首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Human prion diseases are associated with misfolding or aggregation of the Human Prion Protein (HuPrP). Missense mutations in the HuPrP gene, contribute to conversion of HuPrPC to HuPrPSc and amyloid formation. Based on our previous comprehensive study, three missense mutations, from two different functional groups, i.e. disease-related mutations, and protective mutations, were selected and extensive molecular dynamics simulations were performed on these three mutants to compare their dynamics and conformations with those of the wildtype HuPrP. In addition to simulations of monomeric forms of mutants, in order to study the dominant-negative effect of protective mutation (E219K), 30-ns simulations were performed on E219K-wildtype and wildtype-wildtype dimeric forms. Our results indicate that, although after 30-ns simulations the global three-dimensional structure of models remain fairly intact, the disease-related mutations (V210I and Q212P) introduce local structural changes, i.e. close contact changes and secondary structure changes, in addition to global flexibility changes. Furthermore, our results support the loss of hydrophobic interaction due to the mutations in hydrophobic core that has been reported by previous NMR and computational studies. On the other hand, this protective mutation (E219K) results in helix elongation, and significant increases of overall flexibility of E219K mutant during 30-ns simulation. In conclusion, the simulations of dimeric forms suggest that the dominant-negative effect of this protective mutation (E219K) is due to the incompatible structures and dynamics of allelic variants during conversion process.  相似文献   

2.
The conversion to a disease-associated conformer (PrPSc) of the cellular prion protein (PrPC) is the central event in prion diseases. Wild-type PrPC converts to PrPSc in the sporadic forms of the disorders through an unknown mechanism. These forms account for up to 85% of all human (Hu) occurrences; the infectious types contribute for less than 1%, while genetic incidence of the disease is about 15%. Familial Hu prion diseases are associated with about 40 point mutations of the gene coding for the PrP denominated PRNP. Most of the variants associated with these mutations are located in the globular domain of the protein. In a recent work in collaboration with the German Research School for Simulation Science, in Jülich, Germany, we performed molecular dynamics simulations for each of these mutants to investigate their structure in aqueous solution. Structural analysis of the various point mutations present in the globular domain unveiled common folding traits that may allow a better understanding of the early conformational changes leading to the formation of monomeric PrPSc. Recent experimental data support these findings, thus opening novel approaches to determine initial structural determinants of prion formation.Key words: prions, prion protein, human, pathogenic mutations, structure, molecular dynamics, nuclear magnetic resonancePrion diseases have attracted much attention from researchers with different scientific backgrounds and coming from various areas of expertise. Many questions still remain unanswered in the study of these rare and yet unique neurodegenerative disorders. Central to understanding the disease is deciphering the nature of the causative agent of these disorders: the prion. In fact, the mechanism by which a prion (PrPSc) is formed and the structure of the latter, have posed major challenges to this field. Indeed, prion research has achieved a great deal of detailed information in understanding the pathogenesis of the disease, but until now the early events leading to the conformational change harboring prions have remained elusive.1 In an attempt to learning how the protein may undergo this conformational rearrangement, my group and the group of Paolo Carloni at the German Research School for Simulation Science, in Jülich, Germany, reasoned that some clues might come from the study of pathogenic mutants in HuPrP. At the time of beginning our work the structures of few mutants were known.2 The structure of HuPrP was used as template for our studies.3 We therefore performed molecular dynamics (MD) simulations for each of these mutants to investigate their structure in aqueous solution. In total, almost 2 µs MD data were obtained. The calculations were based on the AMBER(parm99) force field, which has been shown to reproduce very accurately the structural features of the wild-type HuPrP and a few variants for which experimental structural information was available.4 All the variants present structural features different from those of wild-type HuPrP and the protective dominant negative polymorphism HuPrP(E219K). These characteristics include loss of salt bridges in the α2–α3 regions and the loss of π-stacking interactions in the β22 loop. In addition, in the majority of the mutants analyzed, the α3 helix is more flexible and the residue Tyr169 is more exposed to the aqueous solvent. The biological relevance of these findings is of utmost importance. The presence of similar traits in this large spectrum of mutations hints to a role of these characteristics in their known capabilities to generate disease-causing properties. Overall, we concluded that the regions most affected by disease-linked mutations in terms of structure and/or flexibility might be those involved in the pathogenic conversion of PrPC to the scrapie form of the protein, and ultimately, in the interaction with cellular partners.Recent reports have indicated that the alteration of PRNP sequence by pathological mutations is sufficient to generate prions in transgenic mice.5 Therefore, solution-state NMR studies on PrP mutants may help identifying critical regions in PrPC structure involved in the conversion. The comparison between the structures of Q212P and V210I mutants with the wild-type HuPrP revealed that, although structures share similar globular architecture, mutations introduce novel local structural differences.6 The observed variations are mostly clustered in the β22-loop region and in the α2–α3 inter-helical interfaces. In contrast to the wild-type protein, where the structures of Q212P and V210I mutants point to the interruption of aromatic and hydrophobic interactions between residues located at the interface of the β22 loop and the C-terminal end of α3 helix. A loss of contacts between the β22-loop and the α3 helix in the mutants results in higher exposure of hydrophobic residues to solvent. Similar findings have also been reported in the NMR structure of the E200K mutant,7 X-ray structures of F198S and D178N mutants8 and in independent MD studies.911 In addition, in the two mutants here considered side chains of Phe141 and Tyr149 adopt different orientation. Our findings indicate that the structural disorder of the β22-loop together with the increased distance between the loop and α3 helix represent key pathological structural features and may shed light on critical epitopes on the HuPrP structure possibly involved in the conversion to PrPSc.Different experimental studies suggested that the conformation of the β22-loop plays a role in the prion disease transmission and susceptibility. Several studies have indicated that mammals carrying a flexible β22 loop could be easily infected by prions, whereas prions are poorly transmissible to animals carrying a rigid loop.12 Importantly, horse and rabbit have so far displayed resistance to prion infections and there are no reports of these species developing spontaneous prion diseases. NMR studies showed that their PrP structures are characterized by a rigid β22 loop and by closer contacts between the loop and α3 helix.13,14 Thus, it seems that prion resistance is enciphered by the amino acidic composition of the β22-loop and its long-range interactions with the C-terminal end of the α3 helix.Interestingly, it has been proposed a role of α1 helix as a promoter of PrPC aggregation.15 In support, Tyr149 in α1 helix is part of a motif, which may be solvent exposed in PrPSc and involved in structural rearrangements during fibril formation.16 Pronounced stabilization of α1 helix in the protein may represent another important factor in the prevention of spontaneous PrPSc formation.Comparing the structures of the wild-type protein and the mutants enabled us to detect regions on HuPrP structure that may play a key role in the pathogenic conversion. The obtained structural data indicate that the β22 loop and, in particular, interactions of this loop with residues in the C-terminal part of α3 helix determine the extent of exposure of hydrophobic surface to solvent, and thus could influence propensity of PrPC for intermolecular interactions. Moreover, our results highlight the significance of the α1 helix and its tertiary contacts in overall stabilization of HuPrP folding.Overall, the many features discussed here involve the most important regions that confer stability to wild-type HuPrP, although the mutations considered are different for position and characteristics. In particular, the β22-loop and the α2–α3 regions are the most affected in terms of structural organization and flexibility of the molecule. These two subdomains are crucial for the stability of the wild-type HuPrPC fold17 and might play a prominent role in the early unfolding events leading to PrPSc conversion.  相似文献   

3.
Mutations in the prion protein (PrP) can cause spontaneous prion diseases in humans (Hu) and animals. In transgenic mice, mutations can determine the susceptibility to the infection of different prion strains. Some of these mutations also show a dominant-negative effect, thus halting the replication process by which wild type mouse (Mo) PrP is converted into Mo scrapie. Using all-atom molecular dynamics (MD) simulations, here we studied the structure of HuPrP, MoPrP, 10?Hu/MoPrP chimeras, and 1 Mo/sheepPrP chimera in explicit solvent. Overall, ~2?μs of MD were collected. Our findings suggest that the interactions between α1 helix and N-terminal of α3 helix are critical in prion propagation, whereas the β2–α2 loop conformation plays a role in the dominant-negative effect.

An animated Interactive 3D Complement (I3DC) is available in Proteopedia at http://proteopedia.org/w/Journal:JBSD:4.  相似文献   

4.
The development of transmissible spongiform encephalopathies (TSEs) is associated with the conversion of the cellular prion protein (PrPC) into a misfolded, pathogenic isoform (PrPSc). Spontaneous generation of PrPSc in inherited forms of disease is caused by mutations in gene coding for PrP (PRNP). In this work, we describe the NMR solution-state structure of the truncated recombinant human PrP (HuPrP) carrying the pathological V210I mutation linked to genetic Creutzfeldt-Jakob disease. The three-dimensional structure of V210I mutant consists of an unstructured N-terminal part (residues 90-124) and a well-defined C-terminal domain (residues 125-228). The C-terminal domain contains three α-helices (residues 144-156, 170-194 and 200-228) and a short antiparallel β-sheet (residues 129-130 and 162-163). Comparison with the structure of the wild-type HuPrP revealed that although two structures share similar global architecture, mutation introduces some local structural differences. The observed variations are mostly clustered in the α23 inter-helical interface and in the β22 loop region. Introduction of bulkier Ile at position 210 induces reorientations of several residues that are part of hydrophobic core, thus influencing α23 inter-helical interactions. Another important structural feature involves the alteration of conformation of the β22 loop region and the subsequent exposure of hydrophobic cluster to solvent, which facilitates intermolecular interactions involved in spontaneous generation of PrPSc. The NMR structure of V210I mutant offers new clues about the earliest events of the pathogenic conversion process that could be used for the development of antiprion drugs.  相似文献   

5.
The most common form of prion disease in humans is sCJD (sporadic Creutzfeldt-Jakob disease). The naturally occurring E219K polymorphism in the HuPrP (human prion protein) is considered to protect against sCJD. To gain insight into the structural basis of its protective influence we have determined the NMR structure of recombinant HuPrP (residues 90-231) carrying the E219K polymorphism. The structure of the HuPrP(E219K) protein consists of a disordered N-terminal tail (residues 90-124) and a well-structured C-terminal segment (residues 125-231) containing three α-helices and two short antiparallel β-strands. Comparison of NMR structures of the wild-type and HuPrPs with pathological mutations under identical experimental conditions revealed that, although the global architecture of the protein remains intact, replacement of Glu219 with a lysine residue introduces significant local structural changes. The structural findings of the present study suggest that the protective influence of the E219K polymorphism is due to the alteration of surface charge distribution, in addition to subtle structural rearrangements localized within the epitopes critical for prion conversion.  相似文献   

6.
The central event in the pathogenesis of prion protein (PrP) is a profound conformational change from its α-helical (PrP(C)) to its β-sheet-rich isoform (PrP(Sc)). Many single amino acid mutations of PrP are associated with familial prion diseases, such as D202N, E211Q, and Q217R mutations located at the third native α-helix of human PrP. In order to explore the underlying structural and dynamic effects of these mutations, we performed all-atom molecular dynamics (MD) simulations for the wild-type (WT) PrP and its mutants. The obtained results indicate that these amino acid substitutions have subtle effects on the protein structures, but show large changes of the overall electrostatic potential distributions. We can infer that the changes of PrP electrostatic surface due to the studied mutations may influence the intermolecular interactions during the aggregation process. In addition, the mutations also affect the thermodynamic stabilities of PrP.  相似文献   

7.
Transmissible spongiform encephalopathies, or prion diseases, are caused by misfolding and aggregation of the prion protein PrP. These diseases can be hereditary in humans and four of the many disease-associated missense mutants of PrP are in the hydrophobic core: V180I, F198S, V203I and V210I. The T183A mutation is related to the hydrophobic core mutants as it is close to the hydrophobic core and known to cause instability. We used extensive molecular dynamics simulations of these five PrP mutants to compare their dynamics and conformations to those of the wild type PrP. The simulations highlight the changes that occur upon introduction of mutations and help to rationalize experimental findings. Changes can occur around the mutation site, but they can also be propagated over long distances. In particular, the F198S and T183A mutations lead to increased flexibility in parts of the structure that are normally stable, and the short β-sheet moves away from the rest of the protein. Mutations V180I, V210I and, to a lesser extent, V203I cause changes similar to those observed upon lowering the pH, which has been linked to misfolding. Early misfolding is observed in one V180I simulation. Overall, mutations in the hydrophobic core have a significant effect on the dynamics and stability of PrP, including the propensity to misfold, which helps to explain their role in the development of familial prion diseases.  相似文献   

8.
Molecular dynamics calculations demonstrated the conformational change in the prion protein due to Ala(117)-->Val mutation, which is related to Gerstmann-Str?ussler-Sheinker disease, one of the familial prion diseases. Three kinds of model structures of human and mouse prion proteins were examined: (model 1) nuclear magnetic resonance structures of human prion protein HuPrP (125-228) and mouse prion protein MoPrP (124-224), each having a globular domain consisting of three alpha-helices and an antiparallel beta-sheet; (model 2) extra peptides including Ala(117) (109-124 in HuPrP and 109-123 in MoPrP) plus the nuclear magnetic resonance structures of model 1; and (model 3) extra peptides including Val(117) (109-124 in HuPrP and 109-123 in MoPrP) plus the nuclear magnetic resonance structures of model 1. The results of molecular dynamics calculations indicated that the globular domains of models 1 and 2 were stable and that the extra peptide in model 2 tended to form a new alpha-helix. On the other hand, the globular domain of model 3 was unstable, and the beta-sheet region increased especially in HuPrP.  相似文献   

9.
Prion protein fragments that are extracted from the brains of patients with Gerstmann-Straussler-Scheinker disease are known to have stimulating action on circulating leukocytes. In particular, the amyloidogenic hydrophobic prion peptide HuPrP (113-127) AGAAAAGAVVGGLGG has been reported to be associated with significant cellular toxicity. In this paper we show that the self assembled form of HuPrP (113-127) and its valine rich domains viz. GAVVGGLG [HuPrP (119-126)] and VVGGLGG [HuPrP (121-127)] are toxic to peripheral lymphocytes. To explore the cytotoxic mechanism of these fragments, we studied 3-(4,5-dimethylthiazol-2yl)-2-5-diphenyltetrazolium bromide (MTT) reduction, reactive oxygen species (ROS) generation, calcium influx and raft sequestration of' peptide treated lymphocytes. Langmuir monolayer studies on these peptides showed a maximum lipid perturbing property of HuPrP (121-127) as compared to the other two fragments. MTT reduction assays on lymphocytes treated with peptides indicated that the prion peptide fibrils are relatively more toxic than freshly solubilized peptide preparations. Lymphocytes treated with HuPrP (121-127), HuPrP (113-127) and HuPrP (119-126) fibrils underwent 60%, 30% and 40% cell death, respectively. Abeta(1-42), HuPrP (119-126) and HuPrP (121-127) fibrils caused 4 fold increases in intracellular ROS as compared with control cells. However, HuPrP (113-127) fibrils lacked such a significant ROS generating activity, indicating that a subtle difference in sequence leads to a difference in the toxic mechanism in the cell. HuPrP (119-126) and HuPrP (121-127) fibrils also produced maximum raft sequestration and calcium influx. Taken together, these data suggest that the assemblage of prion fragments has significant toxic activity on peripheral lymphocytes, a finding with implications for controlling reactive lymphocytes in prion infected subjects.  相似文献   

10.
To elucidate the structural stability and the unfolding dynamics of the animal prion protein, the temperature induced structural evolution of turtle prion protein (tPrPc) and bank vole prion protein (bvPrPc) have been performed with molecular dynamics (MD) simulation. The unfolding behaviors of secondary structures showed that the α-helix was more stable than β-sheet. Extension and disruption of β-sheet commonly appeared in the temperature induced unfolding process. The conversion of α-helix to π-helix occurred more readily at the elevating temperature. Furthermore, it was suggested in this work that the unfolding of prion protein could be regulated by the temperature.
Figure
Molecular dynamics simulation of temperature induced unfolding of animal prion protein  相似文献   

11.
The NMR structure of the horse (Equus caballus) cellular prion protein at 25 °C exhibits the typical PrPC [cellular form of prion protein (PrP)] global architecture, but in contrast to most other mammalian PrPCs, it contains a well-structured loop connecting the β2 strand with the α2 helix. Comparison with designed variants of the mouse prion protein resulted in the identification of a single amino acid exchange within the loop, D167S, which correlates with the high structural order of this loop in the solution structure at 25 °C and is unique to the PrP sequences of equine species. The β2-α2 loop and the α3 helix form a protein surface epitope that has been proposed to be the recognition area for a hypothetical chaperone, “protein X,” which would promote conversion of PrPC into the disease-related scrapie form and thus mediate intermolecular interactions related to the transmission barrier for transmissible spongiform encephalopathies (TSEs) between different species. The present results are evaluated in light of recent indications from in vivo experiments that the local β2-α2 loop structure affects the susceptibility of transgenic mice to TSEs and the fact that there are no reports on TSE in horses.  相似文献   

12.
Chaperone networks are required for the shearing and generation of transmissible propagons from pre-existing prion aggregates. However, other cellular networks needed for maintaining yeast prions are largely uncharacterized. Here, we establish a novel role for actin networks in prion maintenance. The [PIN+] prion, also known as [RNQ+], exists as stable variants dependent upon the chaperone machinery for the transmission of propagons to daughter cells during cell division and cytoplasmic transfer. Loss of the Hsp104 molecular chaperone leads to the growth of prion particles until they are too large to be transmitted. Here, we isolated a unique [PIN+] variant, which is unstable in actin mutants. This prion loss is observed over many generations, and coincides with the detection of both high molecular weight species of Rnq1 and large visible aggregates that are asymmetrically retained during cell division. Our data suggest that the irregular actin networks found in these mutants may influence propagon number by slowly permitting aggregate growth over time, resulting in the generation of nontransmissible large aggregates. Thus, we show the potential contribution of cytoskeletal networks in the transmission of prion propagons, which parallels models that have been proposed for cell-to-cell transmission of small amyloids in neurodegenerative protein aggregation diseases.  相似文献   

13.
The cellular prion protein (PrPC) is a GPI-anchored cell-surface protein. A small subset of PrPC molecules, however, can be integrated into the ER-membrane via a transmembrane domain (TM), which also harbors the most highly conserved regions of PrPC, termed the hydrophobic core (HC). A mutation in HC is associated with prion disease resulting in an enhanced formation of a transmembrane form (CtmPrP), which has thus been postulated to be a neurotoxic molecule besides PrPSc. To elucidate a possible physiological function of the transmembrane domain, we created a set of mutants carrying microdeletions of 2-8 aminoacids within HC between position 114 and 121. Here, we show that these mutations display reduced propensity for transmembrane topology. In addition, the mutants exhibited alterations in the formation of the C1 proteolytic fragment, which is generated by α-cleavage during normal PrPC metabolism, indicating that HC might function as recognition site for the protease(s) responsible for PrPC α-cleavage. Interestingly, the mutant G113V, corresponding to a hereditary form of prion disease in humans, displayed increased CtmPrP topology and decreased α-cleavage in our in vitro assay. In conclusion, HC represents an essential determinant for transmembrane PrP topology, whereas the high evolutionary conservation of this region is rather based upon preservation of PrPC α-cleavage, thus highlighting the biological importance of this cleavage.  相似文献   

14.
Background: Prion diseases are fatal and infectious neurodegenerative diseases affecting humans and animals. Rabbits are one of the few mammalian species reported to be resistant to infection from prion diseases isolated from other species (I. Vorberg et al., Journal of Virology 77 (3) (2003) 2003-2009). Thus the study of rabbit prion protein structure to obtain insight into the immunity of rabbits to prion diseases is very important.Findings: The paper is a straight forward molecular dynamics simulation study of wild-type rabbit prion protein (monomer cellular form) which apparently resists the formation of the scrapie form. The comparison analyses with human and mouse prion proteins done so far show that the rabbit prion protein has a stable structure. The main point is that the enhanced stability of the C-terminal ordered region especially helix 2 through the D177-R163 salt-bridge formation renders the rabbit prion protein stable. The salt bridge D201-R155 linking helixes 3 and 1 also contributes to the structural stability of rabbit prion protein. The hydrogen bond H186-R155 partially contributes to the structural stability of rabbit prion protein.Conclusions: Rabbit prion protein was found to own the structural stability, the salt bridges D177-R163, D201-R155 greatly contribute and the hydrogen bond H186-R155 partially contributes to this structural stability. The comparison of the structural stability of prion proteins from the three species rabbit, human and mouse showed that the human and mouse prion protein structures were not affected by the removing these two salt bridges. Dima et al. (Biophysical Journal 83 (2002) 1268-1280 and Proceedings of the National Academy of Sciences of the United States of America 101 (2004) 15335-15340) also confirmed this point and pointed out that “correlated mutations that reduce the frustration in the second half of helix 2 in mammalian prion proteins could inhibit the formation of PrPSc”.  相似文献   

15.
Collective motions on ns-µs time scales are known to have a major impact on protein folding, stability, binding and enzymatic efficiency. It is also believed that these motions may have an important role in the early stages of prion protein misfolding and prion disease. In an effort to accurately characterize these motions and their potential influence on the misfolding and prion disease transmissibility we have conducted a combined analysis of molecular dynamic simulations and NMR-derived flexibility measurements over a diverse range of prion proteins. Using a recently developed numerical formalism, we have analyzed the essential collective dynamics (ECD) for prion proteins from eight different species including human, cow, elk, cat, hamster, chicken, turtle and frog. We also compared the numerical results with flexibility profiles generated by the random coil index (RCI) from NMR chemical shifts. Prion protein backbone flexibility derived from experimental NMR data and from theoretical computations show strong agreement with each other, demonstrating that it is possible to predict the observed RCI profiles employing the numerical ECD formalism. Interestingly, flexibility differences in the loop between second b strand (S2) and the second a helix (HB) appear to distinguish prion proteins from species that are susceptible to prion disease and those that are resistant. Our results show that the different levels of flexibility in the S2-HB loop in various species are predictable via the ECD method, indicating that ECD may be used to identify disease resistant variants of prion proteins, as well as the influence of prion proteins mutations on disease susceptibility or misfolding propensity.Key words: prion proteins structural stability, molecular dynamics simulation, essential collective dynamics, protein dynamic domains, biomolecular NMR, rigid loop  相似文献   

16.
A central theme in prion protein research is the detection of the process that underlies the conformational transition from the normal cellular prion form (PrP(C)) to its pathogenic isoform (PrP(Sc)). Although the three-dimensional structures of monomeric and dimeric human prion protein (HuPrP) have been revealed by NMR spectroscopy and x-ray crystallography, the process underlying the conformational change from PrP(C) to PrP(Sc) and the dynamics and functions of PrP(C) remain unknown. The dimeric form is thought to play an important role in the conformational transition. In this study, we performed molecular dynamics (MD) simulations on monomeric and dimeric HuPrP at 300 K and 500 K for 10 ns to investigate the differences in the properties of the monomer and the dimer from the perspective of dynamic and structural behaviors. Simulations were also undertaken with Asp178Asn and acidic pH, which is known as a disease-associated factor. Our results indicate that the dynamics of the dimer and monomer were similar (e.g., denaturation of helices and elongation of the beta-sheet). However, additional secondary structure elements formed in the dimer might result in showing the differences in dynamics and properties between the monomer and dimer (e.g., the greater retention of dimeric than monomeric tertiary structure).  相似文献   

17.
Nickel(II) complexes of the peptide fragments of human prion protein containing histidyl residues both inside and outside the octarepeat domain have been studied by the combined application of potentiometric, UV-visible and circular dichroism spectroscopic methods. The imidazole-N donor atoms of histidyl residues are the exclusive metal binding sites below pH 7.5, but the formation of stable macrochelates was characteristic only for the peptide HuPrP(76-114) containing four histidyl residues. Yellow colored square planar complexes were obtained above pH 7.5-8 with the cooperative deprotonation of three amide nitrogens in the [Nim,N,N,N] coordination mode. It was found that the peptides can bind as many nickel(II) ions as the number of independent histidyl residues. All data supported that the complex formation processes of nickel(II) are very similar to those of copper(II), but with a significantly reduced stability for nickel(II), which shifts the complex formation reactions into the slightly alkaline pH range. The formation of coordination isomers was characteristic of the mononuclear complexes with a significant preference for the nickel(II) binding at the histidyl sites outside the octarepeat domain. The results obtained for the two-histidine fragments of the protein, HuPrP(91-115), HuPrP(76-114)H85A and HuPrP(84-114)H96A, made it possible to compare the binding ability of the His96 and His111 sites. These data reveal a significant difference in the nickel(II) and copper(II) binding sites of the peptides: His96 was found to predominate almost completely for nickel(II) ions, while the opposite order, but with comparable concentrations, was reported for copper(II).  相似文献   

18.
J Zuegg  J E Gready 《Biochemistry》1999,38(42):13862-13876
Molecular dynamics simulations have been used to investigate the dynamical and structural behavior of a homology model of human prion protein HuPrP(90-230) generated from the NMR structure of the Syrian hamster prion protein ShPrP(90-231) and of ShPrP(<90-231) itself. These PrPs have a large number of charged residues on the protein surface. At the simulation pH 7, HuPrP(90-230) has a net charge of -1 eu from 15 positively and 14 negatively charged residues. Simulations for both PrPs, using the AMBER94 force field in a periodic box model with explicit water molecules, showed high sensitivity to the correct treatment of the electrostatic interactions. Highly unstable behavior of the structured region of the PrPs (127-230) was found using the truncation method, and stable trajectories could be achieved only by including all the long-range electrostatic interactions using the particle mesh Ewald (PME) method. The instability using the truncation method could not be reduced by adding sodium and chloride ions nor by replacing some of the sodium ions with calcium ions. The PME simulations showed, in accordance with NMR experiments with ShPrP and mouse PrP, a flexibly disordered N-terminal part, PrP(90-126), and a structured C-terminal part, PrP(127-230), which includes three alpha-helices and a short antiparallel beta-strand. The simulations showed some tendency for the highly conserved hydrophobic segment PrP(112-131) to adopt an alpha-helical conformation and for helix C to split at residues 212-213, a known disease-associated mutation site (Q212P). Three highly occupied salt bridges could be identified (E146/D144<-->R208, R164<-->D178, and R156<-->E196) which appear to be important for the stability of PrP by linking the stable main structured core (helices B and C) with the more flexible structured part (helix A and strands A and B). Two of these salt bridges involve disease-associated mutations (R208H and D178N). Decreased PrP stability shown by protein unfolding experiments on mutants of these residues and guanidinium chloride or temperature-induced unfolding studies indicating reduced stability at low pH are consistent with stabilization by salt bridges. The fact that electrostatic interactions, in general, and salt bridges, in particular, appear to play an important role in PrP stability has implications for PrP structure and stability at different pHs it may encounter physiologically during normal or abnormal recycling from the pH neutral membrane surface into endosomes or lysomes (acidic pHs) or in NMR experiments (5.2 for ShPrP and 4.5 for mouse PrP).  相似文献   

19.
In vitro evolution methods are now being routinely used to identify protein variants with novel and enhanced properties that are difficult to achieve using rational design. However, one of the limitations is in screening for beneficial mutants through several generations due to the occurrence of neutral/negative mutations occurring in the background of positive ones. While evolving a lipase in vitro from mesophilic Bacillus subtilis to generate thermostable variants, we have designed protocols that combine stringent three-tier testing, sequencing and stability assessments on the protein at the end of each generation. This strategy resulted in a total of six stabilizing mutations in just two generations with three mutations per generation. Each of the six mutants when evaluated individually contributed additively to thermostability. A combination of all of them resulted in the best variant that shows a remarkable 15 °C shift in melting temperature and a millionfold decrease in the thermal inactivation rate with only a marginal increase of 3 kcal mol−1 in free energy of stabilization. Notably, in addition to the dramatic shift in optimum temperature by 20 °C, the activity has increased two- to fivefold in the temperature range 25-65 °C. High-resolution crystal structures of three of the mutants, each with 5° increments in melting temperature, reveal the structural basis of these mutations in attaining higher thermostability. The structures highlight the importance of water-mediated ionic networks on the protein surface in imparting thermostability. Saturation mutagenesis at each of the six positions did not result in enhanced thermostability in almost all the cases, confirming the crucial role played by each mutation as revealed through the structural study. Overall, our study presents an efficient strategy that can be employed in directed evolution approaches employed for obtaining improved properties of proteins.  相似文献   

20.
《朊病毒》2013,7(4):235-243
To understand why cross species infection of prion disease often results in inefficient transmission and reduced protein conversion, most research has focussed on defining the effect of variations in PrP primary structures, including sequence compatibility of substrate and seed. By contrast, little research has been aimed at investigating structural differences between different variants of PrPC and secondary structural requirements for efficient conversion. This is despite a clear role for molecular chaperones in formation of prions in non-mammalian systems, indicating the importance of secondary/tertiary structure during the conversion process. Recent data from our laboratory on the cellular location of disease-specific prion cofactors supports the critical role of specific secondary structural motifs and the stability of these motifs in determining the efficiency of disease-specific prion protein conversion. In this paper we summarise our recent results and build on the hypothesis previously suggested by Wuthrich and colleagues, that stability of certain regions of the prion protein is crucial for protein conversion to abnormal isoforms in vivo. It is suggested that one role for molecular co-factors in the conversion process is to stabilise PrPC structure in a form that is amenable for conversion to PrPSc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号