首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
CIN85 is a multifunctional protein that plays key roles in endocytic down-regulation of receptor tyrosine kinases, apoptosis, cell adhesion, and cytoskeleton rearrangement. Its three SH3 domains (CIN85A, CIN85B, and CIN85C) allow it to recruit multiple binding partners. To understand the manifold interactions of CIN85, we present a detailed high-resolution solution structural study of CIN85A and CIN85B binding to proline-arginine peptides derived from the cognate ligands Cbl and Cbl-b. We report the structure of CIN85B and provide evidence that both CIN85A and CIN85B, in isolation or when linked, form heterodimeric complexes with the peptides. We report unusual curved chemical shift changes for several residues of CIN85A when titrated with Cbl-b peptide, indicating the existence of more than one complex form. Here we demonstrate that CIN85A and CIN85B use different mechanisms for peptide binding.  相似文献   

2.
The Bombyx mori pheromone-binding protein (BmorPBP) undergoes a pH-dependent conformational transition from a form at basic pH, which contains an open cavity suitable for ligand binding (BmorPBPB), to a form at pH 4.5, where this cavity is occupied by an additional helix (BmorPBPA). This helix α7 is formed by the C-terminal dodecapeptide 131-142, which is flexibly disordered on the protein surface in BmorPBPB and in its complex with the pheromone bombykol. Previous work showed that the ligand-binding cavity cannot accommodate both bombykol and helix α7. Here we further investigated mechanistic aspects of the physiologically crucial ejection of the ligand at lower pH values by solution NMR studies of the variant protein BmorPBP(1-128), where the C-terminal helix-forming tetradecapeptide is removed. The NMR structure of the truncated protein at pH 6.5 corresponds closely to BmorPBPB. At pH 4.5, BmorPBP(1-128) maintains a B-type structure that is in a slow equilibrium, on the NMR chemical shift timescale, with a low-pH conformation for which a discrete set of 15N-1H correlation peaks is NMR unobservable. The full NMR spectrum was recovered upon readjusting the pH of the protein solution to 6.5. These data reveal dual roles for the C-terminal tetradecapeptide of BmorPBP in the mechanism of reversible pheromone binding and transport, where it governs dynamic equilibria between two locally different protein conformations at acidic pH and competes with the ligand for binding to the interior cavity.  相似文献   

3.
Tropomyosin is a coiled-coil protein that binds head-to-tail along the length of actin filaments in eukaryotic cells, stabilizing them and providing protection from severing proteins. Tropomyosin cooperatively regulates actin's interaction with myosin and mediates the Ca2+ -dependent regulation of contraction by troponin in striated muscles. The N-terminal and C-terminal ends are critical functional determinants that form an "overlap complex". Here we report the solution NMR structure of an overlap complex formed of model peptides. In the complex, the chains of the C-terminal coiled coil spread apart to allow insertion of 11 residues of the N-terminal coiled coil into the resulting cleft. The plane of the N-terminal coiled coil is rotated 90 degrees relative to the plane of the C terminus. A consequence of the geometry is that the orientation of postulated periodic actin binding sites on the coiled-coil surface is retained from one molecule to the next along the actin filament when the overlap complex is modeled into the X-ray structure of tropomyosin determined at 7 Angstroms. Nuclear relaxation NMR data reveal flexibility of the junction, which may function to optimize binding along the helical actin filament and to allow mobility of tropomyosin on the filament surface as it switches between regulatory states.  相似文献   

4.
Type 1 pili from uropathogenic Escherichia coli strains mediate bacterial attachment to target receptors on the host tissue. They are composed of up to 3000 copies of the subunit FimA, which form the stiff, helical pilus rod, and the subunits FimF, FimG, and FimH, which form the linear tip fibrillum. All subunits in the pilus interact via donor strand complementation, in which the incomplete immunoglobulin-like fold of each subunit is complemented by insertion of an N-terminal extension from the following subunit. We determined the NMR structure of a monomeric, self-complemented variant of FimF, FimFF, which has a second FimF donor strand segment fused to its C-terminus that enables intramolecular complementation of the FimF fold. NMR studies on bimolecular complexes between FimFF and donor strand-depleted variants of FimF and FimG revealed that the relative orientations of neighboring domains in the tip fibrillum cover a wide range. The data provide strong support for the intrinsic flexibility of the tip fibrillum. They lend further support to the hypothesis that this flexibility would significantly increase the probability that the adhesin at the distal end of the fibrillum successfully targets host cell receptors.  相似文献   

5.
Structure-based drug design is underway to inhibit the S100B-p53 interaction as a strategy for treating malignant melanoma. X-ray crystallography was used here to characterize an interaction between Ca2+-S100B and TRTK-12, a target that binds to the p53-binding site on S100B. The structures of Ca2+-S100B (1.5-Å resolution) and S100B-Ca2+-TRTK-12 (2.0-Å resolution) determined here indicate that the S100B-Ca2+-TRTK-12 complex is dominated by an interaction between Trp7 of TRTK-12 and a hydrophobic binding pocket exposed on Ca2+-S100B involving residues in helices 2 and 3 and loop 2. As with an S100B-Ca2+-p53 peptide complex, TRTK-12 binding to Ca2+-S100B was found to increase the protein's Ca2+-binding affinity. One explanation for this effect was that peptide binding introduced a structural change that increased the number of Ca2+ ligands and/or improved the Ca2+ coordination geometry of S100B. This possibility was ruled out when the structures of S100B-Ca2+-TRTK-12 and S100B-Ca2+ were compared and calcium ion coordination by the protein was found to be nearly identical in both EF-hand calcium-binding domains (RMSD = 0.19). On the other hand, B-factors for residues in EF2 of Ca2+-S100B were found to be significantly lowered with TRTK-12 bound. This result is consistent with NMR 15N relaxation studies that showed that TRTK-12 binding eliminated dynamic properties observed in Ca2+-S100B. Such a loss of protein motion may also provide an explanation for how calcium-ion-binding affinity is increased upon binding a target. Lastly, it follows that any small-molecule inhibitor bound to Ca2+-S100B would also have to cause an increase in calcium-ion-binding affinity to be effective therapeutically inside a cell, so these data need to be considered in future drug design studies involving S100B.  相似文献   

6.
Beclin-1, originally identified as a Bcl-2 binding protein, is an evolutionarily conserved protein required for autophagy. The direct interaction between Beclin-1 and Bcl-2 or Bcl-xL provides a potential convergence point for apoptosis and autophagy, two programmed cell death processes. Given the functional significance of the interaction between Beclin-1 and Bcl-2/Bcl-xL, we performed detailed biochemical and structural characterizations of this interaction. We demonstrated that the Bcl-xL-binding domain of Beclin-1 contains a BH3 domain. Therefore, Beclin-1 is a new member of the BH3-only family proteins. The structure of Bcl-xL in complex with the Beclin-1 BH3 domain was determined at high resolution by NMR spectroscopy. Although similar to other known BH3 domains, the Beclin-1 BH3 domain displays its own distinct features in the complex with Bcl-xL. Systematic analysis of all known Bcl-xL/BH3 domain complexes helped us to identify the molecular basis underlying the capacity of Bcl-xL to recognize diverse target sequences.  相似文献   

7.
CHD7 is a member of the chromodomain helicase DNA binding domain (CHD) family of ATP-dependent chromatin remodelling enzymes. It is mutated in CHARGE syndrome, a multiple congenital anomaly condition. CHD7 is one of a subset of CHD proteins, unique to metazoans that contain the BRK domain, a protein module also found in the Brahma/BRG1 family of helicases. We describe here the NMR solution structure of the two BRK domains of CHD7. Each domain has a compact betabetaalphabeta fold. The second domain has a C-terminal extension consisting of two additional helices. The structure differs from those of other domains present in chromatin-associated proteins.  相似文献   

8.
9.
The nuclear localization signal (NLS) polypeptide of RelA, the canonical nuclear factor-κB family member, is responsible for regulating the nuclear localization of RelA-containing nuclear factor-κB dimers. The RelA NLS polypeptide also plays a crucial role in mediating the high affinity and specificity of the interaction of RelA-containing dimers with the inhibitor IκBα, forming two helical motifs according to the published X-ray crystal structure. In order to define the nature of the interaction between the RelA NLS and IκBα under solution conditions, we conducted NMR and isothermal titration calorimetry studies using a truncated form of IκBα containing residues 67-206 and a peptide spanning residues 293-321 of RelA. The NLS peptide, although largely unfolded, has a weak tendency toward helical structure when free in solution. Upon addition of the labeled peptide to unlabeled IκBα, the resonance dispersion in the NMR spectrum is significantly greater, providing definitive evidence that the RelA NLS polypeptide folds upon binding IκBα. Isothermal titration calorimetry studies of single-point mutants reveal that residue F309, which is located in the middle of the more C-terminal of the two helices (helix 4) in the IκBα-bound RelA NLS polypeptide, is critical for the binding of the RelA NLS polypeptide to IκBα. These results help to explain the role of helix 4 in mediating the high affinity of RelA for IκBα.  相似文献   

10.
We have determined the structure of the reduced form of the DsbA oxidoreductase from Vibrio cholerae. The reduced structure shows a high level of similarity to the crystal structure of the oxidized form and is typical of this class of enzyme containing a thioredoxin domain with an inserted alpha-helical domain. Proteolytic and thermal stability measurements show that the reduced form of DsbA is considerably more stable than the oxidized form. NMR relaxation data have been collected and analyzed using a model-free approach to probe the dynamics of the reduced and oxidized states of DsbA. Akaike's information criteria have been applied both in the selection of the model-free models and the diffusion tensors that describe the global motions of each redox form. Analysis of the dynamics reveals that the oxidized protein shows increased disorder on the pico- to nanosecond and micro- to millisecond timescale. Many significant changes in dynamics are located either close to the active site or at the insertion points between the domains. In addition, analysis of the diffusion data shows there is a clear difference in the degree of interdomain movement between oxidized and reduced DsbA with the oxidized form being the more rigid. Principal components analysis has been employed to indicate possible concerted movements in the DsbA structure, which suggests that the modeled interdomain motions affect the catalytic cleft of the enzyme. Taken together, these data provide compelling evidence of a role for dynamics in the catalytic cycle of DsbA.  相似文献   

11.
Efficient formation of specific intermolecular interactions is essential for self-assembly of biological structures. The foldon domain is an evolutionarily optimized trimerization module required for assembly of the large, trimeric structural protein fibritin from phage T4. Monomers consisting of the 27 amino acids comprising a single foldon domain subunit spontaneously form a natively folded trimer. During assembly of the foldon domain, a monomeric intermediate is formed on the submillisecond time scale, which provides the basis for two consecutive very fast association reactions. Mutation of an intermolecular salt bridge leads to a monomeric protein that resembles the kinetic intermediate in its spectroscopic properties. NMR spectroscopy revealed essentially native topology of the monomeric intermediate with defined hydrogen bonds and side-chain interactions but largely reduced stability compared to the native trimer. This structural preorganization leads to an asymmetric charge distribution on the surface that can direct rapid subunit recognition. The low stability of the intermediate allows a large free-energy gain upon trimerization, which serves as driving force for rapid assembly. These results indicate different free-energy landscapes for folding of small oligomeric proteins compared to monomeric proteins, which typically avoid the transient population of intermediates.  相似文献   

12.
Recent efforts to design de novo or redesign the sequence and structure of proteins using computational techniques have met with significant success. Most, if not all, of these computational methodologies attempt to model atomic-level interactions, and hence high-resolution structural characterization of the designed proteins is critical for evaluating the atomic-level accuracy of the underlying design force-fields. We previously used our computational protein design protocol RosettaDesign to completely redesign the sequence of the activation domain of human procarboxypeptidase A2. With 68% of the wild-type sequence changed, the designed protein, AYEdesign, is over 10 kcal/mol more stable than the wild-type protein. Here, we describe the high-resolution crystal structure and solution NMR structure of AYEdesign, which show that the experimentally determined backbone and side-chains conformations are effectively superimposable with the computational model at atomic resolution. To isolate the origins of the remarkable stabilization, we have designed and characterized a new series of procarboxypeptidase mutants that gain significant thermodynamic stability with a minimal number of mutations; one mutant gains more than 5 kcal/mol of stability over the wild-type protein with only four amino acid changes. We explore the relationship between force-field smoothing and conformational sampling by comparing the experimentally determined free energies of the overall design and these focused subsets of mutations to those predicted using modified force-fields, and both fixed and flexible backbone sampling protocols.  相似文献   

13.
14.
Partly unfolded protein conformations close to the native state may play important roles in protein function and in protein misfolding. Structural analyses of such conformations which are essential for their fully physicochemical understanding are complicated by their characteristic low populations at equilibrium. We stabilize here with a single mutation the equilibrium intermediate of apoflavodoxin thermal unfolding and determine its solution structure by NMR. It consists of a large native region identical with that observed in the X-ray structure of the wild-type protein plus an unfolded region. Small-angle X-ray scattering analysis indicates that the calculated ensemble of structures is consistent with the actual degree of expansion of the intermediate. The unfolded region encompasses discontinuous sequence segments that cluster in the 3D structure of the native protein forming the FMN cofactor binding loops and the binding site of a variety of partner proteins. Analysis of the apoflavodoxin inner interfaces reveals that those becoming destabilized in the intermediate are more polar than other inner interfaces of the protein. Natively folded proteins contain hydrophobic cores formed by the packing of hydrophobic surfaces, while natively unfolded proteins are rich in polar residues. The structure of the apoflavodoxin thermal intermediate suggests that the regions of natively folded proteins that are easily responsive to thermal activation may contain cores of intermediate hydrophobicity.  相似文献   

15.
DNA sequence recognition by the homodimeric C-terminal domain of the human papillomavirus type 16 E2 protein (E2C) is known to involve both direct readout and DNA-dependent indirect readout mechanisms, while protein-dependent indirect readout has been deduced but not directly observed. We have investigated coupling between specific DNA binding and the dynamics of the unusual E2C fold, using pH as an external variable. Nuclear magnetic resonance and isothermal titration calorimetry show that pH titration of His318 in the complex interface and His288 in the core of the domain is coupled to both binding and the dynamics of the β-barrel core of E2C, with a tradeoff between dimer stability and function. Specific DNA binding is, in turn, coupled to the slow dynamics and amide hydrogen exchange in the entire β-barrel, reaching residues far apart from the DNA recognition elements but not affecting the two helices of each monomer. The changes are largest in the dimerization interface, suggesting that the E2C β-barrel acts as a hinge that regulates the relative position of the DNA recognition helices. In conclusion, the cooperative dynamics of the human papillomavirus type 16 E2C β-barrel is coupled to sequence recognition in a protein-dependent indirect readout mechanism. The patterns of residue substitution in genital papillomaviruses support the importance of the protonation states of His288 and His318 and suggest that protein-dependent indirect readout and histidine pH titration may regulate DNA binding in the cell.  相似文献   

16.
17.
The human peptidyl prolyl cis/trans isomerase (PPIase) Pin1 has a key role in developmental processes and cell proliferation. Pin1 consists of an N-terminal WW domain and a C-terminal catalytic PPIase domain both targeted specifically to Ser(PO3H2)/Thr(PO3H2)-Pro sequences. Here, we report the enhanced affinity originating from bivalent binding of ligands toward Pin1 compared to monovalent binding. We developed composite peptides where an N-terminal segment represents a catalytic site-directed motif and a C-terminal segment exhibits a predominant affinity to the WW domain of Pin1 tethered by polyproline linkers of different chain length. We used NMR shift perturbation experiments to obtain information on the specific interaction of a bivalent ligand to both targeted sites of Pin1. The bivalent ligands allowed a considerable range of thermodynamic investigations using isothermal titration calorimetry and PPIase activity assays. They expressed up to 350-fold improved affinity toward Pin1 in the nanomolar range in comparison to the monovalent peptides. The distance between the two binding motifs was highly relevant for affinity. The optimum in affinity manifested by a linker length of five prolyl residues between active site- and WW domain-directed peptide fragments suggests that the corresponding domains in Pin1 are allowed to adopt preferred spatial arrangement upon ligand binding.  相似文献   

18.
19.
The prokaryotic ubiquitin-like protein Pup targets substrates for degradation by the Mycobacterium tuberculosis proteasome through its interaction with Mpa, an ATPase that is thought to abut the 20S catalytic subunit. Ubiquitin, which is assembled into a polymer to similarly signal for proteasomal degradation in eukaryotes, adopts a stable and compact structural fold that is adapted into other proteins for diverse biological functions. We used NMR spectroscopy to demonstrate that, unlike ubiquitin, the 64-amino-acid protein Pup is intrinsically disordered with small helical propensity in the C-terminal region. We found that the Pup:Mpa interaction involves an extensive contact surface that spans S21-K61 and that the binding is in the “slow exchange” regime on the NMR time scale, thus demonstrating higher affinity than most ubiquitin:ubiquitin receptor pairs. Interestingly, during the titration experiment, intermediate Pup species were observable, suggesting the formation of one or more transient state(s) upon binding. Moreover, Mpa selected one configuration for a region undergoing chemical exchange in the free protein. These findings provide mechanistic insights into Pup's functional role as a degradation signal.  相似文献   

20.
Galectins are a family of lectins with a conserved carbohydrate recognition domain that interacts with β-galactosides. By binding cell surface glycoconjugates, galectin-1 (gal-1) is involved in cell adhesion and migration processes and is an important regulator of tumor angiogenesis. Here, we used heteronuclear NMR spectroscopy and molecular modeling to investigate lactose binding to gal-1 and to derive solution NMR structures of gal-1 in the lactose-bound and unbound states. Structure analysis shows that the β-strands and loops around the lactose binding site, which are more open and dynamic in the unbound state, fold in around the bound lactose molecule, dampening internal motions at that site and increasing motions elsewhere throughout the protein to contribute entropically to the binding free energy. CD data support the view of an overall more open structure in the lactose-bound state. Analysis of heteronuclear single quantum coherence titration binding data indicates that lactose binds the two carbohydrate recognition domains of the gal-1 dimer with negative cooperativity, in that the first lactose molecule binds more strongly (K1 = 21 ± 6 × 103 M− 1) than the second (K2 = 4 ± 2 × 103 M− 1). Isothermal calorimetry data fit using a sequential binding model present a similar picture, yielding K1 = 20 ± 10 × 103 M− 1 and K2 = 1.67 ± 0.07 × 103 M− 1. Molecular dynamics simulations provide insight into structural dynamics of the half-loaded lactose state and, together with NMR data, suggest that lactose binding at one site transmits a signal through the β-sandwich and loops to the second binding site. Overall, our results provide new insight into gal-1 structure-function relationships and to protein-carbohydrate interactions in general.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号