首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cell spreading and motility require the extension of the plasma membrane in association with the assembly of actin. In vitro, extension must overcome resistance from tension within the plasma membrane. We report here that the addition of either amphiphilic compounds or fluorescent lipids that expanded the plasma membrane increased the rate of cell spreading and lamellipodial extension, stimulated new lamellipodial extensions, and caused a decrease in the apparent membrane tension. Further, in PDGF-stimulated motility, the increase in the lamellipodial extension rate was associated with a decrease in the apparent membrane tension and decreased membrane-cytoskeleton adhesion through phosphatidylinositol diphosphate hydrolysis. Conversely, when membrane tension was increased by osmotically swelling cells, the extension rate decreased. Therefore, we suggest that the lamellipodial extension process can be activated by a physical signal (perhaps secondarily), and the rate of extension is directly dependent upon the tension in the plasma membrane. Quantitative analysis shows that the lamellipodial extension rate is inversely correlated with the apparent membrane tension. These studies describe a physical chemical mechanism involving changes in membrane-cytoskeleton adhesion through phosphatidylinositol 4,5-biphosphate-protein interactions for modulating and stimulating the biochemical processes that power lamellipodial extension.  相似文献   

2.
    
Myosins generate force and motion by precisely coordinating their mechanical and chemical cycles, but the nature and timing of this coordination remains controversial. We utilized a FRET approach to examine the kinetics of structural changes in the force-generating lever arm in myosin V. We directly compared the FRET results with single-molecule mechanical events examined by optical trapping. We introduced a mutation (S217A) in the conserved switch I region of the active site to examine how myosin couples structural changes in the actin- and nucleotide-binding regions with force generation. Specifically, S217A enhanced the maximum rate of lever arm priming (recovery stroke) while slowing ATP hydrolysis, demonstrating that it uncouples these two steps. We determined that the mutation dramatically slows both actin-induced rotation of the lever arm (power stroke) and phosphate release (≥10-fold), whereas our simulations suggest that the maximum rate of both steps is unchanged by the mutation. Time-resolved FRET revealed that the structure of the pre– and post–power stroke conformations and mole fractions of these conformations were not altered by the mutation. Optical trapping results demonstrated that S217A does not dramatically alter unitary displacements or slow the working stroke rate constant, consistent with the mutation disrupting an actin-induced conformational change prior to the power stroke. We propose that communication between the actin- and nucleotide-binding regions of myosin assures a proper actin-binding interface and active site have formed before producing a power stroke. Variability in this coupling is likely crucial for mediating motor-based functions such as muscle contraction and intracellular transport.  相似文献   

3.
Molecular motors drive genome packaging into preformed procapsids in many double-stranded (ds)DNA viruses. Here, we present optical tweezers measurements of single DNA molecule packaging in bacteriophage lambda. DNA-gpA-gpNu1 complexes were assembled with recombinant gpA and gpNu1 proteins and tethered to microspheres, and procapsids were attached to separate microspheres. DNA binding and initiation of packaging were observed within a few seconds of bringing these microspheres into proximity in the presence of ATP. The motor was observed to generate greater than 50 picoNewtons (pN) of force, in the same range as observed with bacteriophage phi29, suggesting that high force generation is a common property of viral packaging motors. However, at low capsid filling the packaging rate averaged approximately 600 bp/s, which is 3.5-fold higher than phi29, and the motor processivity was also threefold higher, with less than one slip per genome length translocated. The packaging rate slowed significantly with increasing capsid filling, indicating a buildup of internal force reaching 14 pN at 86% packaging, in good agreement with the force driving DNA ejection measured in osmotic pressure experiments and calculated theoretically. Taken together, these experiments show that the internal force that builds during packaging is largely available to drive subsequent DNA ejection. In addition, we observed an 80 bp/s dip in the average packaging rate at 30% packaging, suggesting that procapsid expansion occurs at this point following the buildup of an average of 4 pN of internal force. In experiments with a DNA construct longer than the wild-type genome, a sudden acceleration in packaging rate was observed above 90% packaging, and much greater than 100% of the genome length was translocated, suggesting that internal force can rupture the immature procapsid, which lacks an accessory protein (gpD).  相似文献   

4.
5.
    
《Molecular cell》2021,81(16):3410-3421.e4
  1. Download : Download high-res image (226KB)
  2. Download : Download full-size image
  相似文献   

6.
    
Force and torque, stress and strain or work are examples of mechanical and elastic actions which are intimately linked to chemical reactions in the cell. Optical tweezers are a light-based method which allows the real-time manipulation of single molecules and cells to measure their interactions. We describe the technique, briefly reviewing the operating principles and the potential capabilities to the study of biological processes. Additional emphasis is given to the importance of fluctuations in biology and how single-molecule techniques allow access to them. We illustrate the applications by addressing experimental configurations and recent progresses in molecular and cell biology.  相似文献   

7.
Replicative DNA polymerases present an intrinsic proofreading activity during which the DNA primer chain is transferred between the polymerization and exonuclease sites of the protein. The dynamics of this primer transfer reaction during active polymerization remain poorly understood. Here we describe a single‐molecule mechanical method to investigate the conformational dynamics of the intramolecular DNA primer transfer during the processive replicative activity of the Φ29 DNA polymerase and two of its mutants. We find that mechanical tension applied to a single polymerase–DNA complex promotes the intramolecular transfer of the primer in a similar way to the incorporation of a mismatched nucleotide. The primer transfer is achieved through two novel intermediates, one a tension‐sensitive and functional polymerization conformation and a second non‐active state that may work as a fidelity check point for the proofreading reaction.  相似文献   

8.
    
Yann R. Chemla 《Biopolymers》2016,105(10):704-714
Optical tweezers have become a powerful tool to investigate nucleic‐acid processing proteins at the single‐molecule level. Recent advances in this technique have now enabled measurements resolving the smallest units of molecular motion, on the scale of a single base pair of DNA. In parallel, new instrumentation combining optical traps with other functionalities have been developed, incorporating mechanical manipulation along orthogonal directions or fluorescence imaging capabilities. Here, we review these technical advances, their capabilities, and limitations, focusing on benchmark studies of protein‐nucleic acid interactions they have enabled. We highlight recent work that combines several of these advances together and its application to nucleic‐acid processing enzymes. Finally, we discuss future prospects for these exciting developments. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 704–714, 2016.  相似文献   

9.
    
Over the past few decades, single-molecule manipulation has been widely applied to the real-time analysis of biomolecular interactions. It has enabled researchers to decipher structure-function relationships for polymers, enzymes, and larger-scale molecular machines, in particular by harnessing force to probe both chemical and mechanical stabilities. Nucleic acids have played a central role in this effort because, in addition to their biological significance, they exhibit unique polymeric properties which have recast them as key components participating in numerous experimental designs. In this review, we introduce recent developments highlighting this dual nature of nucleic acids in biophysics, as objects of study but also as tools allowing novel approaches. More specifically, we present molecular scaffolds as an emerging concept and describe their use in single-molecule force spectroscopy. Aspects related to folding and noncovalent interactions will be presented in parallel to research in enzymology, with a focus on the acquisition of thermodynamic and kinetic data.  相似文献   

10.
The structural conversion of the prion protein PrP into a transmissible, misfolded form is the central element of prion disease, yet there is little consensus as to how it occurs. Key aspects of conversion into the diseased state remain unsettled, from details about the earliest stages of misfolding such as the involvement of partially- or fully-unfolded intermediates to the structure of the infectious state. Part of the difficulty in understanding the structural conversion arises from the complexity of the underlying energy landscapes. Single molecule methods provide a powerful tool for probing complex folding pathways as in prion misfolding, because they allow rare and transient events to be observed directly. We discuss recent work applying single-molecule probes to study misfolding in prion proteins, and what it has revealed about the folding dynamics of PrP that may underlie its unique behavior. We also discuss single-molecule studies probing the interactions that stabilize non-native structures within aggregates, pointing the way to future work that may help identify the microscopic events triggering pathogenic conversion. Although single-molecule approaches to misfolding are relatively young, they have a promising future in prion science.  相似文献   

11.
Novel information concerning intracellular motility in plants and the mechanisms of cytoskeleton-based organelle and macromolecule movements are briefly considered. The involvement of basic molecular motors and other possible driving forces for various types of movement are discussed.  相似文献   

12.
Plant infection by pathogenic fungi requires polarized secretion of enzymes, but little is known about the delivery pathways. Here, we investigate the secretion of cell wall-forming chitin synthases (CHSs) in the corn pathogen Ustilago maydis. We show that peripheral filamentous actin (F-actin) and central microtubules (MTs) form independent tracks for CHSs delivery and both cooperate in cell morphogenesis. The enzyme Mcs1, a CHS that contains a myosin-17 motor domain, is travelling along both MTs and F-actin. This transport is independent of kinesin-3, but mediated by kinesin-1 and myosin-5. Arriving vesicles pause beneath the plasma membrane, but only ~15% of them get exocytosed and the majority is returned to the cell centre by the motor dynein. Successful exocytosis at the cell tip and, to a lesser extent at the lateral parts of the cell requires the motor domain of Mcs1, which captures and tethers the vesicles prior to secretion. Consistently, Mcs1-bound vesicles transiently bind F-actin but show no motility in vitro. Thus, kinesin-1, myosin-5 and dynein mediate bi-directional motility, whereas myosin-17 introduces a symmetry break that allows polarized secretion.  相似文献   

13.
14.
    
《Cell reports》2020,30(8):2644-2654.e3
  1. Download : Download high-res image (239KB)
  2. Download : Download full-size image
  相似文献   

15.
本文从激光的生物效应出发,简要阐述了激光微束与光钳系统的出现历程及其装置构造,系统分析了其作用原理,并介绍了其作为一新技术,在外源基因导入,体外辅助受精,细菌融合和显微操作染色体与生物大分子等方面的应用状况,同时对其应用前景作一展望。  相似文献   

16.
17.
Brownian ratchet theory refers to the phenomenon that non-equilibrium fluctuations in an isothermal medium and anisotropic system can induce mechanical force and motion. This concept of noise-induced transport has motivated an abundance of theoretical and applied research. One of the exciting applications of the ratchet theory lies in the possible explanation of the operating mode of biological molecular motors. Biomolecular motors are proteins able of converting chemical reactions into mechanical motion and force. Operating at energy levels only a few times greater than the energy levels of thermal baths, their operating mode has to be stochastic in nature. Here, we review the theoretical concepts of the Brownian ratchet theory and its possible link to the operation of the myosin II motors involved in muscle contraction.  相似文献   

18.
Infrared laser traps (optical tweezers) were used to study laser-induced organelle movements in the marine alga Pyrocystis noctiluca (Dinophyta). These cells are highly suitable for optical micromanipulation due to their large size and extensive vacuole. Experiments were done with plastids held by optical tweezers and moved from the nuclear area into the vacuole. The subsequent retraction movement was analysed for speed. The displaced organelles remained connected to their original position by a thin cytoplasmic strand, often less than 1 μm in diameter. When the organelles were released they rapidly returned at an initial rate of 81.7 ± 7.8 μm . s?1 (overall displacement 50 μm, measured distance 20 μm, 25 °C ± 1 °C, number of cells 22), slowing down with progressive retraction of the connecting strand. The return movement was reduced to 4.2 ± 0.2 μ .s?1 (n = 10) when the organelles were displaced and held for 1 min. Displacement to a longer distance increased the rate of return movement. A change from a high to a low environmental temperature significantly reduced movement from 94.5 ± 9.0 . s?1 (30 °C ± 1 °C, n = 22) to 34.5 ± 2.7 μm .s?1 (5°C ± 1 °C, n = 22). Nocodazole and N-ethylmaleimide (NEM), inhibitors of microtubules and acto-myosin, respectively, did not affect the retraction of the connecting strand, but at high concentrations of NEM it became increasingly difficult to move organelles away from the nuclear area. We suggest that the return movement of organelles within laser-induced artificial strands mainly depends on the viscoelastic properties of the tonoplast. The quantification of these properties by optical tweezers allows determination of reactions of plant cells to temperature changes.  相似文献   

19.
Among a superfamily of myosin, class VI myosin moves actin filaments backwards. Here we show that myosin VI moves processively on actin filaments backwards with large ( approximately 36 nm) steps, nevertheless it has an extremely short neck domain. Myosin V also moves processively with large ( approximately 36 nm) steps and it is believed that myosin V strides along the actin helical repeat with its elongated neck domain that is critical for its processive movement with large steps. Myosin VI having a short neck cannot take this scenario. We found by electron microscopy that myosin VI cooperatively binds to an actin filament at approximately 36 nm intervals in the presence of ATP, raising a hypothesis that the binding of myosin VI evokes "hot spots" on actin filaments that attract myosin heads. Myosin VI may step on these "hot spots" on actin filaments in every helical pitch, thus producing processive movement with 36 nm steps.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号