首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
We have engineered pH sensitive binding proteins for the Fc portion of human immunoglobulin G (hIgG) (hFc) using two different strategies – histidine scanning and random mutagenesis. We obtained an hFc-binding protein, Sso7d-hFc, through mutagenesis of the Sso7d protein from the hyperthermophilic archaeon Sulfolobus solfataricus; Sso7d-hFc was isolated from a combinatorial library of Sso7d mutants using yeast surface display. Subsequently, we identified a pH sensitive mutant, Sso7d-his-hFc, through systematic evaluation of Sso7d-hFc mutants containing single histidine substitutions. In parallel, we also developed a yeast display screening strategy to isolate a different pH sensitive hFc binder, Sso7d-ev-hFc, from a library of mutants obtained by random mutagenesis of a pool of hFc binders. In contrast to Sso7d-hFc, both Sso7d-his-hFc and Sso7d-ev-hFc have a higher binding affinity for hFc at pH 7.4 than at pH 4.5. The Sso7d-mutant hFc binders can be recombinantly expressed at high yield in E. coli and are monomeric in solution. They bind an epitope in the CH3 domain of hFc that has high sequence homology in all four hIgG isotypes (hIgG1–4), and recognize hIgG1–4 as well as deglycosylated hIgG in western blotting assays. pH sensitive hFc binders are attractive candidates for use in chromatography, to achieve elution of IgG under milder pH conditions. However, the surface density of immobilized hFc binders, as well as the avidity effect arising from the multivalent interaction of dimeric hFc with the capture surface, influences the pH dependence of dissociation from the capture surface. Therefore, further studies are needed to evaluate if the Sso7d mutants identified in this study are indeed useful as affinity ligands in chromatography.  相似文献   

2.
Several representatives of the Crenarchaeal branch of the Archaea contain highly abundant, small, positively charged proteins exemplified by the Sso7d protein from Sulfolobus solfataricus. These proteins bind to DNA in a non-sequence-specific manner. Using publicly available genomic sequence information, we identified a second class of small Crenarchaeal DNA-binding proteins represented by the Pyrobaculum aerophilum open reading frame 3192–encoded (Pae3192) protein and its paralogs. We investigated the biochemical properties of the Pae3192 protein and an orthologous protein (Ape1322b) from Aeropyrum pernix in side-by-side experiments with the Sso7d protein. We demonstrate that the recombinant Ape1322b, Pae3192 and Sso7d proteins bind to DNA and that the DNA-protein complexes formed are slightly different for each protein. We show that like Sso7d, Pae3192 constrains negative supercoils in DNA. In addition, we show that all three proteins raise the melting temperature of duplex DNA upon binding. Finally, we present the equilibrium affinity constants and kinetic association constants of each protein for single-stranded and double-stranded DNA.  相似文献   

3.
Members of the Sso7d/Sac7d family are small, abundant, non-specific DNA-binding proteins of the hyperthermophilic Archaea Sulfolobus. Crystal structures of these proteins in complex with oligonucleotides showed that they induce changes in the helical twist and marked DNA bending. On this basis they have been suggested to play a role in organising chromatin structures in these prokaryotes, which lack histones. We report functional in vitro assays to investigate the effects of the observed Sso7d-induced structural modifications on DNA geometry and topology. We show that binding of multiple Sso7d molecules to short DNA fragments induces significant curvature and reduces the stiffness of the complex. Sso7d induces negative supercoiling of DNA molecules of any topology (relaxed, positively or negatively supercoiled) and in physiological conditions of temperature and template topology. Binding of Sso7d induces compaction of positively supercoiled and relaxed DNA molecules, but not of negatively supercoiled ones. Finally, Sso7d inhibits the positive supercoiling activity of the thermophile-specific enzyme reverse gyrase. The proposed biological relevance of these observations is that these proteins might model the behaviour of DNA in constrained chromatin environments.  相似文献   

4.
The Sso7d protein from the hyperthermophilic archaeon Sulfolobus solfataricus is an attractive binding scaffold because of its small size (7 kDa), high thermal stability (Tm of 98 °C), and absence of cysteines and glycosylation sites. However, as a DNA-binding protein, Sso7d is highly positively charged, introducing a strong specificity constraint for binding epitopes and leading to nonspecific interaction with mammalian cell membranes. In the present study, we report charge-neutralized variants of Sso7d that maintain high thermal stability. Yeast-displayed libraries that were based on this reduced charge Sso7d (rcSso7d) scaffold yielded binders with low nanomolar affinities against mouse serum albumin and several epitopes on human epidermal growth factor receptor. Importantly, starting from a charge-neutralized scaffold facilitated evolutionary adaptation of binders to differentially charged epitopes on mouse serum albumin and human epidermal growth factor receptor, respectively. Interestingly, the distribution of amino acids in the small and rigid binding surface of enriched rcSso7d-based binders is very different from that generally found in more flexible antibody complementarity-determining region loops but resembles the composition of antibody-binding energetic hot spots. Particularly striking was a strong enrichment of the aromatic residues Trp, Tyr, and Phe in rcSso7d-based binders. This suggests that the rigidity and small size of this scaffold determines the unusual amino acid composition of its binding sites, mimicking the energetic core of antibody paratopes. Despite the high frequency of aromatic residues, these rcSso7d-based binders are highly expressed, thermostable, and monomeric, suggesting that the hyperstability of the starting scaffold and the rigidness of the binding surface confer a high tolerance to mutation.  相似文献   

5.
The 10th type III domain of human fibronectin (Fn3) has been validated as an effective scaffold for molecular recognition. In the current work, it was desired to improve the robustness of selection of stable, high-affinity Fn3 domains. A yeast surface display library of Fn3 was created in which three solvent-exposed loops were diversified in terms of amino acid composition and loop length. The library was screened by fluorescence-activated cell sorting to isolate binders to lysozyme. An affinity maturation scheme was developed to rapidly and broadly diversify populations of clones by random mutagenesis as well as homologous recombination-driven shuffling of mutagenized loops. The novel library and affinity maturation scheme combined to yield stable, monomeric Fn3 domains with 3 pM affinity for lysozyme. A secondary affinity maturation identified a stable 1.1 pM binder, the highest affinity yet reported for an Fn3 domain. In addition to extension of the affinity limit for this scaffold, the results demonstrate the ability to achieve high-affinity binding while preserving stability and the monomeric state. This library design and affinity maturation scheme is highly efficient, utilizing an initial diversity of 2 × 107 clones and screening only 1 × 108 mutants (totaled over all affinity maturation libraries). Analysis of intermediate populations revealed that loop length diversity, loop shuffling, and recursive mutagenesis of diverse populations are all critical components.  相似文献   

6.
As a novel approach to the structural and functional properties that give rise to extremely stringent sequence specificity in protein–DNA interactions, we have exploited “promiscuous” mutants of EcoRI endonuclease to study the detailed mechanism by which changes in a protein can relax specificity. The A138T promiscuous mutant protein binds more tightly to the cognate GAATTC site than does wild-type EcoRI yet displays relaxed specificity deriving from tighter binding and faster cleavage at EcoRI* sites (one incorrect base pair). AAATTC EcoRI* sites are cleaved by A138T up to 170-fold faster than by wild-type enzyme if the site is abutted by a 5′-purine-pyrimidine (5′-RY) motif. When wild-type protein binds to an EcoRI* site, it forms structurally adapted complexes with thermodynamic parameters of binding that differ markedly from those of specific complexes. By contrast, we show that A138T complexes with 5′-RY-flanked AAATTC sites are virtually indistinguishable from wild-type-specific complexes with respect to the heat capacity change upon binding (?C°P), the change in excluded macromolecular volume upon association, and contacts to the phosphate backbone. While the preference for the 5′-RY motif implicates contacts to flanking bases as important for relaxed specificity, local effects are not sufficient to explain the large differences in ?C°P and excluded volume, as these parameters report on global features of the complex. Our findings therefore support the view that specificity does not derive from the additive effects of individual interactions but rather from a set of cooperative events that are uniquely associated with specific recognition.  相似文献   

7.
In vitro evolution methods are now being routinely used to identify protein variants with novel and enhanced properties that are difficult to achieve using rational design. However, one of the limitations is in screening for beneficial mutants through several generations due to the occurrence of neutral/negative mutations occurring in the background of positive ones. While evolving a lipase in vitro from mesophilic Bacillus subtilis to generate thermostable variants, we have designed protocols that combine stringent three-tier testing, sequencing and stability assessments on the protein at the end of each generation. This strategy resulted in a total of six stabilizing mutations in just two generations with three mutations per generation. Each of the six mutants when evaluated individually contributed additively to thermostability. A combination of all of them resulted in the best variant that shows a remarkable 15 °C shift in melting temperature and a millionfold decrease in the thermal inactivation rate with only a marginal increase of 3 kcal mol−1 in free energy of stabilization. Notably, in addition to the dramatic shift in optimum temperature by 20 °C, the activity has increased two- to fivefold in the temperature range 25-65 °C. High-resolution crystal structures of three of the mutants, each with 5° increments in melting temperature, reveal the structural basis of these mutations in attaining higher thermostability. The structures highlight the importance of water-mediated ionic networks on the protein surface in imparting thermostability. Saturation mutagenesis at each of the six positions did not result in enhanced thermostability in almost all the cases, confirming the crucial role played by each mutation as revealed through the structural study. Overall, our study presents an efficient strategy that can be employed in directed evolution approaches employed for obtaining improved properties of proteins.  相似文献   

8.
The epidermal growth factor receptor 1 (EGFR) is overexpressed in various malignancies and is associated with a poor patient prognosis. A small, receptor-specific, high-affinity imaging agent would be a useful tool in diagnosing malignant tumors and in deciding upon treatment and assessing the response to treatment. We describe here the affinity maturation procedure for the generation of Affibody molecules binding with high affinity and specificity to EGFR. A library for affinity maturation was constructed by rerandomization of selected positions after the alignment of first-generation binding variants. New binders were selected with phage display technology, using a single oligonucleotide in a single-library effort, and the best second-generation binders had an approximately 30-fold improvement in affinity (Kd = 5-10 nM) for the soluble extracellular domain of EGFR in biospecific interaction analysis using Biacore. The dissociation equilibrium constant, Kd, was also determined for the Affibody with highest affinity using EGFR-expressing A431 cells in flow cytometric analysis (Kd = 2.8 nM). A retained high specificity for EGFR was verified by a dot blot assay showing staining only of EGFR proteins among a panel of serum proteins and other EGFR family member proteins (HER2, HER3, and HER4). The EGFR-binding Affibody molecules were radiolabeled with indium-111, showing specific binding to EGFR-expressing A431 cells and successful targeting of the A431 tumor xenografts with 4-6% injected activity per gram accumulated in the tumor 4 h postinjection.  相似文献   

9.
10.
In this work, we show that the nonspecific DNA-binding protein Sso7d from the crenarchaeon Sulfolobus solfataricus displays a cation-dependent ATPase activity with a pH optimum around neutrality and a temperature optimum of 70 degrees C. Measurements of tryptophan fluorescence and experiments that used 1-anilinonaphthalene-8-sulfonic acid as probe demonstrated that ATP hydrolysis induces a conformational change in the molecule and that the binding of the nucleotide triggers the ATP hydrolysis-induced conformation of the protein to return to the native conformation. We found that Sso7d rescues previously aggregated proteins in an ATP hydrolysis-dependent manner; the native conformation of Sso7d forms a complex with the aggregates, while the ATP hydrolysis-induced conformation is incapable of this interaction. Sso7d is believed to be the first protein isolated from an archaeon capable of rescuing aggregates.  相似文献   

11.
An enzyme from the amidohydrolase family from Deinococcus radiodurans (Dr-OPH) with homology to phosphotriesterase has been shown to exhibit activity against both organophosphate (OP) and lactone compounds. We have characterized the physical properties of Dr-OPH and have found it to be a highly thermostable enzyme, remaining active after 3 h of incubation at 60 °C and withstanding incubation at temperatures up to 70 °C. In addition, it can withstand concentrations of at least 200 mg/mL. These properties make Dr-OPH a promising candidate for development in commercial applications. However, compared to the most widely studied OP-degrading enzyme, that from Pseudomonas diminuta, Dr-OPH has low hydrolytic activity against certain OP substrates. Therefore, we sought to improve the OP-degrading activity of Dr-OPH, specifically toward the pesticides ethyl and methyl paraoxon, using structure-based and random approaches. Site-directed mutagenesis, random mutagenesis, and site-saturation mutagenesis were utilized to increase the OP-degrading activity of Dr-OPH. Out of a screen of more than 30,000 potential mutants, a total of 26 mutant enzymes were purified and characterized kinetically. Crystal structures of w.t. Dr-OPH, of Dr-OPH in complex with a product analog, and of 7 mutant enzymes were determined to resolutions between 1.7 and 2.4 Å. Information from these structures directed the design and production of 4 additional mutants for analysis. In total, our mutagenesis efforts improved the catalytic activity of Dr-OPH toward ethyl and methyl paraoxon by 126- and 322-fold and raised the specificity for these two substrates by 557- and 183-fold, respectively. Our work highlights the importance of an iterative approach to mutagenesis, proving that large rate enhancements are achieved when mutations are made in already active mutants. In addition, the relationship between the kinetic parameters and the introduced mutations has allowed us to hypothesize on those factors most important for maintaining the structure and function of the enzyme.  相似文献   

12.
DNA recombinases (RecA in bacteria, Rad51 in eukarya and RadA in archaea) catalyse strand exchange between homologous DNA molecules, the central reaction of homologous recombination, and are among the most conserved DNA repair proteins known. RecA is the sole protein responsible for this reaction in bacteria, whereas there are several Rad51 paralogs that cooperate to catalyse strand exchange in eukaryotes. All archaea have at least one (and as many as four) RadA paralog, but their function remains unclear. Herein, we show that the three RadA paralogs encoded by the Sulfolobus solfataricus genome are expressed under normal growth conditions and are not UV inducible. We demonstrate that one of these proteins, Sso2452, which is representative of the large archaeal RadC subfamily of archaeal RadA paralogs, functions as an ATPase that binds tightly to single-stranded DNA. However, Sso2452 is not an active recombinase in vitro and inhibits D-loop formation by RadA. We present the high-resolution crystal structure of Sso2452, which reveals key structural differences from the canonical RecA family recombinases that may explain its functional properties. The possible roles of the archaeal RadA paralogs in vivo are discussed.  相似文献   

13.
Dostál L  Chen CY  Wang AH  Welfle H 《Biochemistry》2004,43(30):9600-9609
Members of the Sso7d/Sac7d protein family and other related proteins are believed to play an important role in DNA packaging and maintenance in archeons. Sso7d/Sac7d are small, abundant, basic, and nonspecific DNA-binding proteins of the hyperthermophilic archeon Sulfolobus. Structures of several complexes of Sso7d/Sac7d with DNA octamers are known. These structures are characterized by sequence unspecific minor groove binding of the proteins and sharp kinking of the double helix. Corresponding Raman vibrational signatures have been identified in this study. A Raman spectroscopic analysis of Sac7d binding to the oligonucleotide decamer d(GAGGCGCCTC)(2) reveals large conformational perturbations in the DNA structure upon complex formation. Perturbed Raman bands are associated with the vibrational modes of the sugar phosphate backbone and frequency shifts of bands assigned to nucleoside vibrations. Large changes in the DNA backbone and partial B- to A-form DNA transitions are indicated that are closely associated with C2'-endo/anti to C3'-endo/anti conversion of the deoxyadenosyl moiety upon Sac7d binding. The major spectral feature of Sac7d binding is kinking of the DNA. Raman markers of minor groove binding do not largely contribute to spectral differences; however, clear indications for minor groove binding come from G-N2 and G-N3 signals that are supported by Trp24 features. Trp24 is the only tryptophan present in Sac7d and binds to guanine N3, as has been demonstrated clearly in X-ray structures of Sac7d-DNA complexes. No changes of the Sac7d secondary structure have been detected upon DNA binding.  相似文献   

14.
The 663 amino acid Mu transposase protein is absolutely required for Mu DNA transposition. Mutant proteins were constructed in vitro in order to locate regions of transposase that may be important for the catalysis of DNA transposition. Deletions in the A gene, which encodes the transposase, yielded two stable mutant proteins that aid in defining the end-specific DNA-binding domain. Linker insertion mutagenesis at eight sites in the Mu A gene generated two proteins, FF6 and FF14 (resulting from two and four amino acid insertions, respectively, at position 408), which were thermolabile for DNA binding in vitro at 43°C. However, transposition activity in vivo was severely reduced for all mutant proteins at 37°C, except those with insertions at positions 328 and 624. In addition, site-specific mutagenesis was performed to alter tyrosine 414, which is situated in a region that displays amino acid homology to the active sites of a number of nicking/closing enzymes. Tyrosine 414 may reside within an important, yet non-essential, site of transposase, as an aspartate-substituted protein had a drastically reduced frequency of transposition, while the remaining mutants yielded reduced, but substantial, frequencies of Mu transposition in vivo.  相似文献   

15.
Sso7d from the extreme thermophilic crenarchaeon Sulfolobus solfataricus is a multifunctional protein in in vitro assays, whose in vivo role is still puzzling. Crystals of Sso7d in complex with DNA elucidated the protein surface involved in the binding to the nucleic acid, whereas the locations of the Sso7d regions responsible for a chaperone activity in renaturing protein aggregates (i.e., the protein-binding surface and the site of ATPase activity) are still unknown. We identified the regions of Sso7d involved in protein-binding by limited proteolysis experiments associated to advanced mass spectrometric procedures performed on isolated Sso7d and Sso7d in complex with the peptide melittin. By affinity labeling of Sso7d with the ATP analogue 5'-p-fluorosulfonylbenzoyl adenosine and characterization of the labeled tryptic peptides by tandem mass spectrometry, we found that Y7 and K39 are residues involved in ATP binding/hydrolysis. Insights into the positions of the ligands melittin and ATP were achieved by a molecular modeling study; the models obtained were in agreement with most experimental data. A comparison among the complexes of Sso7d with DNA, with melittin, and with ATP showed that the DNA-binding surface and the protein-binding surface overlap, whereas the ATPase site is mostly independent of the binding sites for the nucleic acid and melittin.  相似文献   

16.
We survey the two-state to downhill folding transition by examining 20 λ6-85? mutants that cover a wide range of stabilities and folding rates. We investigated four new λ6-85? mutants designed to fold especially rapidly. Two were engineered using the core remodeling of Lim and Sauer, and two were engineered using Ferreiro et al.'s frustratometer. These proteins have probe-dependent melting temperatures as high as 80 °C and exhibit a fast molecular phase with the characteristic temperature dependence of the amplitude expected for downhill folding. The survey reveals a correlation between melting temperature and downhill folding previously observed for the β-sheet protein WW domain. A simple model explains this correlation and predicts the melting temperature at which downhill folding becomes possible. An X-ray crystal structure with a 1.64-Å resolution of a fast-folding mutant fragment shows regions of enhanced rigidity compared to the full wild-type protein.  相似文献   

17.
The comet motility assay, inspired by Listeria locomotion, has been used extensively as an in vitro model to study the structural and motile properties of the actin cytoskeleton. However, there are no quantitative measurements of the mechanical properties of these actin comets. In this work, we use nanoindentation based on atomic force microscopy to measure the elastic modulus of actin comets grown on  1-μm-diameter beads in an Arp2/3 (actin-related proteins 2 and 3)-complex-dependent fashion in the absence and in the presence of VASP (vasodilator-stimulated phosphoprotein). Recruitment of VASP to the bead surface had no effect on the initial velocity or morphology of the comets. Instead, we observed an improved contact of the comets with the beads and an increased elastic modulus of the comets. The VASP-mediated increase in elastic modulus was dependent on both concentration and ionic strength. In conclusion, we propose that VASP plays a mechanical role in Arp2/3-complex-dependent motility by amplifying the elastic modulus of the thus assembled actin network and, consequently, by strengthening its cohesion for persistent protrusion.  相似文献   

18.
19.
The physiological role of the nonspecific DNA-binding protein Sso7d from the crenarchaeon Sulfolobus solfataricus is unknown. In vitro studies have shown that Sso7d promotes annealing of complementary DNA strands (Guagliardi et al. 1997), induces negative supercoiling (Lopez-Garcia et al. 1998), and chaperones the disassembly and renaturation of protein aggregates in an ATP hydrolysis-dependent manner (Guagliardi et al. 2000). In this study, we examined the relationships among the binding of Sso7d to double-stranded DNA, its interaction with protein aggregates, and its ATPase activity. Experiments with 1-anilinonaphthalene-8-sulfonic acid as probe demonstrated that exposed hydrophobic surfaces in Sso7d are responsible for interactions with protein aggregates and double-stranded DNA, whereas the site of ATPase activity has a non-hydrophobic character. The interactions of Sso7d with double-stranded DNA and with protein aggregates are mutually exclusive events, suggesting that the disassembly activity and the DNA-related activities of Sso7d may be competitive in vivo. In contrast, the hydrolysis of ATP by Sso7d is independent of the binding of Sso7d to double-stranded DNA or protein aggregates.  相似文献   

20.
Flavonoid binding to human serum albumin   总被引:1,自引:0,他引:1  
Dietary flavonoid may have beneficial effects in the prevention of chronic diseases. However, flavonoid bioavailability is often poor probably due to their interaction with plasma proteins. Here, the affinity of daidzein and daidzein metabolites as well as of genistein, naringenin, and quercetin for human serum albumin (HSA) has been assessed in the absence and presence of oleate. Values of the dissociation equilibrium constant (K) for binding of flavonoids and related metabolites to Sudlow’s site I range between 3.3 × 10−6 and 3.9 × 10−5 M, at pH 7.0 and 20.0 °C, indicating that these flavonoids are mainly bound to HSA in vivo. Values of K increase (i.e., the flavonoid affinity decreases) in the presence of saturating amounts of oleate by about two folds. Present data indicate a novel role of fatty acids as allosteric inhibitors of flavonoid bioavailability, and appear to be relevant in rationalizing the interference between dietary compounds, food supplements, and drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号