首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
During the morphogenesis of mature human immunodeficiency virus-1 cores, viral capsid proteins assemble conical or tubular shells around viral ribonucleoprotein complexes. This assembly step is mimicked in vitro through reactions in which capsid proteins oligomerize to form long tubes, and this process can be modeled as consisting of a slow nucleation period, followed by a rapid phase of tube growth. We have developed a novel fluorescence microscopy approach to monitor in vitro assembly reactions and have employed it, along with electron microscopy analysis, to characterize the assembly process. Our results indicate that temperature, salt concentration, and pH changes have differential effects on tube nucleation and growth steps. We also demonstrate that assembly can be unidirectional or bidirectional, that growth can be capped, and that proteins can assemble onto the surfaces of tubes, yielding multiwalled or nested structures. Finally, experiments show that a peptide inhibitor of in vitro assembly also can dismantle preexisting tubes, suggesting that such reagents may possess antiviral effects against both viral assembly and uncoating. Our investigations help establish a basis for understanding the mechanism of mature human immunodeficiency virus-1 core assembly and avenues for antiviral inhibition.  相似文献   

2.
The high-resolution structure of the N-terminal domain (NTD) of the retroviral capsid protein (CA) of Mason-Pfizer monkey virus (M-PMV), a member of the betaretrovirus family, has been determined by NMR. The M-PMV NTD CA structure is similar to the other retroviral capsid structures and is characterized by a six α-helix bundle and an N-terminal β-hairpin, stabilized by an interaction of highly conserved residues, Pro1 and Asp57. Since the role of the β-hairpin has been shown to be critical for formation of infectious viral core, we also investigated the functional role of M-PMV β-hairpin in two mutants (i.e., ΔP1NTDCA and D57ANTDCA) where the salt bridge stabilizing the wild-type structure was disrupted. NMR data obtained for these mutants were compared with those obtained for the wild type. The main structural changes were observed within the β-hairpin structure; within helices 2, 3, and 5; and in the loop connecting helices 2 and 3. This observation is supported by biochemical data showing different cleavage patterns of the wild-type and the mutated capsid-nucleocapsid fusion protein (CANC) by M-PMV protease. Despite these structural changes, the mutants with disrupted salt bridge are still able to assemble into immature, spherical particles. This confirms that the mutual interaction and topology within the β-hairpin and helix 3 might correlate with the changes in interaction between immature and mature lattices.  相似文献   

3.
4.
The Gag polyprotein is the major structural protein found in all classes of retroviruses. Interactions between Gag molecules control key events at several stages in the cycle of infection. In particular, the capsid (CA) domain of Gag mediates many of the protein-protein interactions that drive retrovirus assembly, maturation and disassembly. Moreover, in murine leukaemia virus (MLV), sequence variation in CA confers N and B tropism that determines susceptibility to the intracellular restriction factors Fv1n and Fv1b. We have determined the structure of the N-terminal domain (NtD) of CA from B-tropic MLV. A comparison of this structure with that of the NtD of CA from N-tropic MLV reveals that although the crystals belong to different space groups, CA monomers are packed with the same P6 hexagonal arrangement. Moreover, interhexamer crystal contacts between residues located at the periphery of the discs are conserved, indicating that switching of tropism does not result in large differences in the backbone conformation, nor does it alter the quaternary arrangement of the disc. We have also examined crystals of the N-tropic MLV CA containing both N- and C-terminal domains. In this case, the NtD hexamer is still present; however, the interhexamer spacing is increased and the conserved interhexamer contacts are absent. Investigation into the effects of mutation of residues that mediate interhexamer contacts reveals that amino acid substitutions at these positions cause severe defects in viral assembly, budding and Gag processing. Based on our crystal structures and mutational analysis, we propose that in MLV, interactions between the NtDs of CA are required for packing of Gag molecules in the early part of immature particle assembly. Moreover, we present a model where proteolytic cleavage at maturation results in migration of CA C-terminal domains into interstitial spaces between NtD hexamers. As a result, NtD-mediated interhexamer contacts present in the immature particle are displaced and the less densely packed lattice with increased hexamer-hexamer spacing characteristic of the viral core is produced.  相似文献   

5.
The 231-residue capsid (CA) protein of human immunodeficiency virus type 1 (HIV-1) spontaneously self-assembles into tubes with a hexagonal lattice that is believed to mimic the surface lattice of conical capsid cores within intact virions. We report the results of solid-state nuclear magnetic resonance (NMR) measurements on HIV-1 CA tubes that provide new information regarding changes in molecular structure that accompany CA self-assembly, local dynamics within CA tubes, and possible mechanisms for the generation of lattice curvature. This information is contained in site-specific assignments of signals in two- and three-dimensional solid-state NMR spectra, conformation-dependent 15N and 13C NMR chemical shifts, detection of highly dynamic residues under solution NMR conditions, measurements of local variations in transverse spin relaxation rates of amide 1H nuclei, and quantitative measurements of site-specific 15N–15N dipole–dipole couplings. Our data show that most of the CA sequence is conformationally ordered and relatively rigid in tubular assemblies and that structures of the N-terminal domain (NTD) and the C-terminal domain (CTD) observed in solution are largely retained. However, specific segments, including the N-terminal β-hairpin, the cyclophilin A binding loop, the inter-domain linker, segments involved in intermolecular NTD–CTD interactions, and the C-terminal tail, have substantial static or dynamical disorder in tubular assemblies. Other segments, including the 310-helical segment in CTD, undergo clear conformational changes. Structural variations associated with curvature of the CA lattice appear to be localized in the inter-domain linker and intermolecular NTD–CTD interface, while structural variations within NTD hexamers, around local 3-fold symmetry axes, and in CTD–CTD dimerization interfaces are less significant.  相似文献   

6.
Although LEDGF/p75 is believed to act as a cellular cofactor of lentiviral integration by tethering integrase (IN) to chromatin, there is no good in vitro model to analyze this functionality. We designed an AlphaScreen assay to study how LEDGF/p75 modulates the interaction of human immunodeficiency virus type 1 IN with DNA. IN bound with similar affinity to DNA mimicking the long terminal repeat or to random DNA. While LEDGF/p75 bound DNA strongly, a mutant of LEDGF/p75 with compromised nuclear localization signal (NLS)/AT hook interacted weakly, and the LEDGF/p75 PWWP domain did not interact, corroborating previous reports on the role of NLS and AT hooks in charge-dependent DNA binding. LEDGF/p75 stimulated IN binding to DNA 10-fold to 30-fold. Stimulation of IN-DNA binding required a direct interaction between IN and the C-terminus of LEDGF/p75. Addition of either the C-terminus of LEDGF/p75 (amino acids 325-530) or LEDGF/p75 mutated in the NLS/AT hooks interfered with IN binding to DNA. Our results are consistent with an in vitro model of LEDGF/p75-mediated tethering of IN to DNA. The inhibition of IN-DNA interaction by the LEDGF/p75 C-terminus may provide a novel strategy for the inhibition of HIV IN activity and may explain the potent inhibition of HIV replication observed after the overexpression of C-terminal fragments in cell culture.  相似文献   

7.
The plasma of the striped bass Morone saxatilis contains a fucose-specific lectin (MsaFBP32) that consists of two F-type carbohydrate recognition domains (CRDs) in tandem. The crystal structure of the complex of MsaFBP32 with l-fucose reported here shows a cylindrical  81-Å-long and  60-Å-wide trimer divided into two globular halves: one containing N-terminal CRDs (N-CRDs) and the other containing C-terminal CRDs (C-CRDs). The resulting binding surfaces at the opposite ends of the cylindrical trimer have the potential to cross-link cell surface or humoral carbohydrate ligands. The N-CRDs and C-CRDs of MsaFBP32 exhibit significant structural differences, suggesting that they recognize different glycans. Analysis of the carbohydrate binding sites provides the structural basis for the observed specificity of MsaFBP32 for simple carbohydrates and suggests that the N-CRD recognizes more complex fucosylated oligosaccharides and with a relatively higher avidity than the C-CRD. Modeling of MsaFBP32 complexed with fucosylated glycans that are widely distributed in prokaryotes and eukaryotes rationalizes the observation that binary tandem CRD F-type lectins function as opsonins by cross-linking “non-self” carbohydrate ligands and “self” carbohydrate ligands, such as sugar structures displayed by microbial pathogens and glycans on the surface of phagocytic cells from the host.  相似文献   

8.
Tsyregma Li  Bruno Antonsson 《BBA》2010,1797(1):52-62
In the present study, we compared alkali-resistant BAX insertion into the outer mitochondrial membrane, mitochondrial remodeling, mitochondrial membrane potential changes, and cytochrome c (Cyt c) release from isolated brain mitochondria triggered by recombinant BAX oligomerized with 1% octyl glucoside (BAXoligo) and by a combination of monomeric BAX (BAXmono) and caspase 8-cleaved C-terminal fragment of recombinant BID (truncated BID, tcBID). We also examined whether the effects induced by BAXoligo or by BAXmono activated with tcBID depended on induction of the mitochondrial permeability transition. The results obtained in this study revealed that tcBID plus BAXmono produced BAX insertion and Cyt c release without overt changes in mitochondrial morphology. On the contrary, treatment of mitochondria with BAXoligo resulted in BAX insertion and Cyt c release, which were accompanied by gross distortion of mitochondrial morphology. The effects of BAXoligo could be at least partially suppressed by mitochondrial depolarization. The effects of tcBID plus BAXmono were insensitive to depolarization. BAXoligo produced similar BAX insertion, mitochondrial remodeling, and Cyt c release in KCl- and in N-methyl-d-glucamine-based incubation media indicating a non-essential role for K+ influx into mitochondria in these processes. A combination of cyclosporin A and ADP, inhibitors of the mitochondrial permeability transition, attenuated Cyt c release, mitochondrial remodeling, and depolarization induced by BAXoligo, but failed to influence the effects produced by tcBID plus BAXmono. Thus, our results suggest a significant difference in the mechanisms of the outer mitochondrial membrane permeabilization and Cyt c release induced by detergent-oligomerized BAXoligo and by BAX activated with tcBID.  相似文献   

9.
10.
The CA domain of the human immunodeficiency virus type 1 (HIV-1) Gag polyprotein plays critical roles in both the early and late phases of viral replication and is therefore an attractive antiviral target. Compounds with antiviral activity were recently identified that bind to the N-terminal domain of CA (CAN) and inhibit capsid assembly during viral maturation. We have determined the structure of the complex between CAN and the antiviral assembly inhibitor N-(3-chloro-4-methylphenyl)-N′-{2-[({5-[(dimethylamino)-methyl]-2-furyl}-methyl)-sulfanyl]ethyl}-urea) (CAP-1) using a combination of NMR spectroscopy and X-ray crystallography. The protein undergoes a remarkable conformational change upon CAP-1 binding, in which Phe32 is displaced from its buried position in the protein core to open a deep hydrophobic cavity that serves as the ligand binding site. The aromatic ring of CAP-1 inserts into the cavity, with the urea NH groups forming hydrogen bonds with the backbone oxygen of Val59 and the dimethylamonium group interacting with the side-chains of Glu28 and Glu29. Elements that could be exploited to improve binding affinity are apparent in the structure. The displacement of Phe32 by CAP-1 appears to be facilitated by a strained main-chain conformation, which suggests a potential role for a Phe32 conformational switch during normal capsid assembly.  相似文献   

11.
12.
13.
Colorectal cancer (CRC) is one of the leading causes of death around the world. Its genetic mechanism was intensively investigated in the past decades with findings of a number of canonical oncogenes and tumor-suppressor genes such as APC, KRAS, and TP53. Recent genome-wide association and sequencing studies have identified a series of promising oncogenes including IDH1, IDH2, DNMT3A, and MYD88 in hematologic malignancies. However, whether these genes are involved in CRC remains unknown. In this study, we screened the hotspot mutations of these four genes in 305 CRC samples from Han Chinese by direct sequencing. mRNA expression levels of these genes were quantified by quantitative real-time PCR (RT-qPCR) in paired cancerous and paracancerous tissues. Association analyses between mRNA expression levels and different cancerous stages were performed. Except for one patient harboring IDH1 mutation p.I99M, we identified no previously reported hotspot mutations in colorectal cancer tissues. mRNA expression levels of IDH1, DNMT3A, and MYD88, but not IDH2, were significantly decreased in the cancerous tissues comparing with the paired paracancerous normal tissues. Taken together, the hotspot mutations of IDH1, IDH2, DNMT3A, and MYD88 gene were absent in CRC. Aberrant mRNA expression of IDH1, DNMT3A, and MYD88 gene might be actively involved in the development of CRC.  相似文献   

14.
To investigate the role of oxidative stress and/or mitochondrial impairment in the occurrence of acute kidney injury (AKI) during sepsis, we developed a sepsis-induced in vitro model using proximal tubular epithelial cells exposed to a bacterial endotoxin (lipopolysaccharide, LPS). This investigation has provided key features on the relationship between oxidative stress and mitochondrial respiratory chain activity defects.  相似文献   

15.
The 5'-untranslated region (5'-UTR) of retroviral genomes contains elements required for genome packaging during virus assembly. For many retroviruses, the packaging elements reside in non-contiguous segments that span most or all of the 5'-UTR. The Rous sarcoma virus (RSV) is an exception, in that its genome can be packaged efficiently by a relatively short, 82 nt segment of the 5'-UTR called muPsi. The RSV 5'-UTR also contains three translational start codons (AUG-1, AUG-2 and AUG-3) that have been controvertibly implicated in translation initiation and genome packaging, one of which (AUG-3) resides within the muPsi sequence. We demonstrated recently that muPsi is capable of binding to the cognate RSV nucleocapsid protein (NC) with high affinity (dissociation constant K(d) approximately 2 nM), and that residues of AUG-3 are essential for tight binding. We now report the solution structure of the NC:muPsi complex, determined using NMR data obtained for samples containing ((13)C,(15)N)-labeled NC and (2)H-enriched, nucleotide-specifically protonated RNAs. Upon NC binding, muPsi adopts a stable secondary structure that consists of three stem loops (SL-A, SL-B and SL-C) and an 8 bp stem (O3). Binding is mediated by the two zinc knuckle domains of NC. The N-terminal knuckle interacts with a conserved U(217)GCG tetraloop (a member of the UNCG family; N=A,U,G or C), and the C-terminal zinc knuckle binds to residues that flank SL-A, including residues of AUG-3. Mutations of critical nucleotides in these sequences compromise or abolish viral infectivity. Our studies reveal novel structural features important for NC:RNA binding, and support the hypothesis that AUG-3 is conserved for genome packaging rather than translational control.  相似文献   

16.
Among the mammalian genes encoding DNA ligases (LIG), the LIG3 gene is unique in that it encodes multiple DNA ligase polypeptides with different cellular functions. Notably, this nuclear gene encodes the only mitochondrial DNA ligase and so is essential for this organelle. In the nucleus, there is significant functional redundancy between DNA ligase IIIα and DNA ligase I in excision repair. In addition, DNA ligase IIIα is essential for DNA replication in the absence of the replicative DNA ligase, DNA ligase I. DNA ligase IIIα is a component of an alternative non-homologous end joining (NHEJ) pathway for DNA double-strand break (DSB) repair that is more active when the major DNA ligase IV-dependent pathway is defective. Unlike its other nuclear functions, the role of DNA ligase IIIα in alternative NHEJ is independent of its nuclear partner protein, X-ray repair cross-complementing protein 1 (XRCC1). DNA ligase IIIα is frequently overexpressed in cancer cells, acting as a biomarker for increased dependence upon alternative NHEJ for DSB repair and it is a promising novel therapeutic target.  相似文献   

17.
Eukaryotic protein kinases are typically strictly controlled by second messenger binding, protein/protein interactions, dephosphorylations or similar processes. None of these regulatory mechanisms is known to work for protein kinase CK2 (former name “casein kinase 2”), an acidophilic and constitutively active eukaryotic protein kinase. CK2 predominantly exists as a heterotetrameric holoenzyme composed of two catalytic subunits (CK2α) complexed to a dimer of non-catalytic subunits (CK2β). One model of CK2 regulation was proposed several times independently by theoretical docking of the first CK2 holoenzyme structure. According to this model, the CK2 holoenzyme forms autoinhibitory aggregates correlated with trans-autophosphorylation and driven by the down-regulatory affinity between an acidic loop of CK2β and the positively charged substrate binding region of CK2α from a neighboring CK2 heterotetramer. Circular trimeric aggregates in which one-half of the CK2α chains show the predicted inhibitory proximity between those regions were detected within the crystal packing of the human CK2 holoenzyme. Here, we present further in vitro support of the “regulation-by-aggregation” model by an alternative crystal form in which CK2 tetramers are arranged as approximately linear aggregates coinciding essentially with the early predictions. In this assembly, the substrate binding region of every CK2α chain is blocked by a CK2β acidic loop from a neighboring tetramer. We found these crystals with CK2Andante that contains a CK2β variant mutated in a CK2α-contact helix and described to be responsible for a prolonged circadian rhythm in Drosophila. The increased propensity of CK2Andante to form aggregates with completely blocked active sites may contribute to this phenotype.  相似文献   

18.
A single multi-domain viral protein, termed Gag, is sufficient for assembly of retrovirus-like particles in mammalian cells. We have purified the human immunodeficiency virus type 1 (HIV-1) Gag protein (lacking myristate at its N terminus and the p6 domain at its C terminus) from bacteria. This protein is capable of assembly into virus-like particles in a defined in vitro system. We have reported that it is in monomer-dimer equilibrium in solution, and have described a mutant Gag protein that remains monomeric at high concentrations in solution. We report that the mutant protein retains several properties of wild-type Gag. This mutant enabled us to analyze solutions of monomeric protein. Hydrodynamic studies on the mutant protein showed that it is highly asymmetric, with a frictional ratio of 1.66. Small-angle neutron scattering (SANS) experiments confirmed its asymmetry and yielded an R(g) value of 34 A. Atomic-level structures of individual domains within Gag have previously been determined, but these domains are connected in Gag by flexible linkers. We constructed a series of models of the mutant Gag protein based on these domain structures, and tested each model computationally for its agreement with the experimental hydrodynamic and SANS data. The only models consistent with the data were those in which Gag was folded over, with its N-terminal matrix domain near its C-terminal nucleocapsid domain in three-dimensional space. Since Gag is a rod-shaped molecule in the assembled immature virion, these findings imply that Gag undergoes a major conformational change upon virus assembly.  相似文献   

19.
LTRs are sequence elements in retroviruses and retrotransposons which are difficult to align due to their variability. One way of handling such cases is to use Hidden Markov Models (HMMs). In this work HMMs of LTRs were constructed for three groups of orthoretroviruses: the betaretroviruslike human MMTV-like (HML) endogenous retroviruses, the lentiviruses, including HIV, and gammaretroviruslike human endogenous retroviruses (HERVs). The HMM-generated LTR alignments and the phylogenetic trees constructed from them were compared with trees based on alignments of the pol gene at the nucleic acid level. The majority of branches in the LTR and pol based trees had the same order for the three retroviral genera, showing that HMM methods are successful in aligning and constructing phylogenies of LTRs. The HML LTR tree deviated somewhat from the pol tree for the groups HML3, HML7 and HML6. Among the gammaretroviruslike proviruses, the exogenous Mouse Leukemia Virus (MLV) was highly related to HERV-T in the pol based tree, but not in the LTR based tree. Aside from these differences, the similarity between the trees indicates that LTRs and pol coevolved in a largely monophyletic way.  相似文献   

20.
We previously identified a potent small-molecule human immunodeficiency virus type 1 (HIV-1) fusion inhibitor, termed ADS-J1, and hypothesized that it mainly targeted the hydrophobic pocket in the gp41 N-terminal heptad repeat (NHR) trimer. However, this hypothesis has been challenged by the fact that ADS-J1 cannot induce drug-resistance mutation in the gp41 pocket region. Therefore, we show herein that HIV-1 mutants resistant to T2635, a peptide derived from the gp41 C-terminal heptad repeat (CHR) region with pocket-binding domain (PBD), were also resistant to ADS-J1. We also show that pseudoviruses with mutations at positions 64 and 67 in the gp41 pocket region were highly resistant to ADS-J1 and C34, another CHR-peptide with PBD, but relatively sensitive to T20, a CHR-peptide without PBD. ADS-J1 could effectively bind to N36Fd, a mimic of the gp41 NHR-trimer with pocket exposed, and block binding of C34 to N36Fd trimer to form six-helix bundle (6-HB). However, ADS-J1 was less effective in binding to N36Fd trimer with mutations in the gp41 pocket region, such as N36(Q64A)Fd, N36(Q64L)Fd, N36(A67G)Fd, N36(A67S)Fd, and N36(Q66R)Fd, as well as less effective in blocking 6-HB formation between C34 and these mutant N36Fd trimers. These results confirm that ADS-J1 mainly targets the pocket region in the HIV-1 gp41 NHR trimer and suggest that it could be used as a lead for developing small-molecule HIV fusion inhibitors and as a molecule probe for studying the mechanisms of gp41-mediated membrane fusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号