首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The catalytic activity of human FKBP12 as a prolyl isomerase is high towards short peptides, but very low in proline-limited protein folding reactions. In contrast, the SlyD proteins, which are members of the FKBP family, are highly active as folding enzymes. They contain an extra "insert-in-flap" or IF domain near the prolyl isomerase active site. The excision of this domain did not affect the prolyl isomerase activity of SlyD from Escherichia coli towards short peptide substrates but abolished its catalytic activity in proline-limited protein folding reactions. The reciprocal insertion of the IF domain of SlyD into human FKBP12 increased its folding activity 200-fold and generated a folding catalyst that is more active than SlyD itself. The IF domain binds to refolding protein chains and thus functions as a chaperone module. A prolyl isomerase catalytic site and a separate chaperone site with an adapted affinity for refolding protein chains are the key elements for a productive coupling between the catalysis of prolyl isomerization and conformational folding in the enzymatic mechanisms of SlyD and other prolyl isomerases, such as trigger factor and FkpA.  相似文献   

2.
SlyD (sensitive to lysis D; product of the slyD gene) is a prolyl isomerase [peptidyl-prolyl cis/trans isomerase (PPIase)] of the FK506 binding protein (FKBP) type with chaperone properties. X-ray structures derived from three different crystal forms reveal that SlyD from Thermus thermophilus consists of two domains representing two functional units. PPIase activity is located in a typical FKBP domain, whereas chaperone function is associated with the autonomously folded insert-in-flap (IF) domain. The two isolated domains are stable and functional in solution, but the presence of the IF domain increases the PPIase catalytic efficiency of the FKBP domain by 2 orders of magnitude, suggesting that the two domains act synergistically to assist the folding of polypeptide chains. The substrate binding surface of SlyD from T. thermophilus was mapped by NMR chemical shift perturbations to hydrophobic residues of the IF domain, which exhibits significantly reduced thermodynamic stability according to NMR hydrogen/deuterium exchange and fluorescence equilibrium transition experiments. Based on structural homologies, we hypothesize that this is due to the absence of a stabilizing β-strand, suggesting in turn a mechanism for chaperone activity by ‘donor-strand complementation.’ Furthermore, we identified a conserved metal (Ni2+) binding site at the C-terminal SlyD-specific helical appendix of the FKBP domain, which may play a role in metalloprotein assembly.  相似文献   

3.
Folding enzymes often use distinct domains for the binding of substrate proteins ("chaperone domains") and for the catalysis of slow folding reactions such as disulfide formation or prolyl isomerization. The human prolyl isomerase FKBP12 is a small single-domain protein without a chaperone domain. Its very low folding activity could previously be increased by inserting the chaperone domain from the homolog SlyD (sensitive-to-lysis protein D) of Escherichia coli. We now inserted three unrelated chaperone domains into human FKBP12: the apical domain of the chaperonin GroEL from E. coli, the chaperone domain of protein disulfide isomerase from yeast, or the chaperone domain of SurA from the periplasm of E. coli. All three conveyed FKBP12 with a high affinity for unfolded proteins and increased its folding activity. Substrate binding and release of the chimeric folding enzymes were found to be very fast. This allows rapid substrate transfer from the chaperone domain to the catalytic domain and ensures efficient rebinding of protein chains that were unable to complete folding. The advantage of having separate sites, first for generic protein binding and then for specific catalysis, explains why our construction of the artificial folding enzymes with foreign chaperone domains was successful.  相似文献   

4.
SlyD, the sensitive-to-lysis protein from Escherichia coli, consists of two domains. They are not arranged successively along the protein chain, but one domain, the “insert-in-flap” (IF) domain, is inserted internally as a guest into a surface loop of the host domain, which is a prolyl isomerase of the FK506 binding protein (FKBP) type. We used SlyD as a model to elucidate how such a domain insertion affects the stability and folding mechanism of the host and the guest domain. For these studies, the two-domain protein was compared with a single-domain variant SlyDΔIF, SlyD* without the chaperone domain (residues 1-69 and 130-165) in which the IF domain was removed and replaced by a short loop, as present in human FKBP12. Equilibrium unfolding and folding kinetics followed an apparent two-state mechanism in the absence and in the presence of the IF domain. The inserted domain decreased, however, the stability of the host domain in the transition region and decelerated its refolding reaction by about 10-fold. This originates from the interruption of the chain connectivity by the IF domain and its inherent instability. To monitor folding processes in this domain selectively, a Trp residue was introduced as fluorescent probe. Kinetic double-mixing experiments revealed that, in intact SlyD, the IF domain folds and unfolds about 1000-fold more rapidly than the FKBP domain, and that it is strongly stabilized when linked with the folded FKBP domain. The unfolding limbs of the kinetic chevrons of SlyD show a strong downward curvature. This deviation from linearity is not caused by a transition-state movement, as often assumed, but by the accumulation of a silent unfolding intermediate at high denaturant concentrations. In this kinetic intermediate, the FKBP domain is still folded, whereas the IF domain is already unfolded.  相似文献   

5.
SlyD is a putative folding helper protein from the Escherichia coli cytosol, which consists of an N-terminal prolyl isomerase domain of the FKBP type and a presumably unstructured C-terminal tail. We produced truncated versions without this tail (SlyD) for SlyD from E. coli, as well as for the SlyD orthologues from Yersinia pestis, Treponema pallidum, Pasteurella multocida, and Vibrio cholerae. They are monomeric in solution and unfold reversibly. All SlyD variants catalyze the proline-limited refolding of ribonuclease T1 with very high efficiencies, and the specificity constants (kcat/KM) are equal to approximately 10(6) M(-1) s(-1). These large values originate from the high affinities of the SlyD orthologues for unfolded RCM-T1, which are reflected in low KM values of approximately 1 microM. SlyD also exhibits pronounced chaperone properties. Permanently unfolded proteins bind with high affinity to SlyD and thus inhibit its prolyl isomerase activity. The unfolded protein chains do not need to contain proline residues to be recognized and bound by SlyD. The conservation of prolyl isomerase activity and chaperone properties within the SlyD family suggests that these proteins might act as true folding helpers in the bacterial cytosol. The SlyD proteins are also well suited for biotechnological applications. As fusion partners they facilitate the refolding and increase the solubility of aggregation-prone proteins such as the gp41 ectodomain fragment of HIV-1.  相似文献   

6.
《Journal of molecular biology》2013,425(22):4089-4098
Parvulins are small prolyl isomerases and serve as catalytic domains of folding enzymes. SurA (survival protein A) from the periplasm of Escherichia coli consists of an inactive (Par1) and an active (Par2) parvulin domain as well as a chaperone domain. In the absence of the chaperone domain, the folding activity of Par2 is virtually abolished. We created a chimeric protein by inserting the chaperone domain of SlyD, an unrelated folding enzyme from the FKBP family, into a loop of the isolated Par2 domain of SurA. This increased its folding activity 450-fold to a value higher than the activity of SurA, in which Par2 is linked with its natural chaperone domain. In the presence of both the natural and the foreign chaperone domain, the folding activity of Par2 was 1500-fold increased. Related and unrelated chaperone domains thus are similarly efficient in enhancing the folding activity of the prolyl isomerase Par2. A sequence analysis of various chaperone domains suggests that clusters of exposed methionine residues in mobile chain regions might be important for a generic interaction with unfolded protein chains. This binding is highly dynamic to allow frequent transfer of folding protein chains between chaperone and catalytic domains.  相似文献   

7.
In the cell, protein folding is mediated by folding catalysts and chaperones. The two functions are often linked, especially when the catalytic module forms part of a multidomain protein, as in Methanococcus jannaschii peptidyl-prolyl cis/trans isomerase FKBP26. Here, we show that FKBP26 chaperone activity requires both a 50-residue insertion in the catalytic FKBP domain, also called ‘Insert-in-Flap’ or IF domain, and an 80-residue C-terminal domain. We determined FKBP26 structures from four crystal forms and analyzed chaperone domains in light of their ability to mediate protein-protein interactions. FKBP26 is a crescent-shaped homodimer. We reason that folding proteins are bound inside the large crescent cleft, thus enabling their access to inward-facing peptidyl-prolyl cis/trans isomerase catalytic sites and ipsilateral chaperone domain surfaces. As these chaperone surfaces participate extensively in crystal lattice contacts, we speculate that the observed lattice contacts reflect a proclivity for protein associations and represent substrate interactions by FKBP26 chaperone domains. Finally, we find that FKBP26 is an exceptionally flexible molecule, suggesting a mechanism for nonspecific substrate recognition.  相似文献   

8.
The trigger factor of Escherichia coli is a prolyl isomerase and accelerates proline-limited steps in protein folding with a very high efficiency. It associates with nascent polypeptide chains at the ribosome and is thought to catalyse the folding of newly synthesized proteins. In its enzymatic mechanism the trigger factor follows the Michaelis-Menten equation. The unusually high folding activity of the trigger factor originates from its tight binding to the folding protein substrate, as reflected in the low Km value of 0.7 microM. In contrast, the catalytic constant kcat is small and shows a value of 1.3 s(-1) at 15 degrees C. An unfolded protein inhibits the trigger factor in a competitive fashion. The isolated catalytic domain of the trigger factor retains the full prolyl isomerase activity towards short peptides, but in a protein folding reaction its activity is 800-fold reduced and no longer inhibited by an unfolded protein. Unlike the prolyl isomerase site, the polypeptide binding site obviously extends beyond the FKBP domain. Together, this suggests that the good substrate binding, i.e. the chaperone property, of the intact trigger factor is responsible for its high efficiency as a catalyst of proline-limited protein folding.  相似文献   

9.
Suzuki Y  Win OY  Koga Y  Takano K  Kanaya S 《FEBS letters》2005,579(25):5781-5784
SIB1 FKBP22 is a homodimer, with each subunit consisting of the C-terminal catalytic domain and N-terminal dimerization domain. This protein exhibits peptidyl prolyl cis-trans isomerase activity for both peptide and protein substrates. However, truncation of the N-terminal domain greatly reduces the activity only for a protein substrate. Using surface plasmon resonance, we showed that SIB1 FKBP22 loses the binding ability to a folding intermediate of protein upon truncation of the N-terminal domain but does not lose it upon truncation of the C-terminal domain. We propose that the binding site of SIB1 FKBP22 to a protein substrate of PPIase is located at the N-terminal domain.  相似文献   

10.
The relation between conformational dynamics and chemistry in enzyme catalysis recently has received increasing attention. While, in the past, the mechanochemical coupling was mainly attributed to molecular motors, nowadays, it seems that this linkage is far more general. Single-molecule fluorescence methods are perfectly suited to directly evidence conformational flexibility and dynamics. By labeling the enzyme SlyD, a member of peptidyl-prolyl cis-trans isomerases of the FK506 binding protein type with an inserted chaperone domain, with donor and acceptor fluorophores for single-molecule fluorescence resonance energy transfer, we directly monitor conformational flexibility and conformational dynamics between the chaperone domain and the FK506 binding protein domain. We find a broad distribution of distances between the labels with two main maxima, which we attribute to an open conformation and to a closed conformation of the enzyme. Correlation analysis demonstrates that the conformations exchange on a rate in the 100 Hz range. With the aid from Monte Carlo simulations, we show that there must be conformational flexibility beyond the two main conformational states. Interestingly, neither the conformational distribution nor the dynamics is significantly altered upon binding of substrates or other known binding partners. Based on these experimental findings, we propose a model where the conformational dynamics is used to search the conformation enabling the chemical step, which also explains the remarkable substrate promiscuity connected with a high efficiency of this class of peptidyl-prolyl cis-trans isomerases.  相似文献   

11.
PpiD is a periplasmic folding helper protein of Escherichia coli. It consists of an N‐terminal helix that anchors PpiD in the inner membrane near the SecYEG translocon, followed by three periplasmic domains. The second domain (residues 264–357) shows homology to parvulin‐like prolyl isomerases. This domain is a well folded, stable protein and follows a simple two‐state folding mechanism. In its solution structure, as determined by NMR spectroscopy, it resembles most closely the first parvulin domain of the SurA protein, which resides in the periplasm of E. coli as well. A previously reported prolyl isomerase activity of PpiD could not be reproduced when using improved protease‐free peptide assays or assays with refolding proteins as substrates. The parvulin domain of PpiD interacts, however, with a proline‐containing tetrapeptide, and the binding site, as identified by NMR resonance shift analysis, colocalized with the catalytic sites of other parvulins. In its structure, the parvulin domain of PpiD resembles most closely the inactive first parvulin domain of SurA, which is part of the chaperone unit of this protein and presumably involved in substrate recognition.  相似文献   

12.
Previously we reported that the R73A and H144Q variants of the yeast cyclophilin Cpr3 were virtually inactive in a protease-coupled peptide assay, but retained activity as catalysts of a proline-limited protein folding reaction [Scholz, C. et al. (1997) FEBS Lett. 414, 69-73]. A reinvestigation revealed that in fact these two mutations strongly decrease the prolyl isomerase activity of Cpr3 in both the peptide and the protein-folding assay. The high folding activities found previously originated from a contamination of the recombinant Cpr3 proteins with the Escherichia coli protein SlyD, a prolyl isomerase that co-purifies with His-tagged proteins. SlyD is inactive in the peptide assay, but highly active in the protein-folding assay.  相似文献   

13.
The Escherichia coli protein SlyD is a member of the FK-506-binding protein family of peptidylprolyl isomerases. In addition to its peptidylprolyl isomerase domain, SlyD is composed of a molecular chaperone domain and a C-terminal tail rich in potential metal-binding residues. SlyD interacts with the [NiFe]-hydrogenase accessory protein HypB and contributes to nickel insertion during biosynthesis of the hydrogenase metallocenter. This study examines the HypB-SlyD complex and its significance in hydrogenase activation. Protein variants were prepared to delineate the interface between HypB and SlyD. Complex formation requires the HypB linker region located between the high affinity N-terminal Ni(II) site and the GTPase domain of the protein. In the case of SlyD, the deletion of a short loop in the chaperone domain abrogates the interaction with HypB. Mutations in either protein that disrupt complex formation in vitro also result in deficient hydrogenase production in vivo, indicating that the contact between HypB and SlyD is important for hydrogenase maturation. Surprisingly, SlyD stimulates release of nickel from the high affinity Ni(II)-binding site of HypB, an activity that is also disrupted by mutations that affect complex formation. Furthermore, a SlyD truncation lacking the C-terminal metal-binding tail still interacts with HypB but is deficient in stimulating metal release and is not functional in vivo. These results suggest that SlyD could activate metal release from HypB during metallation of the [NiFe] hydrogenase.  相似文献   

14.
The rate of folding of globular proteins depends on specific local and nonlocal intramolecular interactions. What is the relative role of these two types of interaction at the initiation of refolding? We address this question by application of a “double kinetics” method based on fast initiation of refolding of site specifically labeled protein samples and detection of the transient distributions of selected intramolecular distances by means of fast measurements of time‐resolved fluorescence resonance energy transfer. We determined the distribution of the distance between the ends of a 44‐chain segment that includes the AMPbind domain, by labeling residues 28 and 71, in Escherichia coli adenylate kinase (AK) and the distribution of the distance between residues 18 and 203, which depends on the overall order of the molecule. That distribution shows two-state transition to the native intramolecular distance at the same rate as that of the cooperative refolding transition of the AK molecule. In sharp contrast, the distance distribution between residues 28 and 71 is already native like at the end of the dead-time of the mixing device. This fast formation of native short distance between two widely separated chain sections can be either dependent on fast folding of the AMPbind domain or a result of a very effective nonlocal interaction between specific short clusters of hydrophobic residues. Further experiments on studying the kinetics of folding of selected structural elements in the protein will help determination of the driving force of this early folding event.  相似文献   

15.
FK506 binding proteins (FKBPs) belong to the family of peptidyl prolyl cis-trans isomerases (PPIases) catalyzing the cis/trans isomerisation of Xaa-Pro bonds in oligopeptides and proteins. FKBPs are involved in folding, assembly and trafficking of proteins. However, only limited knowledge is available about the roles of FKBPs in the endoplasmic reticulum (ER) and their interaction with other proteins. Here we show the ER located Neurospora crassa FKBP22 to be a dimeric protein with PPIase and a novel chaperone activity. While the homodimerization of FKBP22 is mediated by its carboxy-terminal domain, the amino-terminal domain is a functional FKBP domain. The chaperone activity is mediated by the FKBP domain but is exhibited only by the full-length protein. We further demonstrate a direct interaction between FKBP22 and BiP, the major Hsp70 chaperone in the ER. The binding to BiP is mediated by the FKBP domain of FKBP22. Interestingly BiP enhances the chaperone activity of FKBP22. Both proteins form a stable complex with an unfolded substrate protein and thereby prevent its aggregation. These results suggest that BiP and FKBP22 form a folding helper complex with a high chaperoning capacity in the ER of Neurospora crassa.  相似文献   

16.
The filamentous phage fd uses its gene 3 protein (G3P) to target Escherichia coli cells in a two-step process. First, the N2 domain of G3P attaches to an F pilus, and then the N1 domain binds to TolA-C. N1 and N2 are tightly associated, rendering the phage robust but noninfectious because the binding site for TolA-C is buried at the domain interface. Binding of N2 to the F pilus initiates partial unfolding, domain disassembly, and prolyl cis-to-trans isomerization in the hinge between N1 and N2. This activates the phage, and trans-Pro213 maintains this state long enough for N1 to reach TolA-C. Phage IF1 targets I pili, and its G3P contains also an N1 domain and an N2 domain. The pilus-binding N2 domains of the phages IF1 and fd are unrelated, and the N1 domains share a 31% sequence identity. We show that N2 of phage IF1 mediates binding to the I pilus, and that N1 targets TolA. Crystallographic and NMR analyses of the complex between N1 and TolA-C indicate that phage IF1 interacts with the same site on TolA-C as phage fd. In IF1-G3P, N1 and N2 are independently folding units, however, and the TolA binding site on N1 is permanently accessible. Activation by unfolding and prolyl isomerization, as in the case of phage fd, is not observed. In IF1-G3P, the absence of stabilizing domain interactions is compensated for by a strong increase in the stabilities of the individual domains. Apparently, these closely related filamentous phages evolved different mechanisms to reconcile robustness with high infectivity.  相似文献   

17.
Two functionally redundant enzymes, trigger factor and the hsp70 chaperone DnaK, have been found to assist de novo protein folding in E coli. Trigger factor is a peripheral peptidyl prolyl cis/trans isomerase (PPIase) of the large subunit of the ribosome. In contrast, DnaK displays two catalytic features: the secondary amide peptide bond cis/trans isomerase (APIase) function supplemented by the ATPase site. APIases accelerate the cis/trans isomerization of nonprolyl peptide bonds. Both enzymes have affinity for an unfolded polypeptide chain. The diminished low temperature cell viability in the presence of trigger factor variants with impaired PPlase activity indicates that the enhancement of folding rates plays a crucial role in protein folding in vivo. For the DnaK-mediated increase in the folding yield in vitro, the minimal model for APlase catalysis involves the catalyzed partitioning of a rapidly formed folding intermediate as could be inferred from the DnaK/DnaJ/GrpE/ATP-assisted refolding of GdmCl-denatured luciferase. Using three different peptide bond cis/trans isomerization assays in vitro, we could show that there is no overlapping substrate specificity of trigger factor and DnaK. We propose that only if trigger factor recruits supplementing molecules is it capable of exhibiting functional complementarity with DnaK in protein folding.  相似文献   

18.
Protein-disulfide isomerase (PDI) and sulfhydryl oxidase endoplasmic reticulum oxidoreductin-1α (Ero1α) constitute the pivotal pathway for oxidative protein folding in the mammalian endoplasmic reticulum (ER). Ero1α oxidizes PDI to introduce disulfides into substrates, and PDI can feedback-regulate Ero1α activity. Here, we show the regulatory disulfide of Ero1α responds to the redox fluctuation in ER very sensitively, relying on the availability of redox active PDI. The regulation of Ero1α is rapidly facilitated by either a or a′ catalytic domain of PDI, independent of the substrate binding domain. On the other hand, activated Ero1α specifically binds to PDI via hydrophobic interactions and preferentially catalyzes the oxidation of domain a′. This asymmetry ensures PDI to function simultaneously as an oxidoreductase and an isomerase. In addition, several PDI family members are also characterized to be potent regulators of Ero1α. The novel modes for PDI as a competent regulator and a specific substrate of Ero1α govern efficient and faithful oxidative protein folding and maintain the ER redox homeostasis.  相似文献   

19.
Protein disulfide isomerase (PDI) is a multifunctional polypeptide that acts as a subunit in the animal prolyl 4-hydroxylases and the microsomal triglyceride transfer protein, and as a chaperone that binds various peptides and assists their folding. We report here that deletion of PDI sequences corresponding to the entire C-terminal domain c, previously thought to be critical for chaperone activity, had no inhibitory effect on the assembly of recombinant prolyl 4-hydroxylase in insect cells or on the in vitro chaperone activity or disulfide isomerase activity of purified PDI. However, partially overlapping critical regions for all these functions were identified at the C-terminal end of the preceding thioredoxin-like domain a'. Point mutations introduced into this region identified several residues as critical for prolyl 4-hydroxylase assembly. Circular dichroism spectra of three mutants suggested that two of these mutations may have caused only local alterations, whereas one of them may have led to more extensive structural changes. The critical region identified here corresponds to the C-terminal alpha helix of domain a', but this is not the only critical region for any of these functions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号