首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The first crystal structure of an inorganic pyrophosphatase (S-PPase) from an archaebacterium, the thermophile Sulfolobus acidocaldarius, has been solved by molecular replacement and refined to an R-factor of 19.7% at 2.7 A. S-PPase is a D3 homohexameric protein with one Mg2+ per active site in a position similar to, but not identical with, the first activating metal in mesophilic pyrophosphatases (PPase). In mesophilic PPases, Asp65, Asp70, and Asp102 coordinate the Mg2+, while only Asp65 and Asp102 do in S-PPase, and the Mg2+ moves by 0.7 A. S-PPase may therefore be deactivated at low temperature by mispositioning a key metal ion. The monomer S-PPase structure is very similar to that of Thermus thermophilus (T-PPase) and Escherichia coli (E-PPase), root-mean-square deviations around 1 A/Calpha. But the hexamer structures of S- and T-PPase are more tightly packed and more similar to each other than they are to that of E-PPase, as shown by the increase in surface area buried upon oligomerization. In T-PPase, Arg116 creates an interlocking ionic network to both twofold and threefold related monomers; S-PPase has hydrophilic interactions to threefold related monomers absent in both E- and T-PPase. In addition, the thermostable PPases have about 7% more hydrogen bonds per monomer than E-PPase, and, especially in S-PPase, additional ionic interactions anchor the C-terminus to the rest of the protein. Thermostability in PPases is thus due to subtle improvements in both monomer and oligomer interactions.  相似文献   

2.
Recombinant pyrophosphatase from the hyperthermophilic archaebacterium Sulfolobus acidocaldarius (S-PPase) has been heterologously expressed in Escherichia coli and could be purified in large quantities. S-PPase, previously described as a tetrameric enzyme, was shown to be a homohexameric protein that had catalytic activity with Mg2+ > Zn2+ > Co2+ > Mn2+ > Ni2+, Ca2+. CD and FTIR spectra demonstrate a similar overall fold for S-PPase and PPases from E. coli (E-PPase) and Thermus thermophilus (T-PPase). The relative proportions of secondary structure elements in S-PPase are close to those of a previously proposed model. S-PPase is extremely heat resistant. Even at 95 degrees C the half-life of catalytic activity is 2.5 h, which is dramatically increased in the presence of divalent cations. More than one Mg2+ per monomer is needed for catalysis, but no more than one Mg2+ per monomer is sufficient for thermal stabilization. The Tm values for S-PPase are 89 degrees C (+EDTA), 99 degrees C (+Mg2+), and >100 degrees C (+Mn2+), compared to 58 degrees C (+EDTA), 84 degrees C (+Mg2+), and 93 degrees C (+Mn2+) for E-PPase and 86 degrees C (+EDTA), 99 degrees C (+Mg2+), and 96 degrees C (+Mn2+) for T-PPase. The guanidium hydrochloride-induced unfolding follows an unknown mechanism with a biphasic kinetic and an unstable intermediate. Unfolding curves of the S-, E-, and T-PPase are independent of the method applied (CD spectroscopy and fluorescence) and show a sigmoidal and monophasic transition, indicating a change in global structure during unfolding, which can be described by a two-state process comprising dissociation and denaturation of the folded hexamer into six monomers. The respective DeltaGN-->D(25 degrees C) values of the three PPases vary from 220 to 290 kJ/mol for the overall process and are not significantly higher for the two thermophilic PPases. The stabilizing effect of Mg2+ DeltaDeltaG(25 degrees C) is 16 kJ/mol for E-PPase and 5.5-8 kJ/mol for S-PPase and T-PPase.  相似文献   

3.
The 3-dimensional structure of inorganic pyrophosphatase from Thermus thermophilus (T-PPase) has been determined by X-ray diffraction at 2.0 A resolution and refined to R = 15.3%. The structure consists of an antiparallel closed beta-sheet and 2 alpha-helices and resembles that of the yeast enzyme in spite of the large difference in size (174 and 286 residues, respectively), little sequence similarity beyond the active center (about 20%), and different oligomeric organization (hexameric and dimeric, respectively). The similarity of the polypeptide folding in the 2 PPases provides a very strong argument in favor of an evolutionary relationship between the yeast and bacterial enzymes. The same Greek-key topology of the 5-stranded beta-barrel was found in the OB-fold proteins, the bacteriophage gene-5 DNA-binding protein, toxic-shock syndrome toxin-1, and the major cold-shock protein of Bacillus subtilis. Moreover, all known nucleotide-binding sites in these proteins are located on the same side of the beta-barrel as the active center in T-PPase. Analysis of the active center of T-PPase revealed 17 residues of potential functional importance, 16 of which are strictly conserved in all sequences of soluble PPases. Their possible role in the catalytic mechanism is discussed on the basis of the present crystal structure and with respect to site-directed mutagenesis studies on the Escherichia coli enzyme. The observed oligomeric organization of T-PPase allows us to suggest a possible mechanism for the allosteric regulation of hexameric PPases.  相似文献   

4.
To study how oligomerization may contribute to the thermostability of archaeon proteins, we focused on a hexameric protein, protein L-isoaspartyl-O-methyltransferase from Sulfolobus tokodaii (StoPIMT). The crystal structure shows that StoPIMT has a distinctive hexameric structure composed of monomers consisting of two domains: an S-adenosylmethionine-dependent methyltransferase fold domain and a C-terminal alpha-helical domain. The hexameric structure includes three interfacial contact regions: major, minor, and coiled-coil. Several C-terminal deletion mutants were constructed and characterized. The hexameric structure and thermostability were retained when the C-terminal alpha-helical domain (Tyr(206)-Thr(231)) was deleted, suggesting that oligomerization via coiled-coil association using the C-terminal alpha-helical domains did not contribute critically to hexamerization or to the increased thermostability of the protein. Deletion of three additional residues located in the major contact region, Tyr(203)-Asp(204)-Asp(205), led to a significant decrease in hexamer stability and chemico/thermostability. Although replacement of Thr(146) and Asp(204), which form two hydrogen bonds in the interface in the major contact region, with Ala did not affect hexamer formation, these mutations led to a significant decrease in thermostability, suggesting that two residues in the major contact region make significant contributions to the increase in stability of the protein via hexamerization. These results suggest that cooperative hexamerization occurs via interactions of "hot spot" residues and that a couple of interfacial hot spot residues are responsible for enhancing thermostability via oligomerization.  相似文献   

5.
Each of the 10 proline residues of the inorganic pyrophosphatase (PPase) subunit of thermophilic bacterium PS-3 (PS-3) was replaced with alanine by the PCR-mutagenesis method. The variants were classified into three groups according to the effects of the replacements on their catalytic activities in 20 mM Tris-HCl, pH 7.8, containing 5 mM MgCl(2): the catalytic activity was (i) slightly affected (P39A and P69A), (ii) considerably reduced (P14A, P43A, P59A, and P116A), and (iii) completely or almost completely abolished (P72A, P100A, P104A, and P146A). HPLC-gel chromatography in the presence of 5 mM MgCl(2) revealed the following subunit assembly of the variants: group (i), a hexamer; group (ii), a hexamer or a mixture of a hexamer and a trimer, although the hexamer was predominant; and group (iii), a trimer or a monomer. The thermostability of the variant PPases depended upon the amount of hexamer remaining in the presence of Mg(2+) at high temperature. The results indicated that the hexamer state formed through protomer-protomer and trimer-trimer interactions is necessary for the PS-3 PPase to retain the correct structure for full catalytic activity and thermostability.  相似文献   

6.
The severe acute respiratory syndrome (SARS) coronavirus virus non-structural protein 15 is a Mn2+-dependent endoribonuclease with specificity for cleavage at uridylate residues. To better understand structural and functional characteristics of Nsp15, 22 mutant versions of Nsp15 were produced in Escherichia coli as His-tagged proteins and purified by metal-affinity and ion-exchange chromatography. Nineteen of the mutants were soluble and were analyzed for enzymatic activity. Six mutants, including four at the putative active site, were significantly reduced in endoribonuclease activity. Two of the inactive mutants had unusual secondary structures compared to the wild-type protein, as measured by circular dichroism spectroscopy. Gel-filtration analysis, velocity sedimentation ultracentrifugation, and native gradient pore electrophoresis all showed that the wild-type protein exists in an equilibrium between hexamers and monomers in solution, with hexamers dominating at micromolar protein concentration, while native gradient pore electrophoresis also revealed the presence of trimers. A mutant in the N terminus of Nsp15 was impaired in hexamer formation and had low endoribonuclease activity, suggesting that oligomerization is required for endoribonuclease activity. This idea was supported by titration experiments showing that enzyme activity was strongly concentration-dependent, indicating that oligomeric Nsp15 is the active form. Three-dimensional reconstruction of negatively stained single particles of Nsp15 viewed by transmission electron microscopic analysis suggested that the six subunits were arranged as a dimer of trimers with a number of cavities or channels that may constitute RNA binding sites.  相似文献   

7.
The alignments of the amino acid sequences of inorganic pyrophosphatase (PPase) from Saccharomyces cerevisiae (Y1-PPase, 286 amino acids) and Escherichia coli (E-PPase, 175 amino acids) are examined in the light of crystallographic and chemical modification results placing specific amino acid residues at the active site of the yeast enzyme. The major results are: (1) the full E-PPase sequence aligns within residues 28-225 of Y1-PPase, raising the possibility that the N-terminal and C-terminal portions of Y1-PPase may not be essential for activity, and (2) that whereas the overall identity between the two sequences is only modest (22-27% depending on the choice of alignment parameters), of some 17 putative active site residues, 14-16 are identical between Y-PPase and E-PPase. PPase thus appears to be an example of enzymes from widely divergent species that conserve common functional elements within the context of substantial overall sequence variation.  相似文献   

8.
Deposition of amyloid fibrils consisting of amyloid β (Aβ) protein as senile plaques in the brain is a pathological hallmark of Alzheimer’s disease. However, a growing body of evidence shows that soluble Aβ oligomers correlate better with dementia than fibrils, suggesting that Aβ oligomers may be the primary toxic species. The structure and oligomerization mechanism of these Aβ oligomers are crucial for developing effective therapeutics. Here we investigated the oligomerization of Aβ42 in the context of a fusion protein containing GroES and ubiquitin fused to the N-terminus of Aβ sequence. The presence of fusion protein partners, in combination with a denaturing buffer containing 8 M urea at pH 10, is unfavorable for Aβ42 aggregation, thus allowing only the most stable structures to be observed. Transmission electron microscopy showed that Aβ42 fusion protein formed globular oligomers, which bound weakly to thioflavin T and Congo red. SDS–PAGE shows that Aβ42 fusion protein formed SDS-resistant hexamers and tetramers. In contrast, Aβ40 fusion protein remained as monomers on SDS gel, suggesting that the oligomerization of Aβ42 fusion protein is not due to the fusion protein partners. Cysteine scanning mutagenesis at 22 residue positions further revealed that single cysteine substitutions of the C-terminal hydrophobic residues (I31, I32, L34, V39, V40, and I41) led to disruption of hexamer and tetramer formation, suggesting that hydrophobic interactions between these residues are most critical for Aβ42 oligomerization.  相似文献   

9.
Catalysis by Escherichia coli inorganic pyrophosphatase (E-PPase) was found to be strongly modulated by Tris and similar aminoalcoholic buffers used in previous studies of this enzyme. By measuring ligand-binding and catalytic properties of E-PPase in zwitterionic buffers, we found that the previous data markedly underestimate Mg(2+)-binding affinity for two of the three sites present in E-PPase (3.5- to 16-fold) and the rate constant for substrate (dimagnesium pyrophosphate) binding to monomagnesium enzyme (20- to 40-fold). By contrast, Mg(2+)-binding and substrate conversion in the enzyme-substrate complex are unaffected by buffer. These data indicate that E-PPase requires in total only three Mg2+ ions per active site for best performance, rather than four, as previously believed. As measured by equilibrium dialysis, Mg2+ binds to 2.5 sites per monomer, supporting the notion that one of the tightly binding sites is located at the trimer-trimer interface. Mg2+ binding to the subunit interface site results in increased hexamer stability with only minor consequences for catalytic activity measured in the zwitterionic buffers, whereas Mg2+ binding to this site accelerates substrate binding up to 16-fold in the presence of Tris. Structural considerations favor the notion that the aminoalcohols bind to the E-PPase active site.  相似文献   

10.
The human immunodeficiency virus type 1 capsid is modeled as a fullerene cone that is composed of ∼ 250 hexamers and 12 pentamers of the viral CA protein. Structures of CA hexamers have been difficult to obtain because the hexamer-stabilizing interactions are inherently weak, and CA tends to spontaneously assemble into capsid-like particles. Here, we describe a two-step biochemical strategy to obtain soluble CA hexamers for crystallization. First, the hexamer was stabilized by engineering disulfide cross-links (either A14C/E45C or A42C/T54C) between the N-terminal domains of adjacent subunits. Second, the cross-linked hexamers were prevented from polymerizing further into hyperstable capsid-like structures by mutations (W184A and M185A) that interfered with dimeric association between the C-terminal domains that link adjacent hexamers. The structures of two different cross-linked CA hexamers were nearly identical, and we combined the non-mutated portions of the structures to generate an atomic resolution model for the native hexamer. This hybrid approach for structure determination should be applicable to other viral capsomers and protein-protein complexes in general.  相似文献   

11.
Molecular dynamics (MD) simulations (5-10ns in length) and normal mode analyses were performed for the monomer and dimer of native porcine insulin in aqueous solution; both starting structures were obtained from an insulin hexamer. Several simulations were done to confirm that the results obtained are meaningful. The insulin dimer is very stable during the simulation and remains very close to the starting X-ray structure; the RMS fluctuations calculated from the MD simulation agree with the experimental B-factors. Correlated motions were found within each of the two monomers; they can be explained by persistent non-bonded interactions and disulfide bridges. The correlated motions between residues B24 and B26 of the two monomers are due to non-bonded interactions between the side-chains and backbone atoms. For the isolated monomer in solution, the A chain and the helix of the B chain are found to be stable during 5ns and 10ns MD simulations. However, the N-terminal and the C-terminal parts of the B chain are very flexible. The C-terminal part of the B chain moves away from the X-ray conformation after 0.5-2.5ns and exposes the N-terminal residues of the A chain that are thought to be important for the binding of insulin to its receptor. Our results thus support the hypothesis that, when monomeric insulin is released from the hexamer (or the dimer in our study), the C-terminal end of the monomer (residues B25-B30) is rearranged to allow binding to the insulin receptor. The greater flexibility of the C-terminal part of the beta chain in the B24 (Phe-->Gly) mutant is in accord with the NMR results. The details of the backbone and side-chain motions are presented. The transition between the starting conformation and the more dynamic structure of the monomers is characterized by displacements of the backbone of Phe B25 and Tyr B26; of these, Phe B25 has been implicated in insulin activation.  相似文献   

12.
Mutations in the insulin gene can impair proinsulin folding and cause diabetes mellitus. Although crystal structures of insulin dimers and hexamers are well established, proinsulin is refractory to crystallization. Although an NMR structure of an engineered proinsulin monomer has been reported, structures of the wild-type monomer and hexamer remain undetermined. We have utilized hydroxyl radical footprinting and molecular modeling to characterize these structures. Differences between the footprints of insulin and proinsulin, defining a "shadow" of the connecting (C) domain, were employed to refine the model. Our results demonstrate that in its monomeric form, (i) proinsulin contains a native-like insulin moiety and (ii) the C-domain footprint resides within an adjoining segment (residues B23-B29) that is accessible to modification in insulin but not proinsulin. Corresponding oxidation rates were observed within core insulin moieties of insulin and proinsulin hexamers, suggesting that the proinsulin hexamer retains an A/B structure similar to that of insulin. Further similarities in rates of oxidation between the respective C-domains of proinsulin monomers and hexamers suggest that this loop in each case flexibly projects from an outer surface. Although dimerization or hexamer assembly would not be impaired, an ensemble of predicted C-domain positions would block hexamer-hexamer stacking as visualized in classical crystal lattices. We anticipate that protein footprinting in combination with modeling, as illustrated here, will enable comparative studies of diabetes-associated mutant proinsulins and their aberrant modes of aggregation.  相似文献   

13.
A homolog to the eubacteria inorganic pyrophosphatase (PPase, EC 3.6.1.1) was found in the genome of the hyperthermophilic archaeon Pyrococcus horikoshii. This inorganic pyrophosphatase (Pho-PPase) grows optimally at 88°C. To understand the structural basis for the thermostability of Pho-PPase, we have determined the crystal structure to 2.66 Å resolution. The crystallographic asymmetric unit contains three monomers related by approximate threefold symmetry, and a hexamer is built up by twofold crystallographic symmetry. The main-chain fold of Pho-PPase is almost identical to that of the known crystal structure of the model from Sulfolobus acidocaldarius. A detailed comparison of the crystal structure of Pho-PPase with related structures from S. acidocaldarius, Thermus thermophilus, and Escherichia coli shows significant differences that may account for the difference in their thermostabilities. A reduction in thermolabile residues, additional aromatic residues, and more intimate association between subunits all contribute to the larger thermophilicity of Pho-PPase. In particular, deletions in two loops surrounding the active site help to stabilize its conformation, while ion-pair networks unique to Pho-PPase are located in the active site and near the C-terminus. The identification of structural features that make PPases more adaptable to extreme temperature should prove helpful for future biotechnology applications.  相似文献   

14.
Recent progress in studies of the mode of action of cytoplasmic inorganic pyrophosphatases is mainly due to the analysis of a dozen and a half structures of the apoenzyme, its complexes, and mutants. However, despite considerable research on the mechanism of action of these enzymes, many important problems remain unclear. Among them is the problem of active site interactions in oligomeric structures and their role in catalysis; this review focuses on this problem. The abundant experimental data requires generalization and comprehensive analysis. A characteristic feature of the spatial structure of inorganic pyrophosphatases is a flexible system of noncovalent interactions between protein groups penetrating the whole molecule of the oligomeric enzyme. Binding of metal ions, sulfate (an analog of the product of the enzymatic reaction), and affinity phosphorus-containing inhibitors at the active site or site-directed mutagenesis induce rearrangements in the set of hydrogen and ionic interactions, which change active site properties and in some instances, cause molecule asymmetry. In the trimeric form of Escherichia coli pyrophosphatase obtained by dissociation of a hexamer, active sites also interact with each other, which is manifested by negative cooperativity upon substrate binding. The association of trimers into the hexamer leads to perfect organization of active sites and to their coordinated functioning, probably due to the restoration of communication channels between the trimers.  相似文献   

15.
Soluble inorganic pyrophosphatase from Escherichia coli (E-PPase) is a hexamer forming under acidic conditions the active trimers. We have earlier found that the hydrolysis of a substrate (MgPP(i)) by the trimers as well as a mutant E-PPase Asp26Ala did not obey the Michaelis-Menten equation. To explain this fact, a model has been proposed implying the existence of, aside from an active site, an effector site that can bind PP(i) and thus accelerate MgPP(i) hydrolysis. In this paper, we demonstrate that the noncompetitive activation of MgPP(i) hydrolysis by metal-free PP(i) can also explain kinetic features of hexameric forms of both the native enzyme and the specially obtained mutant E-PPase with a substituted residue Glu145 in a flexible loop 144-149. Aside from PP(i), its non-hydrolyzable analog methylene diphosphonate can also occupy the effector site resulting in the acceleration of the substrate hydrolysis. Our finding that two moles of [32P]PP(i) can bind with each enzyme subunit is direct evidence for the existence of the effector site in the native E-PPase.  相似文献   

16.
Wild type connexin 46 of rat (wtrCx46), and human connexin 26 (wthCx26) and derivates from rCx46 elongated at the C-terminus by 25 amino acids (rCx46Ct) as well as C-terminal truncated constructs (rCx28.1, rCx45.3) were expressed in frog oocytes of Xenopus laevis. Single oocyte voltage-clamp analysis revealed that connexons or hemichannels of rCx46Ct exhibit similar conducting properties as those of wtrCx46. Insertion of a stop codon at C-terminal domains at position 243 and 409 resulted in a significant reduction in the corresponding hemichannel conductance. This result was also found for wthCx26, the shortest human connexin. Tagged connexin constructs rCx46Ct and hCx26Ct could be expressed in E. coli as monomers. The monomers of rCx46Ct and hCx26Ct were purified and electro-eluted from corresponding SDS gels. Studies of in vitro oligomerization showed that hexamers of these connexins were formed in presence of kinase and specific lipids. Purified rCx46Ct formed some oligomers in vitro if a lipid mixture of POPE/POPG and casein kinase I (CKI) was added, but in the presence of POPC, phosphorylated rCx46Ct monomers preferentially formed hexamers. Purified hCx26Ct formed hexamers in the presence of POPE/POPG. In addition, N-terminal truncated rCx46 (Cx35) oligomerized after phosphorylation. Reconstitution of purified recombinant connexin rCx46Ct in planar lipid bilayers mediated Ca(2+)-sensitive single channel activity. It is discussed whether the specific C-terminal end of the expressed connexins are responsible for hexamer formation as well as channel opening.  相似文献   

17.
Differential scanning calorimetry has been performed with Palinurus vulgaris haemocyanin monomers and hexamers. The denaturation of the protein is irreversible. Both the temperature of the transition maximum and the enthalpy are lower for the monomer than for the hexamer. A scan rate dependence of the temperature of the maxima is found for both the monomer and the hexamer; for the hexamer at least, this can be explained in terms of a two-state kinetic model. Some comments are made as to the use of equilibrium thermodynamics in the analysis of irreversible scanning calorimetric traces.  相似文献   

18.
The bacterial Sm-like protein Hfq forms a ring-shaped homo-hexamer that is necessary for Hfq to bind nucleic acids and to act in small noncoding RNA regulation. Using semi-native gels and fluorescence anisotropy, we show that Hfq undergoes a cooperative conformational change from monomer to hexamer around 1 μM protein, which is comparable to the in vivo concentration of Hfq and above the dissociation constant of the Hfq hexamer from many RNA substrates. Above 2 μM protein, Hfq hexamers associate in high-molecular-weight complexes. Mutations that impair RNA binding to the proximal face strongly destabilize the hexamer, while the mutation R16A near the outer rim prevents hexamer association. Stopped-flow fluorescence resonance energy transfer experiments showed that Hfq subunits interact within a few seconds, suggesting that Hfq monomers, hexamers and multi-hexamer complexes are in dynamic equilibrium. Finally, we show that Hfq is most active in RNA annealing when the hexamer is present. These results suggest that RNA binding is coupled to hexamer assembly and that the biochemical activity of Hfq reflects the equilibrium between different quaternary structures.  相似文献   

19.
The solution structure of the B9(Asp) mutant of human insulin has been determined by two-dimensional 1H nuclear magnetic resonance spectroscopy. Thirty structures were calculated by distance geometry from 451 interproton distance restraints based on intra-residue, sequential and long-range nuclear Overhauser enhancement data, 17 restraints on phi torsional angles obtained from 3JH alpha HN coupling constants, and the restraints from 17 hydrogen bonds, and the three disulphide bridges. The distance geometry structures were optimized using restrained molecular dynamics (RMD) and energy minimization. The average root-mean-square deviation for the best 20 RMD refined structures is 2.26 A for the backbone and 3.14 A for all atoms if the less well-defined N and C-terminal residues are excluded. The helical regions are better defined, with root-mean-square deviation values of 1.11 A for the backbone and 2.03 A for all atoms. The data analysis and the calculations show that B9(Asp) insulin, in water solution at the applied pH (1.8 to 1.9), is a well-defined dimer with no detectable difference between the two monomers. The association of the two monomers in the solution dimer is relatively loose as compared with the crystal dimer. The overall secondary and tertiary structures of the monomers in the 2Zn crystal hexamer is found to be preserved. The conformation-averaged NMR structures obtained for the monomer is close to the structure of molecule 1 in the hexamer of the 2Zn insulin crystal. However, minor, but significant deviations from this structure, as well as from the structure of monomeric insulin in solution, exist and are ascribed to the absence of the hexamer and crystal packing forces, and to the presence of monomer-monomer interactions, respectively. Thus, the monomer in the solution dimer shows a conformation similar to that of the crystal monomer in molecular regions close to the monomer-monomer interface, whereas it assumes a conformation similar to that of the solution structure of monomeric insulin in other regions, suggesting that B9(Asp) insulin adopts a monomer-like conformation when this is not inconsistent with the monomer-monomer arrangement in the dimer.  相似文献   

20.
ClpB is a hexameric molecular chaperone that, together with the DnaK system, has the ability to disaggregate stress-denatured proteins. The hexamer is a highly dynamic complex, able to reshuffle subunits. To further characterize the biological implications of the ClpB oligomerization state, the association equilibrium of the wild-type (wt) protein and of two deletion mutants, which lack part or the whole M domain, was quantitatively analyzed under different experimental conditions, using several biophysical [analytical ultracentrifugation, composition-gradient (CG) static light scattering, and circular dichroism] and biochemical (ATPase and chaperone activity) methods. We have found that (i) ClpB self-associates from monomers to form hexamers and higher-order oligomers that have been tentatively assigned to dodecamers, (ii) oligomer dissociation is not accompanied by modifications of the protein secondary structure, (iii) the M domain is engaged in intersubunit interactions that stabilize the protein hexamer, and (iv) the nucleotide-induced rearrangement of ClpB affects the protein oligomeric core, in addition to the proposed radial extension of the M domain. The difference in the stability of the ATP- and ADP-bound states [ΔΔG(ATP-ADP) = -10 kJ/mol] might explain how nucleotide exchange promotes the conformational change of the protein particle that drives its functional cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号