首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Recent studies have revealed that the base selection step of DNA polymerases (pol) plays a role in prevention of DNA replication errors. We investigated whether base selection is required for the DNA replication fidelity of pol α and genomic stability in human cells. We introduced an Leu864 to Phe substitution (L864F) into human pol α and performed an in vitro LacZα forward mutation assay. Our results showed that the overall mutation rate was increased by 180-fold as compared to that of the wild-type. Furthermore, steady state kinetics analyses consistently showed that L864F pol α had a decreased discrimination ability between correct and incorrect nucleotide incorporation, as well as between matched and mismatched primer termini. L864F pol α also exhibited increased translesion activity over the abasic, etheno-A, O4-methyl-T, and O6-methyl-G sites. In addition, our steady state kinetics analyses supported the finding of increased translesion activity of L864F pol α over O6-methyl-G. We also established stable clones transfected with pola1L864F utilizing the human cancer cell line HCT116. Using the HPRT gene as a reporter, the spontaneous mutation rate of pola1L864F cells was determined to be 2.4-fold greater than that of wild-type cells. Mutation assays were also carried out using cells transiently transfected with the wild-type or pola1L864F, and increased mutant frequencies were observed in pola1L864F cells under both spontaneous and methyl methanesulfonate-induced conditions. Together, our results indicate that the base selection step in human pol α functions to prevent DNA replication errors and maintain genomic integrity in HCT116 cells.  相似文献   

4.
Translesion synthesis polymerases (TLS Pols) are required to tolerate DNA lesions that would otherwise cause replication arrest and cell death. Aberrant expression of these specialized Pols may be responsible for increased mutagenesis and loss of genome integrity in human cancers. The molecular events that control the usage of TLS Pols in non-pathological conditions remain largely unknown. Here, we show that aberrant recruitment of TLS Polκ to replication forks results in genomic instability and can be mediated through the loss of the deubiquitinase USP1. Moreover, artificial tethering of Polκ to proliferating cell nuclear antigen (PCNA) circumvents the need for its ubiquitin-binding domain in the promotion of genomic instability. Finally, we show that the loss of USP1 leads to a dramatic reduction of replication fork speed in a Polκ-dependent manner. We propose a mechanism whereby reversible ubiquitination of PCNA can prevent spurious TLS Pol recruitment and regulate replication fork speed to ensure the maintenance of genome integrity.  相似文献   

5.
Recently, evidence has accumulated that mutations in DNA repair genes might be associated with certain steps in carcinogenesis. The DNA polymerase gene is one of the DNA repair genes, and mutations in it have been detected in 83% of human colorectal cancers. To assess the involvement of polymerase gene mutations in the development of human prostate cancers, we performed sequence analyses of human DNA samples. Unexpectedly, we found six regions that were polymorphic. This information should be taken into consideration at the time of sequence analysis of the DNA polymerase gene.s  相似文献   

6.
This review describes the properties of some specialized DNA polymerases participating in translesion synthesis of DNA. Special attention is given to these properties in vivo. DNA polymerase iota (Polι) of mammals has very unusual features and is extremely error-prone. Based on available data, a hypothesis is proposed explaining how mammalian cells can explore the unusual features of DNA Polι to bypass DNA damages and to simultaneously prevent its mutagenic potential.  相似文献   

7.
We have previously described a low-molecular-weight DNA polymerase (52 kDa) from wheat embryo: DNA polymerase CI (pol CI). This enzyme shares some biochemical properties with animal DNA polymerase (pol ). In this report, we analyse pol CI in wheat embryo germination. Immunodetection and measurement of the enzyme activity show that wheat pol CI remains at a constant level during germination, whereas dramatic changes of the replicative DNA polymerase A and B activities were previously reported. We observe that the level of pol CI in physiological conditions (embryo germination and dividing cell culture) is in agreement with a pol -type DNA polymerase. By microsequencing of the electroblotted 52 kDa polypeptide, we determined the sequence of a dodecapeptide from the N-terminal region. A comparative analysis of the N-terminal pol CI peptide with some mammalian pol sequences shows a clear homology with helix 1 of the N-terminal ssDNA domain (residues 15 to 26) of the rat pol . Thus, the helical structure of this region should be conserved in the wheat peptide. This represents the first evidence of a partial primary structure of a -type DNA polymerase in plants.  相似文献   

8.
Human DNA polymerase ι is a lesion bypass polymerase of the Y family, capable of incorporating nucleotides opposite a variety of lesions in both near error-free and error-prone bypass. With undamaged templating purines polymerase ι normally favors Hoogsteen base pairing. Polymerase ι can incorporate nucleotides opposite a benzo[a]pyrene-derived adenine lesion (dA*); while mainly error-free, the identity of misincorporated bases is influenced by local sequence context. We performed molecular modeling and molecular dynamics simulations to elucidate the structural basis for lesion bypass. Our results suggest that hydrogen bonds between the benzo[a]pyrenyl moiety and nearby bases limit the movement of the templating base to maintain the anti glycosidic bond conformation in the binary complex in a 5′-CAGA*TT-3′ sequence. This facilitates correct incorporation of dT via a Watson−Crick pair. In a 5′-TTTA*GA-3′ sequence the lesion does not form these hydrogen bonds, permitting dA* to rotate around the glycosidic bond to syn and incorporate dT via a Hoogsteen pair. With syn dA*, there is also an opportunity for increased misincorporation of dGTP. These results expand our understanding of the versatility and flexibility of polymerase ι and its lesion bypass functions in humans.  相似文献   

9.
A gene coding for a DNA polymerase β from the Trypanosoma cruzi Miranda clone, belonging to the TcI lineage, was cloned (Miranda Tcpolβ), using the information from eight peptides of the T. cruzi β-like DNA polymerase purified previously. The gene encodes for a protein of 403 amino acids which is very similar to the two T. cruzi CL Brener (TcIIe lineage) sequences published, but has three different residues in highly conserved segments. At the amino acid level, the identity of TcI-polβ with mitochondrial polβ and polβ-PAK from other trypanosomatids was between 68–80% and 22–30%, respectively. Miranda Tc-polβ protein has an N-terminal sequence similar to that described in the mitochondrial Crithidia fasciculata polβ, which suggests that the TcI-polβ plays a role in the organelle. Northern and Western analyses showed that this T. cruzi gene is highly expressed both in proliferative and non-proliferative developmental forms. These results suggest that, in addition to replication of kDNA in proliferative cells, this enzyme may have another function in non-proliferative cells, such as DNA repair role similar to that which has extensively been described in a vast spectrum of eukaryotic cells.  相似文献   

10.
Human DNA Pol κ is a polymerase enzyme, specialized for near error-free bypass of certain bulky chemical lesions to DNA that are derived from environmental carcinogens present in tobacco smoke, automobile exhaust and cooked food. By employing ab initio QM/MM–MD (Quantum Mechanics/Molecular Mechanics–Molecular Dynamics) simulations with umbrella sampling, we have determined the entire free energy profile of the nucleotidyl transfer reaction catalyzed by Pol κ and provided detailed mechanistic insights. Our results show that a variant of the Water Mediated and Substrate Assisted (WMSA) mechanism that we previously deduced for Dpo4 and T7 DNA polymerases is preferred for Pol κ as well, suggesting its broad applicability. The hydrogen on the 3′-OH primer terminus is transferred through crystal and solvent waters to the γ-phosphate of the dNTP, followed by the associative nucleotidyl transfer reaction; this is facilitated by a proton transfer from the γ-phosphate to the α,β-bridging oxygen as pyrophosphate leaves, to neutralize the evolving negative charge. MD simulations show that the near error-free incorporation of dCTP opposite the major benzo[a]pyrene—derived dG lesion is compatible with the WMSA mechanism, allowing for an essentially undisturbed pentacovalent phosphorane transition state, and explaining the bypass of this lesion with little mutation by Pol κ.  相似文献   

11.
The efficiency and fidelity of nucleotide incorporation and next-base extension by DNA polymerase (pol) κ past N(2)-ethyl-Gua were measured using steady-state and rapid kinetic analyses. DNA pol κ incorporated nucleotides and extended 3' termini opposite N(2)-ethyl-Gua with measured efficiencies and fidelities similar to that opposite Gua indicating a role for DNA pol κ at the insertion and extension steps of N(2)-ethyl-Gua bypass. The DNA pol κ was maximally activated to similar levels by a twenty-fold lower concentration of Mn(2+) compared to Mg(2+). In addition, the steady state analysis indicated that high fidelity DNA pol κ-catalyzed N(2)-ethyl-Gua bypass is Mg(2+)-dependent. Strikingly, Mn(2+) activation of DNA pol κ resulted in a dramatically lower efficiency of correct nucleotide incorporation opposite both N(2)-ethyl-Gua and Gua compared to that detected upon Mg(2+) activation. This effect is largely governed by diminished correct nucleotide binding as indicated by the high K(m) values for dCTP insertion opposite N(2)-ethyl-Gua and Gua with Mn(2+) activation. A rapid kinetic analysis showed diminished burst amplitudes in the presence of Mn(2+) compared to Mg(2+) indicating that DNA pol κ preferentially utilizes Mg(2+) activation. These kinetic data support a DNA pol κ wobble base pairing mechanism for dCTP incorporation opposite N(2)-ethyl-Gua. Furthermore, the dramatically different polymerization efficiencies of the Y-family DNA pols κ and ι in the presence of Mn(2+) suggest a metal ion-dependent regulation in coordinating the activities of these DNA pols during translesion synthesis.  相似文献   

12.
Oxidized DNA precursors can cause mutagenesis and carcinogenesis when they are incorporated into the genome. Some human Y-family DNA polymerases (Pols) can effectively incorporate 8-oxo-dGTP, an oxidized form of dGTP, into a position opposite a template dA. This inappropriate G:A pairing may lead to transversions of A to C. To gain insight into the mechanisms underlying erroneous nucleotide incorporation, we changed amino acids in human Polη and Polκ proteins that might modulate their specificity for incorporating 8-oxo-dGTP into DNA. We found that Arg61 in Polη was crucial for erroneous nucleotide incorporation. When Arg61 was substituted with lysine (R61K), the ratio of pairing of dA to 8-oxo-dGTP compared to pairing of dC was reduced from 660:1 (wild-type Polη) to 7 : 1 (R61K). Similarly, Tyr112 in Polκ was crucial for erroneous nucleotide incorporation. When Tyr112 was substituted with alanine (Y112A), the ratio of pairing was reduced from 11: 1 (wild-type Polκ) to almost 1: 1 (Y112A). Interestingly, substitution at the corresponding position in Polη, i.e. Phe18 to alanine, did not alter the specificity. These results suggested that amino acids at distinct positions in the active sites of Polη and Polκ might enhance 8-oxo-dGTP to favor the syn conformation, and thus direct its misincorporation into DNA.  相似文献   

13.
Arana ME  Potapova O  Kunkel TA  Joyce CM 《Biochemistry》2011,50(46):10126-10135
The fidelity of DNA synthesis by A-family DNA polymerases ranges from very accurate for bacterial, bacteriophage, and mitochondrial family members to very low for certain eukaryotic homologues. The latter include DNA polymerase ν (Pol ν) which, among all A-family polymerases, is uniquely prone to misincorporating dTTP opposite template G in a highly sequence-dependent manner. Here we present a kinetic analysis of this unusual error specificity, in four different sequence contexts and in comparison to Pol ν's more accurate A-family homologue, the Klenow fragment of Escherichia coli DNA polymerase I. The kinetic data strongly correlate with rates of stable misincorporation during gap-filling DNA synthesis. The lower fidelity of Pol ν compared to that of Klenow fragment can be attributed primarily to a much lower catalytic efficiency for correct dNTP incorporation, whereas both enzymes have similar kinetic parameters for G-dTTP misinsertion. The major contributor to sequence-dependent differences in Pol ν error rates is the reaction rate, k(pol). In the sequence context where fidelity is highest, k(pol) for correct G-dCTP incorporation by Pol ν is ~15-fold faster than k(pol) for G-dTTP misinsertion. However, in sequence contexts where the error rate is higher, k(pol) is the same for both correct and mismatched dNTPs, implying that the transition state does not provide additional discrimination against misinsertion. The results suggest that Pol ν may be fine-tuned to function when high enzyme activity is not a priority and may even be disadvantageous and that the relaxed active-site specificity toward the G-dTTP mispair may be associated with its cellular function(s).  相似文献   

14.
The accessory subunit of mitochondrial DNA polymerase γ, POLGβ, functions as a processivity factor in vitro. Here we show POLGβ has additional roles in mitochondrial DNA metabolism. Mitochondrial DNA is arranged in nucleoprotein complexes, or nucleoids, which often contain multiple copies of the mitochondrial genome. Gene-silencing of POLGβ increased nucleoid numbers, whereas over-expression of POLGβ reduced the number and increased the size of mitochondrial nucleoids. Both increased and decreased expression of POLGβ altered nucleoid structure and precipitated a marked decrease in 7S DNA molecules, which form short displacement-loops on mitochondrial DNA. Recombinant POLGβ preferentially bound to plasmids with a short displacement-loop, in contrast to POLGα. These findings support the view that the mitochondrial D-loop acts as a protein recruitment centre, and suggest POLGβ is a key factor in the organization of mitochondrial DNA in multigenomic nucleoprotein complexes.  相似文献   

15.
The human polymerase α (pol α) is a promising target for the therapy of cancer e.g. of the skin. The authors recently built a homology model of the active site of human DNA pol α. This 3D model was now used for molecular modelling studies with eight novel analogues of 2-butylanilino-dATP, which is a highly selective nucleoside inhibitor of mammalian pol α. Our results suggest that a higher hydrophobicity of a carbohydrate side chain (pointing into a spacious hydrophobic cavity) may enhance the strength of the interaction with the target protein. Moreover, acyclic acyclovir-like derivatives outperformed those with a sugar-moiety, indicating that structural flexibility and higher conformational adaptability has a positive effect on the receptor affinity. Cytotoxicity tests confirmed our theoretical findings. Besides, one of our most promising compounds in the molecular modelling studies revealed high selectivity for the SCC-25 cell line derived from squamous cell carcinoma in man.  相似文献   

16.
The human polymerase α (pol α) is a promising target for the therapy of cancer e.g. of the skin. The authors recently built a homology model of the active site of human DNA pol α. This 3D model was now used for molecular modelling studies with eight novel analogues of 2-butylanilino-dATP, which is a highly selective nucleoside inhibitor of mammalian pol α. Our results suggest that a higher hydrophobicity of a carbohydrate side chain (pointing into a spacious hydrophobic cavity) may enhance the strength of the interaction with the target protein. Moreover, acyclic acyclovir-like derivatives outperformed those with a sugar-moiety, indicating that structural flexibility and higher conformational adaptability has a positive effect on the receptor affinity. Cytotoxicity tests confirmed our theoretical findings. Besides, one of our most promising compounds in the molecular modelling studies revealed high selectivity for the SCC-25 cell line derived from squamous cell carcinoma in man.  相似文献   

17.
Indirect immunofluorescence microscopy with monoclonal antibody against DNA polymerase α revealed the intranuclear localization of DNA polymerase α in G1, S, and G2 phases of transformed human cells, and dispersed cytoplasmic distribution during mitosis. In the quiescent, G0 phase of normal human skin fibroblasts or lymphocytes, the α-enzyme was barely detectable by either immunofluorescence or enzyme activity. By exposing cells to proliferation stimuli, however, DNA polymerase a appeared in the nuclei just prior to onset of DNA synthesis, increased rapidly during S phase, reached the maximum level at late S and G2 phases, and was then redistributed to the daughter cells through mitosis. It was also found that the increase in the amount of DNA polymerase a by proliferation stimuli was not affected by inhibition of DNA synthesis with aphidicolin or hydroxyurea.  相似文献   

18.
A γ-like DNA polymerase devoid of DNA polymerase-α and -β activities was prepared from the nuclear fraction of blastulae of the sea urchin, Hemicentrotus pulcherrimus. The enzyme sedimented at the position of an approximate sedimentation coefficient of 3.3 S under high salt conditions by sucrose gradient centrifugation. An isoelectric point was determined to be pH 5.8. The enzyme activity was sensitive to sulfhydryl blocking reagents. Poly(rA) · oligo (dT)12–18 followed by poly(dA) · oligo(dT)12–18 was effectively utilized as a template-primer. From the above results, this polymerase seems to resemble the vertebrate DNA polymerase-γ.  相似文献   

19.
TAp63α, a homolog of the p53 tumor suppressor, is a quality control factor in the female germline. Remarkably, already undamaged oocytes express high levels of the protein, suggesting that TAp63α's activity is under tight control of an inhibitory mechanism. Biochemical studies have proposed that inhibition requires the C-terminal transactivation inhibitory domain. However, the structural mechanism of TAp63α inhibition remains unknown. Here, we show that TAp63α is kept in an inactive dimeric state. We reveal that relief of inhibition leads to tetramer formation with ~20-fold higher DNA affinity. In vivo, phosphorylation-triggered tetramerization of TAp63α is not reversible by dephosphorylation. Furthermore, we show that a helix in the oligomerization domain of p63 is crucial for tetramer stabilization and competes with the transactivation domain for the same binding site. Our results demonstrate how TAp63α is inhibited by complex domain-domain interactions that provide the basis for regulating quality control in oocytes.  相似文献   

20.
The base excision DNA repair (BER) pathway known to occur in Caenorhabditis elegans has not been well characterized. Even less is known about the DNA polymerase (pol) requirement for the gap-filling step during BER. We now report on characterization of in vitro uracil-DNA initiated BER in C. elegans. The results revealed single-nucleotide (SN) gap-filling DNA polymerase activity and complete BER. The gap-filling polymerase activity was not due to a DNA polymerase β (pol β) homolog, or to another X-family polymerase, since computer-based sequence analyses of the C. elegans genome failed to show a match for a pol β-like gene or other X-family polymerases. Activity gel analysis confirmed the absence of pol β in the C. elegans extract. BER gap-filling polymerase activity was partially inhibited by both dideoxynucleotide and aphidicolin. The results are consistent with a combination of both replicative polymerase(s) and lesion bypass/BER polymerase pol θ contributing to the BER gap-filling synthesis. Involvement of pol θ was confirmed in experiments with extract from pol θ null animals. The presence of the SN BER in C. elegans is supported by these results, despite the absence of a pol β-like enzyme or other X-family polymerase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号