首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The fidelity of aminoacyl-tRNA selection by the ribosome depends on a conformational switch in the decoding center of the small ribosomal subunit induced by cognate but not by near-cognate aminoacyl-tRNA. The aminoglycosides paromomycin and streptomycin bind to the decoding center and induce related structural rearrangements that explain their observed effects on miscoding. Structural and biochemical studies have identified ribosomal protein S12 (as well as specific nucleotides in 16S ribosomal RNA) as a critical molecular contributor in distinguishing between cognate and near-cognate tRNA species as well as in promoting more global rearrangements in the small subunit, referred to as “closure.” Here we use a mutational approach to define contributions made by two highly conserved loops in S12 to the process of tRNA selection. Most S12 variant ribosomes tested display increased levels of fidelity (a “restrictive” phenotype). Interestingly, several variants, K42A and R53A, were substantially resistant to the miscoding effects of paromomycin. Further characterization of the compromised paromomycin response identified a probable second, fidelity-modulating binding site for paromomycin in the 16S ribosomal RNA that facilitates closure of the small subunit and compensates for defects associated with the S12 mutations.  相似文献   

2.
Modulation of 16S rRNA function by ribosomal protein S12   总被引:2,自引:0,他引:2  
Ribosomal protein S12 is a critical component of the decoding center of the 30S ribosomal subunit and is involved in both tRNA selection and the response to streptomycin. We have investigated the interplay between S12 and some of the surrounding 16S rRNA residues by examining the phenotypes of double-mutant ribosomes in strains of Escherichia coli carrying deletions in all chromosomal rrn operons and expressing total rRNA from a single plasmid-borne rrn operon. We show that the combination of S12 and otherwise benign mutations at positions C1409-G1491 in 16S rRNA severely compromises cell growth while the level and range of aminoglycoside resistances conferred by the G1491U/C substitutions is markedly increased by a mutant S12 protein. The G1491U/C mutations in addition confer resistance to the unrelated antibiotic, capreomycin. S12 also interacts with the 912 region of 16S rRNA. Genetic selection of suppressors of streptomycin dependence caused by mutations at proline 90 in S12 yielded a C912U substitution in 16S rRNA. The C912U mutation on its own confers resistance to streptomycin and restricts miscoding, properties that distinguish it from a majority of the previously described error-promoting ram mutants that also reverse streptomycin dependence.  相似文献   

3.
Certain mutations in S12, a ribosomal protein involved in translation elongation rate and translation accuracy, confer resistance to the aminoglycoside streptomycin. Previously we showed in Salmonella typhimurium that the fitness cost, i.e. reduced growth rate, due to the amino acid substitution K42N in S12 could be compensated by at least 35 different mutations located in the ribosomal proteins S4, S5 and L19. Here, we have characterized in vivo the fitness, translation speed and translation accuracy of four different L19 mutants. When separated from the resistance mutation located in S12, the three different compensatory amino acid substitutions in L19 at position 40 (Q40H, Q40L and Q40R) caused a decrease in fitness while the G104A change had no effect on bacterial growth. The rate of protein synthesis was unaffected or increased by the mutations at position 40 and the level of read-through of a UGA nonsense codon was increased in vivo, indicating a loss of translational accuracy. The mutations in L19 increased sensitivity to aminoglycosides active at the A-site, further indicating a perturbation of the decoding step. These phenotypes are similar to those of the classical S4 and S5 ram (ribosomal ambiguity) mutants. By evolving low-fitness L19 mutants by serial passage, we showed that the fitness cost conferred by the L19 mutations could be compensated by additional mutations in the ribosomal protein L19 itself, in S12 and in L14, a protein located close to L19. Our results reveal a novel functional role for the 50 S ribosomal protein L19 during protein synthesis, supporting published structural data suggesting that the interaction of L14 and L19 with 16 S rRNA could influence function of the 30 S subunit. Moreover, our study demonstrates how compensatory fitness-evolution can be used to discover new molecular functions of ribosomal proteins.  相似文献   

4.
Ribosomal protein S12 plays key roles in the ribosome’s response to the error-promoting antibiotic streptomycin and in modulating the accuracy of translation. The discovery that substitutions at His76 in S12, distant from the streptomycin binding site, conferred streptomycin resistance in the thermophilic bacterium Thermus thermophilus prompted us to make similar alterations in the S12 protein of Escherichia coli. While, none of the E. coli S12 mutations confers streptomycin resistance, they all have distinct effects on the accuracy of translation. In addition, a subset of the S12 alterations renders the cells hypersensitive to fusidic acid, an inhibitor of the translocation step of translation. These results indicate that the His 76 region of ribosomal protein S12 plays key roles in tRNA selection and translocation steps of protein synthesis, consistent with its interaction with elongation factors EF-Tu and EF-G, as deduced from structural studies of ribosomal complexes.  相似文献   

5.
We have studied the effects of protein mutations on the higher order structure of 16 S rRNA in Escherichia coli ribosomes, using a set of structure-sensitive chemical probes. Ten mutant strains were studied, which contained alterations in ribosomal proteins S4 and S12, including double mutants containing both altered S4 and S12. Two ribosomal ambiguity (ram) S4 mutant strains, four streptomycin resistant (SmR) S12 mutant strains, one streptomycin pseudodependent (SmP) S12 mutant strain, one streptomycin dependent (SmD) S12 mutant strain and two streptomycin independent (Sm1) double mutants (containing both-SmD and ram mutations) were probed and compared to an isogenic wild-type strain. In ribosomes from strains containing S4 ram mutations, nucleotides A8 and A26 become more reactive to dimethyl sulfate (DMS) at their N-1 positions. In ribosomes from strains bearing the SmD allele, A908, A909, A1413 and G1487 are significantly less reactive to chemical probes. These same effects are observed when the S4 and S12 mutations are present simultaneously in the double mutants. An interesting correlation is found between the reactivity of A908 and the miscoding potential of SmR, SmD, SmP and wild-type ribosomes; the reactivity of A908 increases as the translational error frequency of the ribosomes increases. In the case of ram ribosomes, the reactivity of A908 resembles that of wild-type, unless tRNA is bound, in which case it becomes hyper-reactive. Similarly, streptomycin has little effect on A908 in wild-type ribosomes unless tRNA is bound, in which case its reactivity increases to resemble that of ram ribosomes with bound tRNA. Finally, interaction of streptomycin with SmP and SmD ribosomes causes the reactivity of A908 to increase to near-wild-type levels. A simple model is proposed, in which the reactivity of A908 reflects the position of an equilibrium between two conformational states of the 30 S subunit, one of which is DMS-reactive, and the other DMS-unreactive. In this model, the balance between these two states would be influenced by proteins S4 and S12. Mutations in S12 generally cause a shift toward the unreactive conformer, and in the case of SmD and SmP ribosomes, this shift can be suppressed phenotypically by streptomycin, ram mutations in protein S4 cause a shift toward the reactive conformer, but only when tRNA is bound. This suggests that the opposing effects of these two classes of mutations influence the proof-reading process by somewhat different mechanisms.  相似文献   

6.
A functional pseudoknot in 16S ribosomal RNA.   总被引:37,自引:4,他引:33       下载免费PDF全文
T Powers  H F Noller 《The EMBO journal》1991,10(8):2203-2214
Several lines of evidence indicate that the universally conserved 530 loop of 16S ribosomal RNA plays a crucial role in translation, related to the binding of tRNA to the ribosomal A site. Based upon limited phylogenetic sequence variation, Woese and Gutell (1989) have proposed that residues 524-526 in the 530 hairpin loop are base paired with residues 505-507 in an adjoining bulge loop, suggesting that this region of 16S rRNA folds into a pseudoknot structure. Here, we demonstrate that Watson-Crick interactions between these nucleotides are essential for ribosomal function. Moreover, we find that certain mild perturbations of the structure, for example, creation of G-U wobble pairs, generate resistance to streptomycin, an antibiotic known to interfere with the decoding process. Chemical probing of mutant ribosomes from streptomycin-resistant cells shows that the mutant ribosomes have a reduced affinity for streptomycin, even though streptomycin is thought to interact with a site on the 30S subunit that is distinct from the 530 region. Data from earlier in vitro assembly studies suggest that the pseudoknot structure is stabilized by ribosomal protein S12, mutations in which have long been known to confer streptomycin resistance and dependence.  相似文献   

7.
Most chromosomal mutations that cause antibiotic resistance impose fitness costs on the bacteria. This biological cost can often be reduced by compensatory mutations. In Salmonella typhimurium, the nucleotide substitution AAA42 --> AAC in the rpsL gene confers resistance to streptomycin. The resulting amino acid substitution (K42N) in ribosomal protein S12 causes an increased rate of ribosomal proofreading and, as a result, the rate of protein synthesis, bacterial growth and virulence are decreased. Eighty-one independent lineages of the low-fitness, K42N mutant were evolved in the absence of antibiotic to ameliorate the costs. From the rate of fixation of compensated mutants and their fitness, the rate of compensatory mutations was estimated to be > or = 10-7 per cell per generation. The size of the population bottleneck during evolution affected fitness of the adapted mutants: a larger bottleneck resulted in higher average fitness. Only four of the evolved lineages contained streptomycin-sensitive revertants. The remaining 77 lineages contained mutants that were still fully streptomycin resistant, had retained the original resistance mutation and also acquired compensatory mutations. Most of the compensatory mutations, resulting in at least 35 different amino acid substitutions, were novel single-nucleotide substitutions in the rpsD, rpsE, rpsL or rplS genes encoding the ribosomal proteins S4, S5, S12 and L19 respectively. Our results show that the deleterious effects of a resistance mutation can be compensated by an unexpected variety of mutations.  相似文献   

8.
The ribosomal proteins L4 and L22 form part of the peptide exit tunnel in the large ribosomal subunit. In Escherichia coli, alterations in either of these proteins can confer resistance to the macrolide antibiotic, erythromycin. The structures of the 30S as well as the 50S subunits from each antibiotic resistant mutant differ from wild type in distinct ways and L4 mutant ribosomes have decreased peptide bond-forming activity. Our analyses of the decoding properties of both mutants show that ribosomes carrying the altered L4 protein support increased levels of frameshifting, missense decoding and readthrough of stop codons during the elongation phase of protein synthesis and stimulate utilization of non-AUG codons and mutant initiator tRNAs at initiation. L4 mutant ribosomes are also altered in their interactions with a range of 30S-targeted antibiotics. In contrast, the L22 mutant is relatively unaffected in both decoding activities and antibiotic interactions. These results suggest that mutations in the large subunit protein L4 not only alter the structure of the 50S subunit, but upon subunit association, also affect the structure and function of the 30S subunit.  相似文献   

9.
Certain str mutations that confer high- or low-level streptomycin resistance result in the overproduction of antibiotics by Streptomyces spp. The str mutations that confer the high-level resistance occur within rpsL, which encodes the ribosomal protein S12, while those that cause low-level resistance are not as well known. We have used comparative genome sequencing to determine that low-level resistance is caused by mutations of rsmG, which encodes an S-adenosylmethionine (SAM)-dependent 16S rRNA methyltransferase containing a SAM binding motif. Deletion of rsmG from wild-type Streptomyces coelicolor resulted in the acquisition of streptomycin resistance and the overproduction of the antibiotic actinorhodin. Introduction of wild-type rsmG into the deletion mutant completely abrogated the effects of the rsmG deletion, confirming that rsmG mutation underlies the observed phenotype. Consistent with earlier work using a spontaneous rsmG mutant, the strain carrying DeltarsmG exhibited increased SAM synthetase activity, which mediated the overproduction of antibiotic. Moreover, high-performance liquid chromatography analysis showed that the DeltarsmG mutant lacked a 7-methylguanosine modification in the 16S rRNA (possibly at position G518, which corresponds to G527 of Escherichia coli). Like certain rpsL mutants, the DeltarsmG mutant exhibited enhanced protein synthetic activity during the late growth phase. Unlike rpsL mutants, however, the DeltarsmG mutant showed neither greater stability of the 70S ribosomal complex nor increased expression of ribosome recycling factor, suggesting that the mechanism underlying increased protein synthesis differs in the rsmG and the rpsL mutants. Finally, spontaneous rsmG mutations arose at a 1,000-fold-higher frequency than rpsL mutations. These findings provide new insight into the role of rRNA modification in activating secondary metabolism in Streptomyces.  相似文献   

10.
Bacillus subtilis mutants with alterations in ribosomal protein S4.   总被引:2,自引:1,他引:1       下载免费PDF全文
Two mutants with different alterations in the electrophoretic mobility of ribosomal protein S4 were isolated as spore-plus revertants of a streptomycin-resistant, spore-minus strain of Bacillus subtilis. The mutations causing the S4 alterations, designated rpsD1 and rpsD2, were located between the argGH and aroG genes, at 263 degrees on the B. subtilis chromosome, distant from the major ribosomal protein gene cluster at 12 degrees. The mutant rpsD alleles were isolated by hybridization using a wild-type rpsD probe, and their DNA sequences were determined. The two mutants contained alterations at the same position within the S4-coding sequence, in a region containing a 12-bp tandem duplication; the rpsD1 allele corresponded to an additional copy of this repeated segment, resulting in the insertion of four amino acids, whereas the rpsD2 allele corresponded to deletion of one copy of this segment, resulting in the loss of four amino acids. The effects of these mutations, alone and in combination with streptomycin resistance mutations, on growth, sporulation, and streptomycin resistance were analyzed.  相似文献   

11.
Summary Mutants resistant to (Str-R) or dependent on streptomycin (Str-D) were isolated from several streptomycin independent (Str-I) strains of Escherichia coli. From 90 of these mutants ribosomes were isolated and the ribosomal proteins analyzed by two-dimensional polyacrylamide gel electrophoresis. The results which are summarized in Tables 1-4 led to the following conclusions:a) The phenotype (Str-R or Str-D) of the mutants isolated from the Str-I strains strongly depends on the parental strain. b) No other ribosomal proteins than S4, S5 and S12 seem to be altered by mutations leading to dependence on, independence from or resistance to streptomycin. c) The S4 proteins of the analyzed mutants belong to three groups. The ratio between the groups depends more on the origin of the mutants than on their phenotype. d) Eight new types of altered S4 proteins were detected. It is very likely that many, if not all, of the altered S4 proteins originated by frame shift mutations. e) Some of the mutants differ from the wild type by alterations in three ribosomal proteins (S4, S5 and S12). The alteration in one protein, S4, apparently compensates for that in another protein, S5, in such a way that the original phenotype is expressed. These mutants are therefore an excellent tool for studies at the molecular level on the interaction of ribosomal components within the particle.  相似文献   

12.
During the process of translation, an aminoacyl tRNA is selected in the A site of the decoding center of the small subunit based on the correct codon–anticodon base pairing. Though selection is usually accurate, mutations in the ribosomal RNA and proteins and the presence of some antibiotics like streptomycin alter translational accuracy. Recent crystallographic structures of the ribosome suggest that cognate tRNAs induce a “closed conformation” of the small subunit that stabilizes the codon–anticodon interactions at the A site. During formation of the closed conformation, the protein interface between rpS4 and rpS5 is broken while new contacts form with rpS12. Mutations in rpS12 confer streptomycin resistance or dependence and show a hyperaccurate phenotype. Mutations reversing streptomycin dependence affect rpS4 and rpS5. The canonical rpS4 and rpS5 streptomycin independent mutations increase translational errors and were called ribosomal ambiguity mutations (ram). The mutations in these proteins are proposed to affect formation of the closed complex by breaking the rpS4-rpS5 interface, which reduces the cost of domain closure and thus increases translational errors. We used a yeast two-hybrid system to study the interactions between the small subunit ribosomal proteins rpS4 and rpS5 and to test the effect of ram mutations on the stability of the interface. We found no correlation between ram phenotype and disruption of the interface.  相似文献   

13.
Accurate tRNA selection by the ribosome is essential for the synthesis of functional proteins. Previous structural studies indicated that the ribosome distinguishes between cognate and near-cognate tRNAs by monitoring the geometry of the codon–anticodon helix in the decoding center using the universally conserved 16S ribosomal RNA bases G530, A1492 and A1493. These bases form hydrogen bonds with the 2′-hydroxyl groups of the codon–anticodon helix, which are expected to be disrupted with a near-cognate codon–anticodon helix. However, a recent structural study showed that G530, A1492 and A1493 form hydrogen bonds in a manner identical with that of both cognate and near-cognate codon–anticodon helices. To understand how the ribosome discriminates between cognate and near-cognate tRNAs, we made 2′-deoxynucleotide and 2′-fluoro substituted mRNAs, which disrupt the hydrogen bonds between the A site codon and G530, A1492 and A1493. Our results show that multiple 2′-deoxynucleotide substitutions in the mRNA substantially inhibit tRNA selection, whereas multiple 2′-fluoro substitutions in the mRNA have only modest effects on tRNA selection. Furthermore, the miscoding antibiotics paromomycin and streptomycin rescue the defects in tRNA selection with the multiple 2′-deoxynucleotide substituted mRNA. These results suggest that steric complementarity in the decoding center is more important than the hydrogen bonds between the A site codon and G530, A1492 and A1493 for tRNA selection.  相似文献   

14.
Summary Escherichia coli strains with preexisting ribosomal mutations were used in order to isolate further ribosomal mutations. The ribosomal mutations used were resistance to erythromycin, spectinomycin, streptomycin or kasugamycin. These mutations cause alteration of specific ribosomal elements, L4, S5, S12 proteins and 16S rRNA respectively. Mutations have been introduced into strains carrying one, two or three of these mutations. Strains with all possible combinations of these four mutations were constructed. The phenotypes of all isolated mutants were tested, and frequently the strains lost one or more of their pre-existing resistances.Thus, functional interactions were revealed among proteins, as well as RNA and proteins within the 30 S ribosomal subunit and as well as between the 30 S and the 50 S ribosomal subunits.  相似文献   

15.
Certain rpsL (which encodes the ribosomal protein S12) mutations that confer resistance to streptomycin markedly activate the production of antibiotics in Streptomyces spp. These rpsL mutations are known to be located in the two conserved regions within the S12 protein. To understand the roles of these two regions in the activation of silent genes, we used site-directed mutagenesis to generate eight novel mutations in addition to an already known (K88E) mutation that is capable of activating antibiotic production in Streptomyces lividans. Of these mutants, two (L90K and R94G) activated antibiotic production much more than the K88E mutant. Neither the L90K nor the R94G mutation conferred an increase in the level of resistance to streptomycin and paromomycin. Our results demonstrate the efficacy of the site-directed mutagenesis technique for strain improvement.  相似文献   

16.
Mutants resistant to streptomycin, spectinomycin, neamine/kanamycin and erythromycin define eight genetic loci in a linear linkage group corresponding to about 21 kb of the circular chloroplast genome of Chlamydomonas reinhardtii. With one exception, all of these mutants represent single base-pair changes in conserved regions of the genes encoding the 16S and 23S chloroplast ribosomal RNAs. Streptomycin resistance can result from changes at the bases equivalent to Escherichia coli 13, 523, and 912-915 in the 16S gene, or from mutations in the rps12 gene encoding chloroplast ribosomal protein S12. In the 912-915 region of the 16S gene, three mutations were identified that resulted in different levels of streptomycin resistance in vitro. Although the three regions of the 16S rRNA mutable to streptomycin resistance are widely separated in the primary sequence, studies by other laboratories of RNA secondary structure and protein cross-linking suggest that all three regions are involved in a common ribosomal neighborhood that interacts with ribosomal proteins S4, S5 and S12. Three different changes within a conserved region of the 16S gene, equivalent to E. coli bases 1191-1193, confer varying levels of spectinomycin resistance, while resistance to neamine and kanamycin results from mutations in the 16S gene at bases equivalent to E. coli 1408 and 1409. Five mutations in two genetically distinct erythromycin resistance loci map in the 23S rDNA of C. reinhardtii, at positions equivalent to E. coli 2057-2058 and 2611, corresponding to the rib3 and rib2 loci of yeast mitochondria respectively. Although all five mutants are highly resistant to erythromycin, they differ in levels of cross-resistance to lincomycin and clindamycin. The order and spacing of all these mutations in the physical map are entirely consistent with our genetic map of the same loci and thereby validate the zygote clone method of analysis used to generate this map. These results are discussed in comparison with other published maps of chloroplast genes based on analysis by different methods using many of the same mutants.  相似文献   

17.
Certain rpsL (which encodes the ribosomal protein S12) mutations that confer resistance to streptomycin markedly activate the production of antibiotics in Streptomyces spp. These rpsL mutations are known to be located in the two conserved regions within the S12 protein. To understand the roles of these two regions in the activation of silent genes, we used site-directed mutagenesis to generate eight novel mutations in addition to an already known (K88E) mutation that is capable of activating antibiotic production in Streptomyces lividans. Of these mutants, two (L90K and R94G) activated antibiotic production much more than the K88E mutant. Neither the L90K nor the R94G mutation conferred an increase in the level of resistance to streptomycin and paromomycin. Our results demonstrate the efficacy of the site-directed mutagenesis technique for strain improvement.  相似文献   

18.
A positive correlation between poly(U) misreading and efficiency of poly(dT) translation has been revealed in cell-free systems from wild-type E coli and streptomycin--resistant mutants with altered ribosomal protein S12. Different factors promoting misreading of poly(U) such as aminoglycoside antibiotics and Mg2+ ions also stimulate poly(dT) translation. The effect of the antibiotics on poly(U) translation efficiency and misreading as well as on poly(dT) decoding is characterised by the same order: neomycin greater than kanamycin greater than streptomycin. S12 mutants ribosomes are less erroneous in poly(U) translation and less efficient in poly(dT) decoding. The data obtained are in good agreement with the hypothesis of stereospecific stabilization of codon-anticodon complexes by the ribosome decoding centre.  相似文献   

19.
Recent studies have suggested that ribosomal protein S12 modulates 16S rRNA function and susceptibility to 2-deoxystreptamine aminoglycosides. To study whether the non-restrictive K42R mutation in RpsL affects 2-deoxystreptamine susceptibility in Mycobacterium smegmatis, we studied the drug susceptibility pattern of various mutants with genetic alterations in the 16S rRNA decoding A-site in the context of wild-type and mutant protein S12. RpsL K42R substitution was found not to affect the drug resistance pattern associated with mutational alterations in 16S rRNA H44.  相似文献   

20.
Characterization of base substitutions in rRNAs has provided important insights into the mechanism of protein synthesis. Knowledge of the structural effects of such alterations is limited, and could be greatly expanded with the development of a genetic system based on an organism amenable to both genetics and structural biology. Here, we describe the genetic analysis of base substitutions in 16S ribosomal RNA of the extreme thermophile Thermus thermophilus, and an analysis of the conformational effects of these substitutions by structure probing with base-specific modifying agents. Gene replacement methods were used to construct a derivative of strain HB8 carrying a single 16S rRNA gene, allowing the isolation of spontaneous streptomycin-resistant mutants and subsequent genetic mapping of mutations by recombination. The residues altered to give streptomycin resistance reside within the central pseudoknot structure of 16S rRNA comprised of helices 1 and 27, and participate in the U13–U20–A915 base triple, the G21–A914 type II sheared G–A base pair, or the G885–C912 Watson–Crick base pair closing helix 27. Substitutions at any of the three residues engaged in the base triple were found to confer resistance. Results from structure probing of the pseudoknot are consistent with perturbation of RNA conformation by these substitutions, potentially explaining their streptomycin-resistance phenotypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号