首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cellular copper overload as found in Wilson's disease may disturb mitochondrial function and integrity. Atp7b−/− mice accumulate copper in the liver and serve as an animal model for this inherited disease. The molecular mechanism of copper toxicity in hepatocytes is poorly understood. Total mitochondrial lipids from liver of wild-type mice were subjected to oxidative stress by the Cu2+/H2O2/ascorbate system. Phosphatidic acid (PA) and phosphatidylhydroxyacetone (PHA) were detected as cardiolipin fragmentation products by thin-layer chromatography combined with MALDI-TOF mass spectrometry in oxidized samples, but not in unperturbed ones. The formation of PA and PHA in copper-treated model membrane correlated well with the decrease of cardiolipin. Mitochondrial lipids from Atp7b−/− mice of different age were analyzed for the presence of PA. While 32-weeks old wild-type (control) and Atp7b−/− mice did not show any PA, there was a steady increase in the amount of this lipid in Atp7b−/− mice in contrast to control with increasing age. Hepatocytes from elder Atp7b−/−mice contained morphologically changed mitochondria unlike cells from wild-type animals of the same age. We concluded that free-radical fragmentation of cardiolipin with the formation of PA is a likely mechanism that damages mitochondria under conditions of oxidative stress due to copper overload. Our findings are relevant for better understanding of molecular mechanisms for liver damage found in Wilson's disease.  相似文献   

2.
3.
4.
Recognition of sialylated glycoconjugates is important for host cell invasion by Apicomplexan parasites. Toxoplasma gondii parasites penetrate host cells via interactions between their microneme proteins and sialylated glycoconjugates on the surface of host cells. However, the role played by sialic acids during infection with T. gondii is not well understood. Here, we focused on the role of α2-3 sialic acid linkages as they appear to be widely expressed in vertebrates. Removal of α2-3 sialic acid linkages on macrophages by neuraminidase treatment did not influence the rate of infection or growth of T. gondii, nor did it affect phagocytosis in vitro. Sialyltransferase ST3Gal-I deficient mice (ST3Gal-I−/− mice) lost α2-3 sialic acid linkages in macrophages and spleen cells. The numbers of T. gondii-infected CD11b+ cells in peritoneal cavities of the infected ST3Gal-I−/− mice were relatively lower than those of the infected wild type animals. In addition, CD8+ T cell populations and numbers in the spleens and peritoneal cavities of the ST3Gal-I−/− mice were significantly lower than those in the wild type animals before and after the T. gondii infection. ST3Gal-I−/− mice had severe liver damage and reduced survival rates following peritoneal infection with T. gondii. Furthermore, adoptive transfer of immune CD8+ cells from wild type mice to ST3Gal-I−/− mice increased their survival during infection with T. gondii. Our data show that parasite invasion via α2-3 sialic acid linkages might not contribute on host survival and indicate the impact that loss of α2-3 sialic acid linkages has on CD8+ T cell populations, which are necessary for effective immune responses against infection with T. gondii.  相似文献   

5.
It was recently shown that the structure of the fluorophore attached to the acyl chain of phosphatidylcholine analogs determines their mechanism of transport across the plasma membrane of yeast cells (Elvington et al., J. Biol Chem. 280:40957, 2005). In order to gain further insight into the physical properties of these fluorescent phosphatidylcholine (PC) analogs, the rate and mechanism of their intervesicular transport was determined. The rate of spontaneous exchange was measured for PC analogs containing either NBD (7-nitrobenz-2-oxa-1,3-diazol-4-yl), Bodipy FL (4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene), Bodipy 530 (4,4-difluoro-5,7-diphenyl-4-bora-3a,4a-diaza-s-indacene), or Bodipy 581 (4,4-difluoro-5-(4-phenyl-1,3-butadienyl)-4-bora-3a,4a-diaza-s-indacene) attached to a five or six carbon acyl chain in the sn-2 position. The rate of transfer between phospholipid vesicles was measured by monitoring the increase in fluorescence as the analogs transferred from donor vesicles containing self-quenching concentrations to unlabeled acceptor vesicles. Kinetic analysis indicated that the transfer of each analog occurred by diffusion through the water phase as opposed to transfer during vesicle collisions. The vesicle-to-monomer dissociation rate constants differed by over four orders of magnitude: NBD-PC (kdis = 0.115 s− 1; t1/2 = 6.03 s); Bodipy FL-PC (kdis = 5.2 × 10− 4; t1/2 = 22.2 min); Bodipy 530-PC (kdis = 1.52 × 10− 5; t1/2 = 12.6 h); and Bodipy 581-PC (kdis = 5.9 × 10− 6; t1/2 = 32.6 h). The large differences in spontaneous rates of transfer through the water measured for these four fluorescent PC analogs reflect their hydrophobicity and may account for their recognition by different mechanisms of transport across the plasma membrane of yeast.  相似文献   

6.
7.
8.
The small RNA of hnRNP1 were studied in HeLa cells infected with adenovirus-2. At 15 h post-infection, when 50–60 % of the hnRNA was of viral origin, all the small nuclear RNA of hnRNP from non-infected cells were present in hnRNP from infected cells. The small, virus-encoded VA RNA could not be detected by staining like the snRNA but only after labeling. It represented less than 1 % of the small nuclear RNA in hnRNP. The low level of VA RNA in hnRNP as compared to that of the small nuclear RNA does not favor the hypothesis of a similar function for these 2 classes of small RNA.  相似文献   

9.
10.
A mutation of Atp2a2 gene encoding the sarco/endoplasmic reticulum Ca2+-ATPase 2 (SERCA2) causes Darier's disease in human and null mutation in one copy of Atp2a2 leads to a high incidence of squamous cell tumor in a mouse model. In SERCA2 heterozygote (SERCA2+/−) mice keratinocytes, mechanisms involved in partial depletion of SERCA2 gene and its related tumor induction have not been studied. In this study, we investigated Ca2+ signaling and differential gene expression in primary cultured keratinocytes from SERCA2+/− mice. SERCA2+/− keratinocytes showed reduced initial increases in intracellular concentration of calcium in response to ATP, a G-protein coupled receptor agonist, and higher store-operated Ca2+ entry with the treatment of thapsigargin, an inhibitor of SERCA, compared to wild type kerationcytes. Protein expressions of plasma membrane Ca2+ ATPases, NFATc1, phosphorylated ERK, JNK, and phospholipase γ1 were increased in SERCA2+/− keratinocytes. Using the gene fishing system, we first found in SERCA2+/− keratinocytes that gene level of tumor-associated calcium signal transducer 1, crystalline αB, procollagen XVIII α1, and nuclear factor I-B were increased. Expression of involucrin, a marker of keratinocyte differentiation, was decreased in SERCA2+/− keratinocytes. These results suggest that the alterations of Ca2+ signaling by SERCA2 haploinsufficiency alternate the gene expression of tumor induction and differentiation in keratinocytes.  相似文献   

11.
Arjun Tiwari 《BBA》2009,1787(8):985-994
This study provides evidence for the superoxide oxidase and the superoxide reductase activity of cytochrome b559 (cyt b559) in PSII. It is reported that in Tris-treated PSII membranes upon illumination, both the intermediate potential (IP) and the reduced high potential (HPred) forms of cyt b559 exhibit superoxide scavenging activity and interconversion between IP and HPred form. When Tris-treated PSII membranes were illuminated in the presence of spin trap EMPO, the formation of superoxide anion radical (O2) was observed, as confirmed by EPR spin-trapping spectroscopy. The observations that the addition of enzymatic (superoxide dismutase) and non-enzymatic (cytochrome c, α-tocopherol and Trolox) O2 scavengers prevented the light-induced conversion of IP ↔ HPred cyt b559 confirmed that IP and HPred cyt b559 are reduced and oxidized by O2, respectively. Redox changes in cyt b559 by an exogenous source of O2 reconfirmed the superoxide oxidase and reductase activity of cyt b559. Furthermore, the light-induced conversion of IP to HPred form of cyt b559 was completely inhibited at pH > 8 and by chemical modification of the imidazole ring of histidine residues using diethyl pyrocarbonate. We proposed that a change in the environment around the heme iron, induced by the protonation and deprotonation of His22 residue generates a favorable condition for the oxidation and reduction of O2, respectively.  相似文献   

12.
To examine the roles of endogenous K-ras 4A and K-ras 4B splice variants in tumorigenesis, murine lung carcinogenesis was induced by N-methyl-N-nitrosourea (MNU), which causes a K-ras mutation (G12D) that jointly affects both isoforms. Compared with age-matched K-rastmΔ4A/− mice (where tumours can express mutationally activated K-ras 4B only), tumour number and size were significantly higher in K-ras+/− mice (where tumours can also express mutationally activated K-ras 4A), and significantly lower in K-rastmΔ4A/tmΔ4A mice (where tumours can express both wild-type and activated K-ras 4B). MNU induced significantly more, and larger, tumours in wild-type than K-rastmΔ4A/tmΔ4A mice which differ in that only tumours in wild-type mice can express wild-type and activated K-ras 4A. Lung tumours in all genotypes were predominantly papillary adenomas, and tumours from K-ras+/− and K-rastmΔ4A/− mice exhibited phospho-Erk1/2 and phospho-Akt staining. Hence (1) mutationally activated K-ras 4B is sufficient to activate the Raf/MEK/ERK(MAPK) and PI3-K/Akt pathways, and initiate lung tumorigenesis, (2) when expressed with activated K-ras 4B, mutationally activated K-ras 4A further promotes lung tumour formation and growth (both in the presence and absence of its wild-type isoform) but does not affect either tumour pathology or progression, and (3) wild-type K-ras 4B, either directly or indirectly, reduces tumour number and size.  相似文献   

13.
The N-terminal segment of the Semliki Forest virus polyprotein is an intramolecular serine protease that cleaves itself off after the invariant Trp267 from a viral polyprotein and generates the mature capsid protein. After this autoproteolytic cleavage, the free carboxylic group of Trp267 interacts with the catalytic triad (His145, Asp167 and Ser219) and inactivates the enzyme. We have deleted the last 1-7 C-terminal residues of the mature capsid protease to investigate whether removal of Trp267 regenerates enzymatic activity. Although the C-terminally truncated polypeptides do not adopt a defined three-dimensional structure and show biophysical properties observed in natively unfolded proteins, they efficiently catalyse the hydrolysis of aromatic amino acid esters, with higher catalytic efficiency for tryptophan compared to tyrosine esters and kcat/KM values up to 5 × 105 s−1 M−1. The enzymatic mechanism of these deletion variants is typical of serine proteases. The pH enzyme activity profile shows a pKa1 = 6.9, and the Ser219Ala substitution destroys the enzymatic activity. In addition, the fast release of the first product of the enzymatic reaction is followed by a steady-state second phase, indicative of formation and breakdown of a covalent acyl-enzyme intermediate. The rates of acylation and deacylation are k2 = 4.4±0.6 s−1 and k3 = 1.6±0.5 s−1, respectively, for a tyrosine derivative ester substrate, and the amplitude of the burst phase indicates that 95% of the enzyme molecules are active. In summary, our data provide further evidence for the potential catalytic activity of natively unfolded proteins, and provide the basis for engineering of alphavirus capsid proteins towards hydrolytic enzymes with novel specificities.  相似文献   

14.
The β-1,4-galactosyltransferase (β-1,4-GalT) V whose human and mouse genes were cloned by us has been suggested to be involved in the biosynthesis of N-glycans and O-glycans, and lactosylceramide. To determine its biological function, β-1,4-GalT V (B4galt5) mutant mice obtained by a gene trap method were analyzed. Analysis of pre- and post-implantation embryos revealed that the B4galt5−/− mice die by E10.5 while B4galt5+/− mice were born and grown normally. Histological study showed that most tissues are formed in B4galt5−/− embryos but their appearance at E10.5 is close to that of B4galt5+/− embryos at E9.0-9.5. The results indicate that the growth is delayed by one to one and half day in B4galt5−/− embryos when compared to B4galt5+/− embryos, which results in early death of the embryos by E10.5, probably due to hematopoietic and/or placental defects.  相似文献   

15.
The copper-transporting ATPases Atp7A and Atp7B play a major role in controlling intracellular copper levels. In addition, they are believed to deliver copper to the copper-requiring proteins destined for the secretory vesicles. One cuproprotein, dopamine -hydroxylase (DBH) functions in the biosynthesis of norepinephrine and epinephrine, neurohormones in endocrine and nervous tissue. To evaluate the consequences of loss of Atp7B on the function of DBH, the level of proteins in adrenal gland were compared between normal mice and mice containing a null mutation in the ATP7B gene. The levels of DBH, as well as another vesicular protein, chromogranin A, are reduced in the ATP7B–/– mice. In addition to the lower level of enzyme, the products of DBH catalytic activity, norepinephrine and epinephrine, are also decreased. Although these changes are a consequence of ATP7B gene function, Atp7B mRNA is not normally expressed in the adrenal gland. Instead, Atp7A mRNA is present. The levels of copper and DBH RNA within adrenals of the ATP7B–/– mice are not different from the wild type. The results of these experiments suggest that copper-requiring enzymes are affected by a loss of ATP7B even in tissue not normally expressing this protein. Therefore the multisystemic effects observed in Wilson disease, the human disorder characterized by mutation in ATP7B, may be a secondary consequence of the major accumulation of copper in liver.  相似文献   

16.
A two-dimensional copper(II) polymer with formula of [Cu4(H2O)4(dmapox)2(btc)]n · 10nH2O, where dmapox is the dianion of N,N′-bis[3-(dimethylamino)propyl]oxamide and btc is the tetra-anion of 1,2,4,5-benzenetetracarboxylic acid, was synthesized and characterized by elemental analysis, conductivity measurement, IR and electronic spectral studies. The crystal structure of the complex has been determined by X-ray single-crystal diffraction. The structure consists of crystallized water molecules and neutral two-dimensional copper(II) coordination polymeric networks constructed both by the bis-tridentate μ-trans-dmapox and tetra-monodentate μ4-btc bridging ligands. Each btc ligand links four trans-dmapox-bridged binuclear copper(II) building blocks [Cu2(H2O)2(trans-dmapox)]2+ and each binuclear copper(II) building block attaches to two btc ligands forming an infinite 2D layer which consists of 4+4 grids with dimensions of 13.563(5) × 15.616(5) Å. The environment around the copper(II) atom can be described as a distorted square-pyramid and the Cu?Cu separations through μ-trans-dmapox and μ4-btc bridging ligands are 5.225 Å (Cu1-Cu1i), 5.270 Å (Cu2-Cu2ii), 6.115 Å (Cu1-Cu2), 9.047 Å (Cu1-Cu2iii) and 10.968 Å (Cu1-Cu1iii), respectively. Abundant hydrogen bonds among the crystallized, the coordinated water molecules, and the uncoordinated carboxyl oxygen atoms cross-link the two-dimensional layers into an overall three-dimensional channel-like framework. The interaction of the copper(II) polymer with calf thymus DNA (CT-DNA) has been investigated by using absorption, emission spectral and electrochemical techniques. The results indicate that the copper(II) polymer interacts with DNA strongly (Kb = 4.8 × 105 M−1 and Ksv = 1.1 × 104) and the interaction mode between the copper(II) polymer and DNA may be the groove binding. To the best of our knowledge, this is the first report about the crystal structure and DNA-binding studies of a two-dimensional copper(II) polymer bridged both by the trans-oxamidate and btc ligands.  相似文献   

17.
Sessile organisms may experience chronic exposure to copper that is released into the marine environment from antifoulants and stormwater runoff. We have identified the site of damage caused by copper to the symbiotic cnidarian, Zoanthus robustus (Anthozoa, Hexacorallia). External changes to the zoanthids were apparent when compared with controls. The normally flexible bodies contracted and became rigid. Histological examination of the zoanthid tissue revealed that copper had caused sub-cellular changes to proteins within the extracellular matrix (ECM) of the tubular body. Collagen in the ECM and the internal septa increased in thickness to five and seven times that of controls respectively. The epithelium, which stained for elastin, was also twice as thick and tough to cut, but exposure to copper did not change the total amount of desmosine which is found only in elastin. We conclude that copper stimulated collagen synthesis in the ECM and also caused cross-linking of existing proteins. However, there was no expulsion of the symbiotic algae (Symbiodinium sp.) and no effect on algal pigments or respiration (44, 66 and 110 µg Cu L1). A decrease in net photosynthesis was observed only at the highest copper concentration (156 µg Cu L1). These results show that cnidarians may be more susceptible to damage by copper than their symbiotic algae.  相似文献   

18.
19.
20.
Cytokine and activation of lymphocytes are critical for tumor growth. We investigated whether interleukin (IL)-32β overexpression changes other cytokine levels and activates cytotoxic lymphocyte, and thus modify tumor growth. Herein, IL-32β inhibited B16 melanoma growth in IL-32β-overexpressing transgenic mice (IL-32β mice), and downregulated the expressions of anti-apoptotic proteins (bcl-2, IAP, and XIAP) and cell growth regulatory proteins (Ki-67 antigen (Ki-67) and proliferating cell nuclear antigen (PCNA)), but upregulated the expressions of pro-apoptotic proteins (bax, cleaved caspase-3, and cleaved caspase-9). IL-32β also inhibited colon and prostate tumor growth in athymic nude mice inoculated with IL-32β-transfected SW620 colon or PC3 prostate cancer cells. The forced expression of IL-32β also inhibited cell growth in cultured colon and prostate cancer cells, and these inhibitory effects were abolished by IL-32 small interfering RNA (siRNA). IL-10 levels were elevated, but IL-1β, IL-6, and tumor necrosis factor-alpha (TNF-α) levels were reduced in the tumor tissues and spleens of IL-32β mice, and athymic nude mice. The number of cytotoxic T (CD8+) and natural killer (NK) cells in tumor tissues, spleen, and blood was significantly elevated in IL-32β mice and athymic nude mice inoculated with IL-32β-transfected cancer cells. Constituted activated NF-κB and STAT3 levels were reduced in the tumor tissues of IL-32β mice and athymic nude mice, as well as in IL-32β-transfected cultured cancer cells. These findings suggest that IL-32β inhibits tumor growth by increasing cytotoxic lymphocyte numbers, and by inactivating the NF-κB and STAT3 pathways through changing of cytokine levels in tumor tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号