首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spiroplasma melliferum BC3 are wall-less bacteria with internal cytoskeletons. Spiroplasma, Mycoplasma and Acholeplasma belong to the Mollicutes, which represent the smallest, simplest and minimal free-living and self-replicating forms of life. The Mollicutes are motile and chemotactic. Spiroplasma cells are, in addition, helical in shape. Based on data merging, obtained by video dark-field light microscopy of live, swimming helical Spiroplasma cells and by cryoelectron microscopy, unravelling the subcellular structure and molecular organization of the cytoskeleton, we propose a functional model in which the cytoskeleton also acts as a bacterial linear motor enabling and controlling both dynamic helicity and swimming. The cytoskeleton is a flat, monolayered ribbon constructed from seven contractile fibrils (generators) capable of changing their length differentially in a co-ordinated manner. The individual, flat, paired fibrils can be viewed as chains of tetramers approximately 100 A in diameter composed of 59 kDa monomers. The cytoskeletal ribbon is attached to the inner surface of the cell membrane (but is not an integral part of it) and follows the shortest helical line on the coiled cellular tube. We show that Spiroplasma cells can be regarded, at least in some states, as near-perfect dynamic helical tubes. Thus, the analysis of experimental data is reduced to a geometrical problem. The proposed model is based on simple structural elements and functional assumptions: rigid circular rings are threaded on a flexible, helical centreline. The rings maintain their circularity and normality to the centreline at all helical states. An array of peripheral, equidistant axial lines forms a regular cylindrical grid (membrane), by crossing the lines bounding the rings. The axial and peripheral spacing correspond to the tetramer diameter and fibril width (100 A) respectively. Based on electron microscopy data, we assign seven of the axial grid lines in the model to function as contractile generators. The generators are clustered along the shortest helical paths on the cellular coil. In the model, the shortest generator coincides with the shortest helical line. The rest, progressively longer, six generators follow to the right or to the left of the shortest generator in order to generate the maximal range of lengths. A rubbery membrane is stretched over (or represented by) the three-dimensional grid to form a continuous tube. Co-ordinated, differential length changes of the generators induce the membranal cylinder to coil and uncoil reversibly. The switch of helical sense requires equalization of the generators' length, forming a straight cylindrical tube with straight generators. The helical parameters of the cell population, obtained by light microscopy, constitute several subpopulations related, most probably, to cell size and age. The range of molecular dimensions in the active cytoskeleton inferred from light microscopy and modelling agrees with data obtained by direct measurements of subunit images on electron micrographs, scanning transmission electron microscopy (STEM) and diffraction analysis of isolated ribbons. Swimming motility and chemotactic responses are carried out by one or a combination of the following: (i). reciprocating helical extension and compression ('breathing'); (ii). propagation of a deformation (kink) along the helical path; (iii). propagation of a reversal of the helical sense along the cell body; and (iv). irregular flexing and twitching, which is functionally equivalent to standard bacterial tumbling. Here, we analyse in detail only the first case (from which all the rest are derived), including switching of the helical sense.  相似文献   

2.
The Mollicutes (Mycoplasma, Acholeplasma, and Spiroplasma) are the smallest, simplest and most primitive free-living and self-replicating known cells. These bacteria have evolved from Clostridia by regressive evolution and genome reduction to the range of 5.8 x 10(5)-2.2 x 10(6) basepairs (bp). Structurally, the Mollicutes completely lack cell walls and are enveloped by only a cholesterol containing cell membrane. The Mollicutes contain what can be defined as a bacterial cytoskeleton. The Spiroplasmas are unique in having a well-defined, dynamic, helical cell geometry and a flat, monolayered, membrane-bound cytoskeleton, which follows, intracellularly, the shortest helical line on the cellular coil. By applying cryo-electron-microscopy to whole cells, isolated cytoskeletons and cytoskeletal fibrils and subunits, as well as by selective extraction of cellular components, we determined, at a resolution of approximately 25 A, the cellular and molecular organization of the cytoskeleton. The cytoskeleton is assembled from a 59 kDa protein. The 59 kDa protein, has an equivalent sphere diameter of approximately 50 A. Given the approximately 100 A axial and lateral spacings in the cytoskeletal ribbons and the near-circular shape of the subunit, we suggest that the subunit is a tetramer of 59 kDa monomers; the tetramers assemble further into flat fibrils, seven of which form a flat, monolayered, well-ordered ribbon. The cytoskeleton may function as a linear motor by differential and coordinated length-changes of the fibrils driven by conformational changes of the tetrameric subunits, the shape of which changes from near circular to elliptical. The cytoskeleton controls both the dynamic helical shape and the consequent motility of the cell. A stable cluster of proteins co-purifies with the cytoskeleton. These apparent membrane and membrane-associated proteins may function as anchor proteins.  相似文献   

3.
Spiroplasma are members of the Mollicutes (Mycoplasma, Acholeplasma and Spiroplasma) - the simplest, minimal, free-living and self-replicating forms of life. The mollicutes are unique among bacteria in completely lacking cell walls and flagella and in having an internal, contractile cytoskeleton, which also functions as a linear motor. Spiroplasma are helical, chemotactic and viscotactic active swimmers. The Spiroplasmal cytoskeleton is a flat ribbon composed of seven pairs of fibrils. The ribbon is attached to the inner side of the cell membrane along its innermost (shortest) helical line. The cell's geometry and dynamic helical parameters, and consequently motility, can be controlled by changing differentially and in a co-ordinated manner, the length of the fibrils. We identified several consistent modes of cell movements and motility originating, most likely, as a result of co-operative or local molecular switching of fibrils: (i). regular extension and contraction within the limits of helical symmetry (this mode also includes straightening, beyond what is allowed by helical symmetry, and reversible change of helical sense); (ii). spontaneous and random change of helical sense originating at random sites along the cell (these changes propagate along the cell in either direction and hand switching is completed within approximately 0.08 second); (iii). forming a deformation on one of the helical turns and propagating it along the cell (these helical deformations may travel along the cell at a speed of up to approximately 40 microm s-1); (iv). random bending, flexing and twitching (equivalent to tumbling). In standard medium (viscosity = 1.147 centipoise) the cells run at approximately 1.5 microm s-1, have a Reynolds number of approximately 3.5 x 10-6 and consume approximately 30 ATP molecules s-1. Running velocity, duration, persistence and efficiency increase with viscosity upon adding ficoll, dextran and methylcellulose to standard media. Relative force measurements using optical tweezers confirm these findings.  相似文献   

4.
The motor properties of the two yeast class V myosins, Myo2p and Myo4p, were examined using in vitro motility assays. Both myosins are active motors with maximum velocities of 4.5 microm/s for Myo2p and 1.1 microm/s for Myo4p. Myo2p motility is Ca(2+) insensitive. Both myosins have properties of a nonprocessive motor, unlike chick myosin-Va (M5a), which behaves as a processive motor when assayed under identical conditions. Additional support for the idea that Myo2p is a nonprocessive motor comes from actin cosedimentation assays, which show that Myo2p has a low affinity for F-actin in the presence of ATP and Ca(2+), unlike chick brain M5a. These studies suggest that if Myo2p functions in organelle transport, at least five molecules of Myo2p must be present per organelle to promote directed movement.  相似文献   

5.
A broad survey was undertaken to characterise microbes associated with larval outbreaks of the Antler moth Cerapteryx graminis in Cumbria, United Kingdom. A nucleopolyhedrovirus present in all sampled populations at ?5% prevalence, was characterised via restriction fragment length polymorphism and partial sequencing the Polyhedrin, Lef-8 and Lef-9 genes; indicating a previously uncharacterised species most closely related to Agrotis ipsilon NPV. A survey of the host-associated bacterial community detected a species phylogenetically related to Spiroplasma sp., a male-killing phenotype previously isolated from Lepidoptera and Coleoptera, present at <63% prevalence in larvae. The implications of these associated microbes for host population dynamics are discussed.  相似文献   

6.
Ovarioles were found to be infected with Spiroplasma, Wolbachia, and Rickettsia in Adalia bipunctata females with maleless progeny in different natural populations. Ooplasm was infected with few Wolbachia bacteria. In ooplasm infected by Rickettsia, bacteria were present in small foci. Spiroplasmas were found encapsulated into ooplasm from the wider intercellular spaces between epithelial and oocyte cells. The cytoplasm of follicular epithelia infected with Rickettsia was heavily destroyed, but the nucleus was intact and free from bacteria. The essential feature of follicular epithelium cells from Spiroplasma and Wolbachia infected A. bipunctata females was inclusions of three types: crystalline, filaments, and concentric myelin-like lamellae. Observations of smears prepared from ovaries of A. bipunctata from natural populations revealed a low concentration of bacteria within a microscopy field (less 10 bacteria) in more than 90% of specimens, and only a few ovaries were heavily infected. Two different ways of bacterial invasion of the oocyte are suggested: Spiroplasma-like, through the intercellular spaces in the epithelium and Rickettsia-like, through the cytoplasm of follicular epithelium cells. Bacteria were not found in germarium zones and we suggest that each follicle is infected from haemolymph.  相似文献   

7.
  相似文献   

8.
9.
Precise patterns of motor neuron connectivity depend on the proper establishment and positioning of the dendritic arbor. However, how different motor neurons orient their dendrites to selectively establish synaptic connectivity is not well understood. The Drosophila neuromuscular system provides a simple model to investigate the underlying organizational principles by which distinct subclasses of motor neurons orient their dendrites within the central neuropil. Here we used genetic mosaic techniques to characterize the diverse dendritic morphologies of individual motor neurons from five main nerve branches (ISN, ISNb, ISNd, SNa, and SNc) in the Drosophila larva. We found that motor neurons from different nerve branches project their dendrites to largely stereotyped mediolateral domains in the dorsal region of the neuropil providing full coverage of the receptive territory. Furthermore, dendrites from different motor neurons overlap extensively, regardless of subclass, suggesting that repulsive dendrite-dendrite interactions between motor neurons do not influence the mediolateral positioning of dendritic fields. The anatomical data in this study provide important information regarding how different subclasses of motor neurons organize their dendrites and establishes a foundation for the investigation of the mechanisms that control synaptic connectivity in the Drosophila motor circuit.  相似文献   

10.

Background

Following the association of Cronobacter spp. to several publicized fatal outbreaks in neonatal intensive care units of meningitis and necrotising enterocolitis, the World Health Organization (WHO) in 2004 requested the establishment of a molecular typing scheme to enable the international control of the organism. This paper presents the application of Next Generation Sequencing (NGS) to Cronobacter which has led to the establishment of the Cronobacter PubMLST genome and sequence definition database (http://pubmlst.org/cronobacter/) containing over 1000 isolates with metadata along with the recognition of specific clonal lineages linked to neonatal meningitis and adult infections

Results

Whole genome sequencing and multilocus sequence typing (MLST) has supports the formal recognition of the genus Cronobacter composed of seven species to replace the former single species Enterobacter sakazakii. Applying the 7-loci MLST scheme to 1007 strains revealed 298 definable sequence types, yet only C. sakazakii clonal complex 4 (CC4) was principally associated with neonatal meningitis. This clonal lineage has been confirmed using ribosomal-MLST (51-loci) and whole genome-MLST (1865 loci) to analyse 107 whole genomes via the Cronobacter PubMLST database. This database has enabled the retrospective analysis of historic cases and outbreaks following re-identification of those strains.

Conclusions

The Cronobacter PubMLST database offers a central, open access, reliable sequence-based repository for researchers. It has the capacity to create new analysis schemes ‘on the fly’, and to integrate metadata (source, geographic distribution, clinical presentation). It is also expandable and adaptable to changes in taxonomy, and able to support the development of reliable detection methods of use to industry and regulatory authorities. Therefore it meets the WHO (2004) request for the establishment of a typing scheme for this emergent bacterial pathogen. Whole genome sequencing has additionally shown a range of potential virulence and environmental fitness traits which may account for the association of C. sakazakii CC4 pathogenicity, and propensity for neonatal CNS.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-1121) contains supplementary material, which is available to authorized users.  相似文献   

11.
PomA, a homolog of MotA in the H+-driven flagellar motor, is an essential component for torque generation in the Na+-driven flagellar motor. Previous studies suggested that two charged residues, R90 and E98, which are in the single cytoplasmic loop of MotA, are directly involved in this process. These residues are conserved in PomA of Vibrio alginolyticus as R88 and E96, respectively. To explore the role of these charged residues in the Na+-driven motor, we replaced them with other amino acids. However, unlike in the H+-driven motor, both of the single and the double PomA mutants were functional. Several other positively and negatively charged residues near R88 and E96, namely K89, E97 and E99, were neutralized. Motility was retained in a strain producing the R88A/K89A/E96Q/E97Q/E99Q (AAQQQ) PomA protein. The swimming speed of the AAQQQ strain was as fast as that of the wild-type PomA strain, but the direction of motor rotation was abnormally counterclockwise-biased. We could, however, isolate non-motile or poorly motile mutants when certain charged residues in PomA were reversed or neutralized. The charged residues at positions 88-99 of PomA may not be essential for torque generation in the Na+-driven motor and might play a role in motor function different from that of the equivalent residues of the H+-driven motor.  相似文献   

12.
Spiroplasma kunkelii distribution and infection mechanisms in the intestines and Malpighian tubules of Dalbulus maidis were investigated by transmission electron microscopy. Spiroplasmas were found between microvilli and in endocytic vesicles of the midgut epithelium. At the basal part, cytoplasmic vesicles contained multiple spiroplasmas with tube-like extensions and spiroplasmas accumulated between the laminae rara and densa of the basal lamina. Tip structures of flask-shaped spiroplasmas pierced the lamina densa that was discontinuous in close proximity to spiroplasmas. Spiroplasmas were found in hemolymph, crossed the basal lamina of Malpighian tubule epithelium and accumulated at high numbers in muscle cells that had cytopathogenic changes. S. kunkelii had perithrochous approximately 8nm diameter structures determined to be fimbriae protruding from the cell surface, and similar structures were adhering to the basal lamina of midgut epithelium and to external lamina of muscle cells. Further, spiroplasmas had pili-like appendages at one or both cell poles and appeared to conjugate. This is the first time that fimbriae and pili have been observed in a mollicutes.  相似文献   

13.
FliG is an essential component of the flagellar motor and functions in flagellar assembly, torque generation and regulation of the direction of flagellar rotation. The five charged residues important for the rotation of the flagellar motor were identified in Escherichiacoli FliG (FliG(E)). These residues are clustered in the C terminus and are all conserved in FliG(V) of the Na(+)-driven motor of Vibrioalginolyticus (Lys284, Arg301, Asp308, Asp309 and Arg317). To investigate the roles of these charged residues in the Na(+)-driven motor, we cloned the VibriofliG gene and introduced single or multiple substitutions into the corresponding positions in FliG(V). FliG(V) with double Ala replacements in all possible combinations at these five conserved positions still retained significant motile ability, although some of the mutations completely eliminated the function of FliG(E). All of the triple mutants constructed in this study also remained motile. These results suggest that the important charged residues may be located in different places and the conserved charged residues are not so important for the Na(+)-driven flagellar motor of Vibrio. The chimeric FliG protein (FliG(VE)), composed of the N-terminal domain from V.alginolyticus and the C-terminal domain from E.coli, functions in Vibrio cells. The mutations of the charge residues of the C-terminal region in FliG(VE) affected swarming ability as in E.coli. Both the FliG(V) and the FliG(VE) proteins with the triple mutation were more susceptible to proteolysis than proteins without the mutation, suggesting that their conformations were altered.  相似文献   

14.
15.
16.
Rickettsiella tipulae is an intracellular bacterial pathogen of larvae of the crane fly, Tipula paludosa (Diptera: Tipulidae) and has previously been claimed to represent an independent species within the genus Rickettsiella. Recently, this taxon has been reorganized and transferred as a whole from the α-proteobacterial order Rickettsiales to the γ-proteobacterial order Legionellales. Here we present the electron-microscopic identification of this rickettsial pathogen together with the first DNA sequence information for R. tipulae. The results of our 16S rDNA-based phylogenetic analysis demonstrate that the transfer to the order Legionellales is justified for R. tipulae. However, there is no phylogenetic basis to consider R. tipulae an independent species, but instead conclusive evidence substantiating its species level co-assignment with Rickettsiella melolonthae. Furthermore, implications of our results for a possible reorganization of the internal structure of the genus Rickettsiella are discussed.  相似文献   

17.
Green Ulvacean marine macroalgae are distributed worldwide in coastal tidal and subtidal ecosystems. As for many living surfaces in the marine environment, little is known concerning the epiphytic bacterial biofilm communities that inhabit algal surfaces. This study reports on the largest published libraries of near full-length 16S rRNA genes from a marine algal surface (5293 sequences from six samples) allowing for an in-depth assessment of the diversity and phylogenetic profile of the bacterial community on a green Ulvacean alga. Large 16S rRNA gene libraries of surrounding seawater were also used to determine the uniqueness of this bacterial community. The surface of Ulva australis is dominated by sequences of Alphaproteobacteria and the Bacteroidetes, especially within the Rhodobacteriaceae, Sphingomonadaceae, Flavobacteriaceae and Sapropiraceae families. Seawater libraries were also dominated by Alphaproteobacteria and Bacteroidetes sequences, but were shown to be clearly distinct from U. australis libraries through the clustering of sequences into operational taxonomic units and Bray–Curtis similarity analysis. Almost no similarity was observed between these two environments at the species level, and only minor similarity was observed at levels of sequence clustering representing clades of bacteria within family and genus taxonomic groups. Variability between libraries of U. australis was relatively high, and a consistent sub-population of bacterial species was not detected. The competitive lottery model, originally derived to explain diversity in coral reef fishes, may explain the pattern of colonization of this algal surface.  相似文献   

18.
19.
The Puf family of RNA-binding proteins directs cell fates by regulating gene expression at the level of translation and RNA stability. Here, we report that the Caenorhabditis elegans pumilio homolog, puf-9, controls the differentiation of epidermal stem cells at the larval-to-adult transition. Genetic analysis reveals that loss-of-function mutations in puf-9 enhance the lethality and heterochronic phenotypes caused by mutations in the let-7 microRNA (miRNA), while suppressing the heterochronic phenotypes of lin-41, a let-7 target and homolog of Drosophila Brat. puf-9 interacts with another known temporal regulator hbl-1, the Caenorhabditis elegans ortholog of hunchback. We present evidence demonstrating that puf-9 is required for the 3'UTR-mediated regulation of hbl-1, in both the hypodermis and the ventral nerve cord. Finally, we show that this regulation is dependent on a region of the hbl-1 3'UTR that contains putative Puf family binding sites as well as binding sites for the let-7 miRNA family, suggesting that puf-9 and let-7 may mediate hypodermal seam cell differentiation by regulating common targets.  相似文献   

20.
We show that MAD3 encodes a novel 58-kD nuclear protein which is not essential for viability, but is an integral component of the spindle checkpoint in budding yeast. Sequence analysis reveals two regions of Mad3p that are 46 and 47% identical to sequences in the NH(2)-terminal region of the budding yeast Bub1 protein kinase. Bub1p is known to bind Bub3p (Roberts et al. 1994) and we use two-hybrid assays and coimmunoprecipitation experiments to show that Mad3p can also bind to Bub3p. In addition, we find that Mad3p interacts with Mad2p and the cell cycle regulator Cdc20p. We show that the two regions of homology between Mad3p and Bub1p are crucial for these interactions and identify loss of function mutations within each domain of Mad3p. We discuss roles for Mad3p and its interactions with other spindle checkpoint proteins and with Cdc20p, the target of the checkpoint.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号