prevention was not due to extensive propionylation of CoA or carnitine. 8. Perfusion of hearts with palmitate caused a severalfold increase in the content of acid-insoluble carnitine; this increase did not occur when propionate was also present. 9. Comparison of the acetylation states of carnitine and CoA in perfused hearts suggests that the carnitine acetyltransferase reactants may remain near equilibrium despite wide variations in their steady-state concentrations. This is not the case with the citrate synthase reaction. It is suggested that the carnitine acetyltransferase system buffers the tissue content of acetyl-CoA against rapid changes.  相似文献   

14.
1. During fatty acid oxidation by rat liver mitochondria, the rate of β-oxidation is dependent on the relative amounts of substrate and mitochondrial protein, on the energy state of the mitochondria, on the chain length and the number of double bonds of the fatty acid and on the concentration of various compounds in the reaction medium (l-carnitine, CoASH, hexokinase, albumin).2. The rate of β-oxidation of long-chain fatty acids decreases when the ratio of albumin over fatty acid is increased. This effect is most marked in the absence of added carnitine.3. Addition of excess hexokinase decreases the rate of β-oxidation in the presence of added carnitine.4. Maximal rates of β-oxidation are observed with octanoate and decanoate (40–60 nmoles acetyl-CoA/min per mg mitochondrial protein at 25 °C).5. Odd-numbered fatty acids are oxidized at a much lower rate than the even-numbered homologues. In a low-energy state propionyl-CoA accumulates; in a high-energy state in the presence of bicarbonate, Krebs-cycle intermediates accumulate.6. l-Carnitine enhances the rate of β-oxidation of all fatty acids except butyrate. The stimulatory effect is most pronounced with odd-numbered and with long-chain fatty acids.7. In the absence of added carnitine the rate of β-oxidation of long-chain fatty acids decreases with the chain length and increases with the number of double bonds. It is suggested that the solubility of the long-chain fatty acids in the aqueous medium is the rate-limiting factor under these conditions.8. In the presence of carnitine and albumin, palmitate, oleate, linoleate and linolenate are all oxidized at about the same rate (25–30 nmoles/min per mg protein at 25 °C).9. Propionyl-CoA is not formed as an intermediate during oxidation of unsaturated fatty acids.  相似文献   

15.
The purpose of this study was to determine if free or esterified carnitine could alter fatty acid metabolism and ameliorate sepsis in lipopolysaccharide (LPS)-treated rats. Throughout a 96 h observation post-LPS, i.p. administration of both markedly reduced illness and accelerated recovery. Carnitine prevented the acute LPS-induced rise in serum triglycerides (45 +/- 6, 59 +/- 5 vs. 83 +/- 8 mg/ml, p < 0.001), respectively. This difference was accompanied by a significant increase in liver lipogenesis in LPS controls compared to both carnitines and normal rats (6.1 +/- 0.3 vs. 3.9 +/- 0.5, 4.3 +/- 0.5, and 1.8 +/- 0.4 mumol/h, respectively, p < 0.04). Compared to normal rats, total liver carnitine was significantly elevated in LPS controls and even higher in the carnitine groups (357 +/- 40 vs. 736 +/- 38, 796 +/- 79, and 1081 +/- 21 nmol/g). The data suggest that carnitines may be of therapeutic value in sepsis treatment and one action may be to partition fatty acids from esterification to oxidation.  相似文献   

16.
The sensitivity of carnitine palmitoyltransferase I to inhibition by 4-hydroxyphenylglyoxylate was decreased markedly in liver mitochondria isolated from either 48 h-starved or streptozotocin-diabetic rats. These treatments of the rat also decreased the sensitivity of fatty acid oxidation by isolated hepatocytes to inhibition by this compound. Furthermore, incubation of hepatocytes prepared from fed rats with N6O2'-dibutyryl cyclic AMP also decreased the sensitivity, whereas incubation of hepatocytes prepared from starved rats with lactate plus pyruvate had the opposite effect on 4-hydroxyphenylglyoxylate inhibition of fatty acid oxidation. The sensitivity of carnitine palmitoyltransferase I of mitochondria to 4-hydroxyphenylglyoxylate increased in a time-dependent manner, as previously reported for malonyl-CoA. Likewise, oleoyl-CoA activated carnitine palmitoyltransferase I in a time-dependent manner and prevented the sensitization by 4-hydroxyphenylglyoxylate. Increased exogenous carnitine caused a moderate increase in fatty acid oxidation by hepatocytes under some conditions and a decreased 4-hydroxyphenylglyoxylate inhibition of fatty acid oxidation at low oleate concentration, without decreasing the difference in 4-hydroxyphenylglyoxylate inhibition between fed- and starved-rat hepatocytes. Time-dependent changes in the conformation of carnitine palmitoyltransferase I or the membrane environment may be involved in differences among nutritional states in 4-hydroxyphenylglyoxylate-sensitivity of carnitine palmitoyltransferase I.  相似文献   

17.
Although the mouse frequently is used to study metabolism and deficiencies therein, little is known about carnitine biosynthesis in this animal. To this point, only laborious procedures have been described to measure the activity of carnitine biosynthesis enzymes using subcellular fractions as the enzyme source. We developed two simple tandem mass spectrometry-based methods to determine the activity of three carnitine biosynthesis enzymes (6-N-trimethyllysine dioxygenase, 4-trimethylaminobutyraldehyde dehydrogenase, and 4-trimethylaminobutyric acid dioxygenase) in total homogenates that can be prepared from frozen tissue. The new assays were used to characterize these enzymes in mouse liver homogenate. Because carnitine biosynthesis has been studied extensively in the rat, we compared the mouse tissue distribution of carnitine biosynthesis enzyme activities and levels of the biosynthesis metabolites with those in the rat to determine which tissues contribute to carnitine biosynthesis in these species. Surprisingly, large differences in enzyme activities were found between the rat and the mouse, whereas carnitine biosynthesis metabolite levels were very similar in both species, possibly due to the different kinetic properties of the first enzyme of carnitine biosynthesis. Also, muscle carnitine levels were found to vary considerably between these two species, suggesting that there is a metabolic dissimilarity between the mouse and the rat.  相似文献   

18.
Regulation of fatty acid activation was studied in whole tissue homogenates of rat heart. The palmityl-CoA synthestase activity was proportional to the fatty acid to albumin ratio in the incubation medium with maximal activity occurring at a molar ratio of about 5. Fatty acyl-CoA synthetase activity was inhibited by products of the reaction (AMP, pyrophosphate, and palmityl-CoA). The apparent Ki for palmityl-CoA inhibition was 5 muM and this inhibition could be relieved by CoA-SH or albumin. The Km for CoA-SH in the absence of palmityl-CoA was 7 muM and was increased to 24 muM by addition of 8 muM palmityl-CoA. Cytosolic and mitochondrial levels of CoA-SH and carnitine were estimated in whole tissue homogenates of heart and liver. From 90 to 100% of whole tissue CoA was recovered in the mitochondrial fraction of heart muscle and it was estimated that the cytosolic concentration of free CoA-SH probably never exceeds its Km value for fatty acid activation in this tissue. Therefore, the rate of fatty acid activation would be expected to depend on the availability of CoA-SH in the cytosolic space. By adjusting the concentration of CoA-SH in the cytosol to the rate of acetyl-CoA oxidation, carnitineacetyl-CoA transferase may function in cardiac muscle to couple the rate of fatty acid activation in the cytosolic compartment to acetyl-CoA oxidation in the mitochondria. Approximately 30% of whole tissue CoA-SH was located in the cytosolic space in liver. Heart muscle has about twice as much carnitine as liver but in both tissues 100% of whole tissue carintine was located in the cytosolic space. The ratio of carnitine to CoA-SH in the cytosolic space was estimated to be about 100 in heart and 17 in liver. This high ratio in cardiac muscle may function to channel fatty acids toward oxidation rather than toward synthesis of complex lipids.  相似文献   

19.
The activities of peroxisomal and mitochondrial beta-oxidation and carnitine acyltransferases changed during the process of development from embryo to adult chicken, and the highest activities of peroxisomal beta-oxidation, palmitoyl-CoA oxidase, and carnitine acetyltransferase were found at the hatching stage of the embryo. The profiles of these alterations were in agreement with those of the contents of triglycerides and free fatty acids in the liver. The highest activities of mitochondrial beta-oxidation and palmitoyl-CoA dehydrogenase were observed at the earlier stages of the embryo; then the activities decreased gradually from embryo to adult chicken. The ratio of activities of carnitine acetyltransferase in peroxisomes and mitochondria (peroxisomes/mitochondria) increased from 0.54 to 0.82 during the development from embryo to adult chicken. The ratio of activities of carnitine palmitoyltransferase decreased from 0.82 to 0.25 during the development. The affinity of fatty acyl-CoA dehydrogenase toward the medium-chain acyl-CoAs (C6 and C8) was high in the embryo and decreased with development, whereas the substrate specificity of fatty acyl-CoA oxidase did not change. The substrate specificity of mitochondrial carnitine acyltransferases did not change with development. The affinity of peroxisomal carnitine acyltransferases toward the long-chain acyl-CoAs (C10 to C16) was high in the embryo, but low in adult chicken.  相似文献   

20.
Among the organic cation transporters, OCTN2 is identified as the most important carnitine transporter owing to the ability to transport carnitine. Although the OCTN2 is previously found in various tissues, there have been no reports showing the OCTN2 in the pancreas. In this study, we examined the expression and localization of OCTN2 in the mouse pancreas by the aid of an in situ hybridization technique and immunohistochemistry with anti-OCTN2 antibody. As a result, the OCTN2 expression was found in the A-cells for the first time. OCTN2 was not expressed in B-cells, notwithstanding that the metabolism of long-chain fatty acids, which are transported into the mitochondria with the help of carnitine, was expected for fatty acid-stimulated insulin secretion. Thus, this study suggests the possibility of carnitine uptake in the pancreatic A-cells through OCTN2 and implies the presence of carnitine transporter(s) other than OCTN2 in the B-cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号