首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
H1 histones are progressively phosphorylated during the cell cycle. The number of phosphorylated sites is zero to three in late S phase and increases to five or six in late G2 phase and M phase. It is assumed that this phosphorylation modulates chromatin condensation and decondensation, but its specific role remains unclear. Recently, it was shown that the somatic H1 histone subtype H1.5 becomes pentaphosphorylated during mitosis, with phosphorylated threonine 10 being the last site to be phosphorylated. We have generated an antiserum specific for human H1.5 phosphorylated at threonine 10. Immunofluorescence labeling of HeLa cells with this antiserum revealed that the phosphorylation at this site appears in prometaphase and disappears in telophase, and that this hyperphosphorylated form of H1.5 is mainly chromatin-bound in metaphase when chromatin condensation is maximal. In search of the kinase responsible for the phosphorylation at this site, we found that threonine 10 of H1.5 can be phosphorylated by glycogen synthase kinase-3 in vitro, but not by cyclin-dependent kinase 1/cyclin B and cyclin-dependent kinase 5/p35, respectively. Furthermore, addition of specific glycogen synthase kinase-3 inhibitors led to a reduction in phosphorylation at this site both in vivo and in vitro.  相似文献   

3.
4.
The adaptor protein Tks5/FISH (tyrosine kinase substrate 5/five SH3 domains, hereafter termed Tks5) is a crucial component of a protein network that controls the invasiveness of cancer cells and progression of Alzheimer's disease. Tks5 consists of an amino-terminal PX domain that is followed by five SH3 domains (SH3A-E), and two different splice variants are expressed. We identified son of sevenless-1 (Sos1) as a novel binding partner of Tks5 and found colocalization of Tks5 with Sos1 in human epithelial lung carcinoma (A549) cells and in podosomes of Src-transformed NIH 3T3 cells. We observe synergistic binding of SH3A and SH3B to Sos1 when peptide arrays are used, indicating that the tandem SH3A and SH3B domains of Tks5 can potentially bind in a superSH3 binding mode, as was described for the homologous protein p47phox. These results are further corroborated by pull-down assays and isothermal titration calorimetry showing that both intact SH3 domains are required for efficient binding to the entire proline-rich domain of Sos1. The presence of a basic insertion between the SH3A and SH3B domains in the long splice variant of Tks5 decreases the affinity to Sos1 isoforms about 10-fold as determined by analytical ultracentrifugation. Furthermore, it leads to an alteration in the recognition of binding motifs for the interaction with Sos1: While the insertion abrogates the interaction with the majority of peptides derived from the proline-rich domains of Sos1 and dynamin that are recognized by the short splice isoform, it enables binding to a different set of peptides including a sequence comprising the splice insertion in the long isoform of Sos1 (Sos1_2). In the absence of the basic insertion, Tks5 was found to bind a range of Sos1 and dynamin peptides including conventional proline-rich motifs and atypical recognition sequences. Hereby, the tandem SH3 domains in Tks5 employ two distinct types of binding modes: One class of peptides is recognized by single SH3 domains, whereas a second class of peptides requires the presence of both domains to bind synergistically. We conclude that the tandem SH3A and SH3B domains of Tks5 constitute a versatile module for the implementation of isoform-specific protein-protein interactions.  相似文献   

5.
The core 1 structure Galβ1-3GalNAcα1-Ser/Thr (T antigen), the major constituent of O-glycan core structure, is synthesized by cooperation of core 1 synthase (C1GalT) and its specific molecular chaperone, Cosmc. The chaperone function of Cosmc has been well investigated biochemically. In this study, we established monoclonal antibodies specifically recognizing either C1GalT or Cosmc, respectively, and investigated the sub-cellular localization of each protein to elucidate how they cooperate to synthesize the core 1 structure.A sequential immunocytochemical analysis of the human colon cancer cell line, LSB, demonstrated different localization of two proteins. C1GalT was localized in Golgi apparatus, while Cosmc was localized in endoplasmic reticulum. In contrast, the LSC cells, which do not have core 1 synthase activity due to a missense mutation in the Cosmc gene, did not express the C1GalT protein. Although the treatment with a proteasome inhibitor, lactacystin, of LSC cells resulted in the increased expression of C1GalT protein, the distribution of C1GalT was not in Golgi apparatus as seen in LSB cells. On the contrary, overexpression of Cosmc but not C1GalT lead to precise localization of C1GalT protein, which distributed in Golgi apparatus and recovered the core 1 synthase activity in LSC cells. These results suggest that the intracellular dynamics of C1GalT is controlled by its specific molecular chaperon, Cosmc, in association with core 1 synthase activity.  相似文献   

6.
Src kinase plays an important role in several signaling and regulation mechanisms in vivo. Enzymatic activity is tightly regulated through the phosphorylation and dephosphorylation of tyrosine 527, which is placed at the C-terminal tail. Here, we have addressed domain rearrangements involved in the regulation mechanism of Src kinase in solution using small-angle X-ray scattering. In the phosphorylated wild-type form of Src kinase corresponding to the inactive state of the protein, a single conformation compatible with a closed crystallographic structure was found in solution. In the Y527F point mutant representing the active state, analysis of scattering data reveals an equilibrium between two differently populated conformations differing in the radius of gyration by 5 Å. The major species (85% of the total population) presents a closed conformation indistinguishable from the crystallographic structure of the inactive state. The minor species (15% of the total population) is an open conformation similar to the crystallographic structure in the active state. The latter structure has the SH3, SH2, and SH2-catalytic domain linker assembled as a pseudo-two-domain protein. The regulation model emerging from this study, including at least three different conformational states, allows the tight regulation of the enzyme without compromising fast response in the presence of natural targets.  相似文献   

7.
Monoclonal antibodies are traditionally used to block the function of a specific target in a given disease. However, some diseases are the consequence of multiple components or pathways and not the result of a single mediator; thus, blocking at a single point may not optimally control disease. Antibodies that simultaneously block the functions of two or more disease-associated targets are now being developed. Herein, we describe the design, expression, and characterization of several oligospecific antibody formats that are capable of binding simultaneously to two or three different antigens. These constructs were generated by genetically linking single-chain Fv fragments to the N-terminus of the antibody heavy and light chains and to the C-terminus of the antibody CH3 domain. The oligospecific antibodies were expressed in mammalian cells, purified to homogeneity, and characterized for binding to antigens, Fcγ receptors, FcRn, and C1q. In addition, the oligospecific antibodies were assayed for effector function, protease susceptibility, thermal stability, and size distribution. We demonstrate that these oligospecific antibody formats maintain high expression level, thermostability, and protease resistance. The in vivo half-life, antibody-dependent cellular cytotoxicity function, and binding ability to Fcγ receptors and C1q of the test oligospecific antibodies remain similar to the corresponding properties of their parental IgG antibodies. The excellent expression, biophysical stability, and potential manufacturing feasibility of these multispecific antibody formats suggest that they will provide a scaffold template for the construction of similar molecules to target multiple antigens in complex diseases.  相似文献   

8.
Cholera toxin (CT) moves from the cell surface to the endoplasmic reticulum (ER) by retrograde vesicular transport. The catalytic subunit of CT (CTA1) then crosses the ER membrane and enters the cytosol in a process that involves the quality control mechanism of ER-associated degradation. The molecular details of this dislocation event have not been fully characterized. Here, we report that thermal instability in the CTA1 subunit—specifically, the loss of CTA1 tertiary structure at 37 °C—triggers toxin dislocation. Biophysical studies found that glycerol preferentially stabilized the tertiary structure of CTA1 without having any noticeable effect on the thermal stability of its secondary structure. The thermal disordering of CTA1 tertiary structure normally preceded the perturbation of its secondary structure, but in the presence of 10% glycerol the temperature-induced loss of CTA1 tertiary structure occurred at higher temperatures in tandem with the loss of CTA1 secondary structure. The glycerol-induced stabilization of CTA1 tertiary structure blocked CTA1 dislocation from the ER and instead promoted CTA1 secretion into the extracellular medium. This, in turn, inhibited CT intoxication. Glycerol treatment also inhibited the in vitro degradation of CTA1 by the core 20S proteasome. Collectively, these findings indicate that toxin thermal instability plays a key role in the intoxication process. They also suggest the stabilization of CTA1 tertiary structure is a potential goal for novel antitoxin therapeutic agents.  相似文献   

9.
Lipopolysaccharide (LPS) is a major component of the outer membrane of Gram-negative bacteria. It has strong toxicity and might cause sepsis or septic shock. Thus early detection of LPS and neutralization of LPS toxicity are required. We obtained several new LPS-binding peptides using a phage display method. We synthesized 3 of these peptides and analyzed their binding affinity and capacity to LPS. One of these peptides, named Li5-001, showed high binding affinity to LPS and lipid A; the Kd values were 10 and 1 nM, respectively. Li5-001 showed a high binding capacity to LPS, and was estimated to bind 130 ng LPS/mg, which is higher than that of polymyxin B (80 ng LPS/mg); however, its LPS-neutralizing activity was low. Li5-001 coupled with beads will be useful for eliminating endotoxin contamination from pharmaceuticals. Its low LPS-neutralizing activity allows to be used in the Limulus amebocyte lysate test without eluting LPS from the Li5-001 coupled beads.  相似文献   

10.
Deficiency in the PTS2 protein import pathway due to mutations in PEX7 gene results in the rhizomelic chondrodysplasia punctata (RCDP) type 1. In the present study, we have reported a novel missense mutation, W75R, in the PEX7 gene in an Iranian patient with the RCDP type 1. The inability of PEX7 protein to transport PTS2 containing proteins including peroxisomal 3-ketoacyl-CoA thiolase and PTS2-EGFP protein to the surface of the peroxisomes showed that the W75R mutation in PEX7 gene severely impaired the function of PEX7 protein and was responsible for RCDP type 1 in this patient.  相似文献   

11.
Marc-André Caron 《FEBS letters》2009,583(9):1528-1534
Since hypoxia might contribute to the development of muscle atrophy, we wished to provide direct evidence linking hypoxia to muscle atrophy. By evaluating protein degradation and synthesis in hypoxic myotubes we found a significant reduction in total protein content. Using functional assays we observed protein degradation elevation in the first 24 h while synthesis was maintained during this period and then significantly decrease at 48 h. These results demonstrate a temporal regulation of protein homeostasis, whereby elevated protein degradation is followed by a reduction in synthesis. These results are comparable to the cellular adaptation seen during development of muscle atrophy.  相似文献   

12.
The 10th human fibronectin type III domain ((10)Fn3) is one of several protein scaffolds used to design and select families of proteins that bind with high affinity and specificity to macromolecular targets. To date, the highest affinity (10)Fn3 variants have been selected by mRNA display of libraries generated by randomizing all three complementarity-determining region -like loops of the (10)Fn3 scaffold. The sub-nanomolar affinities of such antibody mimics have been attributed to the extremely large size of the library accessible by mRNA display (10(12) unique sequences). Here we describe the selection and affinity maturation of (10)Fn3-based antibody mimics with dissociation constants as low as 350 pM selected from significantly smaller libraries (10(7)-10(9) different sequences), which were constructed by randomizing only 14 (10)Fn3 residues. The finding that two adjacent loops in human (10)Fn3 provide a large enough variable surface area to select high-affinity antibody mimics is significant because a smaller deviation from wild-type (10)Fn3 sequence is associated with a higher stability of selected antibody mimics. Our results also demonstrate the utility of an affinity-maturation strategy that led to a 340-fold improvement in affinity by maximizing sampling of sequence space close to the original selected antibody mimic. A striking feature of the highest affinity antibody mimics selected against lysozyme is a pair of cysteines on adjacent loops, in positions 28 and 77, which are critical for the affinity of the (10)Fn3 variant for its target and are close enough to form a disulfide bond. The selection of this cysteine pair is structurally analogous to the natural evolution of disulfide bonds found in new antigen receptors of cartilaginous fish and in camelid heavy-chain variable domains. We propose that future library designs incorporating such an interloop disulfide will further facilitate the selection of high-affinity, highly stable antibody mimics from libraries accessible to phage and yeast surface display methods.  相似文献   

13.
Prior work has shown that iron interacts with hyperphosphorylated tau, which contributes to the formation of neurofibrillary tangles (NFTs) in Alzheimer’s disease (AD), whereas iron chelator desferrioxamine (DFO) slows down the clinical progression of the cognitive decline associated with this disease. However, the effects of DFO on tau phosphorylation in the presence or absence of iron have yet to be determined. Using amyloid precursor protein (APP) and presenilin 1 (PS1) double transgenic mouse brain as a model system, we investigated the effects and potential mechanisms of intranasal administration of DFO on iron induced abnormal tau phosphorylation. High-dose iron treatment markedly increased the levels of tau phosphorylation at the sites of Thr205, Thr231 and Ser396, whereas highly induced tau phosphorylation was abolished by intranasal administration of DFO in APP/PS1 transgenic mice. Moreover, DFO intranasal administration also decreases Fe-induced the activities of cyclin-dependent kinase 5 (CDK5) and glycogen synthase kinase 3β (GSK3β), which in turn suppressing tau phosphorylation. Cumulatively, our data show that intranasal DFO treatment exerts its suppressive effects on iron induced tau phosphorylation via CDK5 and GSK3β pathways. More importantly, elucidation of DFO mechanism in suppressing tau phosphorylation may provide insights for developing therapeutic strategies to combat AD.  相似文献   

14.
Spermidine synthase (EC 2.5.1.16) was purified to homogeneity for the cytosol of soybean (Glycine max) axes using ammonium sulfate fractionation and chromatography on DEAE-Sephacel, Sephacryl S-300, ω-aminooctyl-Sepharose and ATPA-Sepharose. The molecular mass of the enzyme estimated by gel filtration and SDS–PAGE is 74 kDa. Cadaverin and 1,6-diaminohexane could not replace putrescine as the aminopropyl acceptor. Kinetic behaviors of the substrate are consistent with a ping pong mechanism. The kinetic mechanism is further supported by direct evidence confirming the presence of an aminopropylated enzyme and identification of product, 5′-deoxy-5′-methylthioadenosine, prior to adding putrescine. The Km values for decarboxylated S-adenosylmethionine and putrescine are 0.43 μM and 32.45 μM, respectively. Optimum pH and temperature for the enzyme reaction are 8.5 and 37°C, respectively. The enzyme activity is inhibited by N-ethylmaleimide and DTNB, but stimulated by Co2+, Cu2+ and Ca2+ significantly, suggesting that these metal ions could be the cellular regulators in polyamine biosynthesis.  相似文献   

15.
The shark antigen-binding VNAR domain has the potential to provide an attractive alternative to traditional biotherapeutics based on its small size, advantageous physiochemical properties, and unusual ability to target clefts in enzymes or cell surface molecules. The VNAR shares many of the properties of the well-characterised single-domain camelid VHH but is much less understood at the molecular level. We chose the hen-egg-lysozyme-specific archetypal Type I VNAR 5A7 and used ribosome display in combination with error-prone mutagenesis to interrogate the entire sequence space. We found a high level of mutational plasticity across the VNAR domain, particularly within the framework 2 and hypervariable region 2 regions. A number of residues important for affinity were identified, and a triple mutant combining A1D, S61R, and G62R resulted in a KD of 460 pM for hen egg lysozyme, a 20-fold improvement over wild-type 5A7, and the highest KD yet reported for VNAR-antigen interactions. These findings were rationalised using structural modelling and indicate the importance of residues outside the classical complementarity determining regions in making novel antigen contacts that modulate affinity. We also located two solvent-exposed residues (G15 and G42), distant from the VNAR paratope, which retain function upon mutation to cysteine and have the potential to be exploited as sites for targeted covalent modification. Our findings with 5A7 were extended to all known NAR structures using an in-depth bioinformatic analysis of sequence data available in the literature and a newly generated VNAR database. This study allowed us to identify, for the first time, both VNAR-specific and VNAR/Ig VL/TCR Vα overlapping hallmark residues, which are critical for the structural and functional integrity of the single domain. Intriguingly, each of our designated VNAR-specific hallmarks align precisely with previously defined mutational ‘cold spots’ in natural nurse shark cDNA sequences. These findings will aid future VNAR engineering and optimisation studies towards the development of VNAR single-domain proteins as viable biotherapeutics.  相似文献   

16.
Breijo, M., Spinelli, P., Sim, R.B., and Ferreira, A. M. 1998.Echinococcus granulosus:An intraperitoneal diffusion chamber model of secondary infection in mice.Experimental Parasitology90, 270–276. The present work describes a new experimental model of secondary infection which allows, through the recovery of the parasite together with its localin vivoenvironment, examination of the local nonadaptive immune response of the infected host and the differentiation of the parasite from protoscoleces to cysts. In this model we administered protoscoleces within silicone diffusion chambers, previously implanted into the peritoneal cavities of mice. The process of designing the model involved, first, determination of the optimal time postimplantation to infect the mice and, second, evaluation of the parasite's ability to establish infection within the chambers. The optimal time for infection was considered to be after the inflammation caused by implantation of the chambers had subsided. Our results showed that by day 20 postsurgery, three parameters used as indications of inflammation (complement C3, serum amyloid P protein, and polymorphonuclear cells in the peritoneum and in the chamber contents) had reverted to their normal levels. In our study of parasite differentiation, we found that 2–3% of the total number of parasites inoculated into the chambers were recovered as viable cysts after 100 days. Throughout the infection period, the population of parasites recovered was heterogeneous; certain parasite morphologies that have not been described previously were observed. In conclusion, the use of intraperitoneal diffusion chambers offers a potential tool for investigating thein vivodifferentiation process of secondary cysts ofEchinococcus granulosusin mice and the early local interactions between host and parasite during this process.  相似文献   

17.
Tannic acid is a hydrolyzable tannin that exists in many widespread edible plants with a variety of biological activities. In this study, we found that tannic acid potently inhibited the activity of fatty acid synthase (FAS) in a concentration-dependent manner with a half-inhibitory concentration value (IC50) of 0.14 μM. The inhibition kinetic results showed that the inhibition of FAS by tannic acid was mixed competitive and noncompetitive manner with respect to acetyl-CoA and malonyl-CoA, but uncompetitive to NADPH. Tannic acid prevented the differentiation of 3T3-L1 pre-adipocytes, and thus repressed intracellular lipid accumulation. In the meantime, tannic acid decreased the expression of FAS and down-regulated the mRNA level of FAS and PPARγ during adipocyte differentiation. Further studies showed that the inhibitory effect of tannic acid did not relate to FAS non-specific sedimentation. Since FAS was believed to be a therapeutic target of obesity, these findings suggested that tannic acid was considered having potential in the prevention of obesity.  相似文献   

18.
Berberine is a natural product isolated from herbal plants such as Rhizoma coptidis which has been shown to have anti-neoplastic properties. However, the effects of berberine on the behavior of breast cancers are largely unknown. To determine if berberine might be useful in the treatment of breast cancer and its cytotoxic mechanism, we analyzed the impact of berberine treatment on differential protein expression and redox regulation in human breast cancer cell line MCF-7 using lysine- and cysteine-labeling two-dimensional difference gel electrophoresis (2D-DIGE) combined with mass spectrometry (MS). This study demonstrated that 96 and 22 protein features were significantly changed in protein expression and thiol reactivity, respectively and revealed that berberine-induced cytotoxicity in breast cancer cells involves dysregulation of protein folding, proteolysis, redox regulation, protein trafficking, cell signaling, electron transport, metabolism and centrosomal structure. Our work shows that this combined proteomic strategy provides a rapid method to study the molecular mechanisms of berberine-induced cytotoxicity in breast cancer cells. The identified targets may be useful for further evaluation as potential targets in breast cancer therapy.  相似文献   

19.
The ICT1 protein was recently reported to be a component of the human mitoribosome and to have codon-independent peptidyl-tRNA hydrolysis activity via its conserved GGQ motif, although little is known about the detailed mechanism. Here, using NMR spectroscopy, we determined the solution structure of the catalytic domain of the mouse ICT1 protein that lacks an N-terminal mitochondrial targeting signal and an unstructured C-terminal basic-residue-rich extension, and we examined the effect of ICT1 knockdown (mediated by small interfering RNA) on mitochondria in HeLa cells using flow cytometry. The catalytic domain comprising residues 69-162 of the 206-residue full-length protein forms a structure with a β1-β2-α1-β3-α2 topology and a structural framework that resembles the structure of GGQ-containing domain 3 of class 1 release factors (RFs). Half of the structure, including the GGQ-containing loop, has essentially the same sequence and structure as those in RFs, consistent with the peptidyl-tRNA hydrolysis activity of ICT1 on the mitoribosome, which is analogous to RFs. However, the other half of the structure differs in shape from the corresponding part of RF domain 3 in that in ICT1, an α-helix (α1), instead of a β-turn, is inserted between strand β2 and strand β3. A characteristic groove formed between α1 and the three-stranded antiparallel β-sheet was identified as a putative ICT1-specific functional site by a structure-based alignment. In addition, the structured domain that recognizes stop codons in RFs is replaced in ICT1 by a C-terminal basic-residue-rich extension. It appears that these differences are linked to a specific function of ICT1 other than the translation termination mediated by RFs. Flow cytometry analysis showed that the knockdown of ICT1 results in apoptotic cell death with a decrease in mitochondrial membrane potential and mass. In addition, cytochrome c oxidase activity in ICT1 knockdown cells was decreased by 35% compared to that in control cells. These results indicate that ICT1 function is essential for cell vitality and mitochondrial function.  相似文献   

20.
The 37-kDa/67-kDa laminin receptor precursor/laminin receptor (LRP/LR) acting as a receptor for prions and viruses is overexpressed in various cancer cell lines, and their metastatic potential correlates with LRP/LR levels. We analyzed the tumorigenic fibrosarcoma cell line HT1080 regarding 37-kDa/67-kDa LRP/LR levels and its invasive potential. Compared to the less invasive embryonic fibroblast cell line NIH3T3, the tumorigenic HT1080 cells display approximately 1.6-fold higher cell-surface levels of LRP/LR. We show that anti-LRP/LR tools interfere with the invasive potential of HT1080 cells. Anti-LRP/LR single-chain variable fragment antibody (scFv) iS18 generated by chain shuffling from parental scFv S18 and its full-length version immunoglobulin G1-iS18 reduced the invasive potential of HT1080 cells significantly by 37% and 38%, respectively. HT1080 cells transfected with lentiviral plasmids expressing small interfering RNAs directed against LRP mRNA showed reduced LRP levels by approximately 44%, concomitant with a significant decrease in the invasive potential by approximately 37%. The polysulfated glycans HM2602 and pentosan polysulfate (SP-54), both capable of blocking LRP/LR, reduced the invasive potential by 20% and 35%, respectively. Adhesion of HT1080 cells to laminin-1 was significantly impeded by scFv iS18 and immunoglobulin G1-iS18 by 60% and 68%, respectively, and by SP-54 and HM2602 by 80%, suggesting that the reduced invasive capacity achieved by these tools is due to the perturbation of the LRP/LR-laminin interaction on the cell surface. Our in vitro data suggest that reagents directed against LRP/LR or LRP mRNA such as antibodies, polysulfated glycans, or small interfering RNAs, previously shown to encompass an anti-prion activity by blocking or downregulating the prion receptor LRP/LR, might also be potential cancer therapeutics blocking metastasis by interfering with the LRP/LR-laminin interaction in neoplastic tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号