首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Beclin-1, originally identified as a Bcl-2 binding protein, is an evolutionarily conserved protein required for autophagy. The direct interaction between Beclin-1 and Bcl-2 or Bcl-xL provides a potential convergence point for apoptosis and autophagy, two programmed cell death processes. Given the functional significance of the interaction between Beclin-1 and Bcl-2/Bcl-xL, we performed detailed biochemical and structural characterizations of this interaction. We demonstrated that the Bcl-xL-binding domain of Beclin-1 contains a BH3 domain. Therefore, Beclin-1 is a new member of the BH3-only family proteins. The structure of Bcl-xL in complex with the Beclin-1 BH3 domain was determined at high resolution by NMR spectroscopy. Although similar to other known BH3 domains, the Beclin-1 BH3 domain displays its own distinct features in the complex with Bcl-xL. Systematic analysis of all known Bcl-xL/BH3 domain complexes helped us to identify the molecular basis underlying the capacity of Bcl-xL to recognize diverse target sequences.  相似文献   

2.
Eukaryotic members of the ClC family of chloride channels and transporters are composed of a transmembrane ion transport domain followed by a cytoplasmic domain, which is believed to be involved in the modulation of ClC function. In some family members this putative regulatory domain contains next to a well-folded structured part, long sequence stretches with low sequence complexity. These regions, a 96 residue long linker connecting two structured sub-domains, and 35 residues on the C teminus of the domain were found disordered in a recent crystal structure of this domain in ClC-0. Both regions have a large influence on the modulation of channel function in closely related family members. Here we describe a NMR study to characterize the structural and dynamic properties of these putatively unstructured stretches. Our study reveals that the two regions indeed show large conformational flexibility with dynamics on the nanosecond timescale. However, small islands of secondary structure are found interdispersed between the unfolded regions. This study characterizes for the first time the biophysical properties of these protein segments, which may become important for the understanding of novel regulatory mechanisms within the ClC family.  相似文献   

3.
4.
Swa2p is an auxilin-like yeast protein that is involved in vesicular transport and required for uncoating of clathrin-coated vesicles. Swa2p contains a ubiquitin-associated (UBA) domain, which is present in a variety of proteins involved in ubiquitin (Ub)-mediated processes. We have determined a structural model of the Swa2p UBA domain in complex with Ub using NMR spectroscopy and molecular docking. Ub recognition occurs predominantly through an atypical interaction in which UBA helix α1 and the N-terminal part of helix α2 bind to Ub. Mutation of Ala148, a key residue in helix α1, to polar residues greatly reduced the affinity of the UBA domain for Ub and revealed a second low-affinity Ub-binding site located on the surface formed by helices α1 and α3. Surface plasmon resonance showed that the Swa2p UBA domain binds K48- and K63-linked di-Ub in a non-linkage-specific manner. These results reveal convergent evolution of a Ub-binding site on helix α1 of UBA domains involved in membrane protein trafficking.  相似文献   

5.
The leech protein Saratin from Hirudo medicinalis prevents thrombocyte aggregation by interfering with the first binding step of the thrombocytes to collagen by binding to collagen. We solved the three-dimensional structure of the leech protein Saratin in solution and identified its collagen binding site by NMR titration experiments. The NMR structure of Saratin consists of one α-helix and a five-stranded β-sheet arranged in the topology ββαβββ. The C-terminal region, of about 20 amino acids in length, adopts no regular structure. NMR titration experiments with collagen peptides show that the collagen interaction of Saratin takes place in a kind of notch that is formed by the end of the α-helix and the β-sheet. NMR data-driven docking experiments to collagen model peptides were used to elucidate the putative binding mode of Saratin and collagen. Mainly, parts of the first and the end of the fifth β-strand, the loop connecting the α-helix and the third β-strand, and a short part of the loop connecting the fourth and fifth β-strand participate in binding.  相似文献   

6.
7.
CHD7 is a member of the chromodomain helicase DNA binding domain (CHD) family of ATP-dependent chromatin remodelling enzymes. It is mutated in CHARGE syndrome, a multiple congenital anomaly condition. CHD7 is one of a subset of CHD proteins, unique to metazoans that contain the BRK domain, a protein module also found in the Brahma/BRG1 family of helicases. We describe here the NMR solution structure of the two BRK domains of CHD7. Each domain has a compact betabetaalphabeta fold. The second domain has a C-terminal extension consisting of two additional helices. The structure differs from those of other domains present in chromatin-associated proteins.  相似文献   

8.
As is typical for S100-target protein interactions, a Ca2+-dependent conformational change in S100A1 is required to bind to a 12-residue peptide (TRTK12) derived from the actin-capping protein CapZ. In addition, the Ca2+-binding affinity of S100A1 is found to be tightened (greater than threefold) when TRTK12 is bound. To examine the biophysical basis for these observations, we determined the solution NMR structure of TRTK12 in a complex with Ca2+-loaded S100A1. When bound to S100A1, TRTK12 forms an amphipathic helix (residues N6 to S12) with several favorable hydrophobic interactions observed between W7, I10, and L11 of the peptide and a well-defined hydrophobic binding pocket in S100A1 that is only present in the Ca2+-bound state. Next, the structure of S100A1-TRTK12 was compared to that of another S100A1-target complex (i.e., S100A1-RyRP12), which illustrated how the binding pocket in Ca2+-S100A1 can accommodate peptide targets with varying amino acid sequences. Similarities and differences were observed when the structures of S100A1-TRTK12 and S100B-TRTK12 were compared, providing insights regarding how more than one S100 protein can interact with the same peptide target. Such comparisons, including those with other S100-target and S100-drug complexes, provide the basis for designing novel small-molecule inhibitors that could be specific for blocking one or more S100-target protein interactions.  相似文献   

9.
10.
11.
Ubiquitin-interacting motifs (UIMs) are an important class of protein domains that interact with ubiquitin or ubiquitin-like proteins. These approximately 20-residue-long domains are found in a variety of ubiquitin receptor proteins and serve as recognition modules towards intracellular targets, which may be individual ubiquitin subunits or polyubiquitin chains attached to a variety of proteins. Previous structural studies of interactions between UIMs and ubiquitin have shown that UIMs adopt an extended structure of a single α-helix, containing a hydrophobic surface with a conserved sequence pattern that interacts with key hydrophobic residues on ubiquitin. In light of this large body of structural studies, details regarding the presence and the roles of structural dynamics and plasticity are surprisingly lacking. In order to better understand the structural basis of ubiquitin-UIM recognition, we have characterized changes in the structure and dynamics of ubiquitin upon binding of a UIM domain from the yeast Vps27 protein. The solution structure of a ubiquitin-UIM fusion protein designed to study these interactions is reported here and found to consist of a well-defined ubiquitin core and a bipartite UIM helix. Moreover, we have studied the plasticity of the docking interface, as well as global changes in ubiquitin due to UIM binding at the picoseconds-to-nanoseconds and microseconds-to-milliseconds protein motions by nuclear magnetic resonance relaxation. Changes in generalized-order parameters of amide groups show a distinct trend towards increased structural rigidity at the UIM-ubiquitin interface relative to values determined in unbound ubiquitin. Analysis of 15N Carr-Purcell-Meiboom-Gill relaxation dispersion measurements suggests the presence of two types of motions: one directly related to the UIM-binding interface and the other induced to distal parts of the protein. This study demonstrates a case where localized interactions among protein domains have global effects on protein motions at timescales ranging from picoseconds to milliseconds.  相似文献   

12.
Beta-microseminoprotein (MSP) is a small cysteine-rich protein (molecular mass about 10 kDa) first isolated from human seminal plasma and later identified in several other organisms. The function of MSP is not known, but a recent study has shown MSP to bind CRISP-3, a protein present in neutrophilic granulocytes. The amino acid sequence is highly variable between species raising the question of the evolutionary conservation of the 3D structure. Here we present NMR solution structures of both the human and the porcine MSP. The two proteins (sequence identity 51%) have a very similar 3D structure with the secondary structure elements well conserved and with most of the amino acid substitutions causing a change of charge localized to one side of the molecule. MSP is a beta-sheet-rich protein with two distinct domains. The N-terminal domain is composed of a four-stranded beta-sheet, with the strands arranged according to the Greek key-motif, and a less structured part. The C-terminal domain contains two two-stranded beta-sheets with no resemblance to known structural motifs. The two domains, connected to each other by the peptide backbone, one disulfide bond, and interactions between the N and C termini, are oriented to give the molecule a rather extended structure. This global fold differs markedly from that of a previously published structure for porcine MSP, in which the two domains have an entirely different orientation to each other. The difference probably stems from a misinterpretation of ten specific inter-domain NOEs.  相似文献   

13.
Drugs can affect function in proteins by modulating their flexibility. Despite this possibility, there are very few studies on how drug binding affects the dynamics of target macromolecules. FKBP12 (FK506 binding protein 12) is a prolyl cis-trans isomerase and a drug target. The immunosuppressant drug rapamycin exerts its therapeutic effect by serving as an adaptor molecule between FKBP12 and the cell proliferation regulator mTOR (mammalian target of rapamycin). To understand the role of dynamics in rapamycin-based immunosuppression and to gain insight into the role of dynamics in the assembly of supramolecular complexes, we used 15N, 13C, and 2H NMR spin relaxation to characterize FKBP12 along the binding coordinate that leads to cell cycle arrest. We show that sequential addition of rapamycin and mTOR leads to incremental rigidification of the FKBP12 backbone on the picosecond-nanosecond timescale. Both binding events lead to perturbation of main-chain and side-chain dynamics at sites distal to the binding interfaces, suggesting tight coupling interactions dispersed throughout the FKBP12-rapamycin interface. Binding of the first molecule, rapamycin, quenches microsecond-millisecond motions of the FKBP12 80's loop. This loop provides much of the surface buried at the protein-protein interface of the ternary complex, leading us to assert that preorganization upon rapamycin binding facilitates binding of the second molecule, mTOR. Widespread microsecond-millisecond motions of the backbone persist in the drug-bound enzyme, and we provide evidence that these slow motions represent coupled dynamics of the enzyme and isomerization of the bound drug. Finally, the pattern of microsecond-millisecond dynamics reported here in the rapamycin complex is dramatically different from the pattern in the complex with the structurally related drug FK506. This raises the important question of how two complexes that are highly isomorphic based on high-resolution static models have such different flexibilities in solution.  相似文献   

14.
Suppressor of cytokine signalling 3 (SOCS3) is responsible for regulating the cellular response to a variety of cytokines, including interleukin 6 and leukaemia inhibitory factor. Identification of the SOCS box domain led to the hypothesis that SOCS3 can associate with functional E3 ubiquitin ligases and thereby induce the degradation of bound signalling proteins. This model relies upon an interaction between the SOCS box, elonginBC and a cullin protein that forms the E3 ligase scaffold. We have investigated this interaction in vitro using purified components and show that SOCS3 binds to elonginBC and cullin5 with high affinity. The SOCS3-elonginBC interaction was further characterised by determining the solution structure of the SOCS box-elonginBC ternary complex and by deletion and alanine scanning mutagenesis of the SOCS box. These studies revealed that conformational flexibility is a key feature of the SOCS-elonginBC interaction. In particular, the SOCS box is disordered in isolation and only becomes structured upon elonginBC association. The interaction depends upon the first 12 residues of the SOCS box domain and particularly on a deeply buried, conserved leucine. The SOCS box, when bound to elonginBC, binds tightly to cullin5 with 100 nM affinity. Domains upstream of the SOCS box are not required for elonginBC or cullin5 association, indicating that the SOCS box acts as an independent binding domain capable of recruiting elonginBC and cullin5 to promote E3 ligase formation.  相似文献   

15.
Filamentous type 1 pili are responsible for attachment of uropathogenic Escherichia coli strains to host cells. They consist of a linear tip fibrillum and a helical rod formed by up to 3000 copies of the main structural pilus subunit FimA. The subunits in the pilus interact via donor strand complementation, where the incomplete, immunoglobulin-like fold of each subunit is complemented by an N-terminal donor strand of the subsequent subunit. Here, we show that folding of FimA occurs at an extremely slow rate (half-life: 1.6 h) and is catalyzed more than 400-fold by the pilus chaperone FimC. Moreover, FimA is capable of intramolecular self-complementation via its own donor strand, as evidenced by the loss of folding competence upon donor strand deletion. Folded FimA is an assembly-incompetent monomer of low thermodynamic stability (− 10.1 kJ mol− 1) that can be rescued for pilus assembly at 37 °C because FimC selectively pulls the fraction of unfolded FimA molecules from the FimA folding equilibrium and allows FimA refolding on its surface. Elongation of FimA at the C-terminus by its own donor strand generated a self-complemented variant (FimAa) with alternative folding possibilities that spontaneously adopts the more stable conformation (− 85.0 kJ mol− 1) in which the C-terminal donor strand is inserted in the opposite orientation relative to that in FimA. The solved NMR structure of FimAa revealed extensive β-sheet hydrogen bonding between the FimA pilin domain and the C-terminal donor strand and provides the basis for reconstruction of an atomic model of the pilus rod.  相似文献   

16.
17.
SnRK [SNF1 (sucrose non-fermenting-1)-related protein kinase] 2.6 [open stomata 1 (OST1)] is well characterized at molecular and physiological levels to control stomata closure in response to water-deficit stress. OST1 is a member of a family of 10 protein kinases from Arabidopsis thaliana (SnRK2) that integrates abscisic acid (ABA)-dependent and ABA-independent signals to coordinate the cell response to osmotic stress. A subgroup of protein phosphatases type 2C binds OST1 and keeps the kinase dephosphorylated and inactive. Activation of OST1 relies on the ABA-dependent inhibition of the protein phosphatases type 2C and the subsequent self-phosphorylation of the kinase. The OST1 ABA-independent activation depends on a short sequence motif that is conserved among all the members of the SnRK2 family. However, little is known about the molecular mechanism underlying this regulation. The crystallographic structure of OST1 shows that ABA-independent regulation motif stabilizes the conformation of the kinase catalytically essential α C helix, and it provides the basis of the ABA-independent regulation mechanism for the SnRK2 family of protein kinases.  相似文献   

18.
The structures of a dimeric mutant of the Lac repressor DNA-binding domain complexed with the auxiliary operators O2 and O3 have been determined using NMR spectroscopy and compared to the structures of the previously determined Lac-O1 and Lac-nonoperator complexes. Structural analysis of the Lac-O1 and Lac-O2 complexes shows highly similar structures with very similar numbers of specific and nonspecific contacts, in agreement with similar affinities for these two operators. The left monomer of the Lac repressor in the Lac-O3 complex retains most of these specific contacts. However, in the right half-site of the O3 operator, there is a significant loss of protein-DNA contacts, explaining the low affinity of the Lac repressor for the O3 operator. The binding mode in the right half-site resembles that of the nonspecific complex. In contrast to the Lac-nonoperator DNA complex where no hinge helices are formed, the stability of the hinge helices in the weak Lac-O3 complex is the same as in the Lac-O1 and Lac-O2 complexes, as judged from the results of hydrogen/deuterium experiments.  相似文献   

19.
20.
Small ankyrin 1 (sAnk1; also known as Ank1.5) is an integral protein of the sarcoplasmic reticulum (SR) in skeletal and cardiac muscle cells, where it is thought to bind to the C-terminal region of obscurin, a large modular protein that surrounds the contractile apparatus. Using fusion proteins in vitro, in combination with site-directed mutagenesis and surface plasmon resonance measurements, we previously showed that the binding site on sAnk1 for obscurin consists, in part, of six lysine and arginine residues. Here we show that four charged residues in the high-affinity binding site on obscurin for sAnk1 (between residues 6316 and 6345), consisting of three glutamates and a lysine, are necessary, but not sufficient, for this site on obscurin to bind to sAnk1 with high affinity. We also identify specific complementary mutations in sAnk1 that can partially or completely compensate for the changes in binding caused by charge-switching mutations in obscurin. We used molecular modeling to develop structural models of residues 6322-6339 of obscurin bound to sAnk1. The models, based on a combination of Brownian and molecular dynamics simulations, predict that the binding site on sAnk1 for obscurin is organized as two ankyrin-like repeats, with the last α-helical segment oriented at an angle to nearby helices, allowing lysine 6338 of obscurin to form an ionic interaction with aspartate 111 of sAnk1. This prediction was validated by double-mutant cycle experiments. Our results are consistent with a model in which electrostatic interactions between specific pairs of side chains on obscurin and sAnk1 promote binding and complex formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号