共查询到20条相似文献,搜索用时 0 毫秒
1.
Human mast cell tryptases represent a subfamily of trypsin-like serine proteinases implicated in asthma. Unlike beta-tryptases, alpha-tryptases apparently are proteolytically inactive. We have solved the 2.2A crystal structure of mature human alpha1-tryptase. It reveals a frame-like tetrameric architecture that, surprisingly, does not require heparin-binding for stability. In marked contrast to beta2-tryptase, the Ser214-Gly219 segment, which normally provides the template for substrate binding, is kinked in alpha-tryptase, thereby blocking its non-primed subsites. This so far unobserved subsite distortion is incompatible with productive substrate binding and processing. alpha-Tryptase apparently is trapped in this off-conformation by repulsions and attractions of the Asp216 side-chain. However, proteolytic activity could be generated by an induced-fit mechanism. 相似文献
2.
Irie K Nakatsu T Mitsuoka K Miyazawa A Sobue K Hiroaki Y Doi T Fujiyoshi Y Kato H 《Journal of molecular biology》2002,318(4):1117-1126
PSD-Zip45 (also named Homer 1c/Vesl-1L) is a synaptic scaffolding protein, which interacts with neurotransmitter receptors and other scaffolding proteins to target them into post-synaptic density (PSD), a specialized protein complex at the synaptic junction. Binding of the PSD-Zip45 to the receptors and scaffolding proteins results in colocalization and clustering of its binding partners in PSD. It has an Ena/VASP homology 1 (EVH1) domain in the N terminus for receptor binding, two leucine zipper motifs in the C terminus for clustering, and a linking region whose function is unclear despite the high level of conservation within the Homer 1 family. The X-ray crystallographic analysis of the largest fragment of residues 1-163, including an EVH1 domain reported here, demonstrates that the EVH1 domain contains an alpha-helix longer than that of the previous models, and that the linking part included in the conserved region of Homer 1 (CRH1) of the PSD-Zip45 interacts with the EVH1 domain of the neighbour CRH1 molecule in the crystal. The results suggest that the EVH1 domain recognizes the PPXXF motif found in the binding partners, and the SPLTP sequence (P-motif) in the linking region of the CRH1. The two types of binding are partly overlapped in the EVH1 domain, implying a mechanism to regulate multimerization of Homer 1 family proteins. 相似文献
3.
Hashimoto H Matsuo Y Yokoyama Y Toyohara H Sakaguchi M 《Biochimica et biophysica acta》2002,1575(1-3):139-142
Carp MKK4 (cMKK4) cDNA was isolated from an ovary cDNA library. cMKK4 mRNA was ubiquitously distributed in various tissues of adult carp. Sequence analysis revealed that cMKK4 lacks a nuclear export signal sequence, unlike mammalian and frog MEKs (ERK activator) and cMKK6 (carp p38 activator), where it plays an important role in anchoring these MAP kinase activators to the cytoplasm. cMKK4 protein was found to be diffused throughout the cell, whereas cMEK1 and cMKK6 proteins were seen exclusively in the cytoplasm. 相似文献
4.
Shuxia Peng Ke ZhouWenjia Wang Zengqiang GaoYuhui Dong Quansheng Liu 《Biochemical and biophysical research communications》2014
Swt1 is an RNA endonuclease that plays an important role in quality control of nuclear messenger ribonucleoprotein particles (mRNPs) in eukaryotes; however, its structural details remain to be elucidated. Here, we report the crystal structure of the C-terminal (CT) domain of Swt1 from Saccharomyces cerevisiae, which shares common characteristics of higher eukaryotes and prokaryotes nucleotide binding (HEPN) domain superfamily. To study in detail the full-length protein structure, we analyzed the low-resolution architecture of Swt1 in solution using small angle X-ray scattering (SAXS) method. Both the CT domain and middle domain exhibited a good fit upon superimposing onto the molecular envelope of Swt1. Our study provides the necessary structural information for detailed analysis of the functional role of Swt1, and its importance in the process of nuclear mRNP surveillance. 相似文献
5.
The structure of GFRalpha1 domain 3 reveals new insights into GDNF binding and RET activation
下载免费PDF全文

Leppänen VM Bespalov MM Runeberg-Roos P Puurand U Merits A Saarma M Goldman A 《The EMBO journal》2004,23(7):1452-1462
Glial cell line-derived neurotrophic factor (GDNF) binds to the GDNF family co-receptor alpha1 (GFRalpha1) and activates RET receptor tyrosine kinase. GFRalpha1 has a putative domain structure of three homologous cysteine-rich domains, where domains 2 and 3 make up a central domain responsible for GDNF binding. We report here the 1.8 A crystal structure of GFRalpha1 domain 3 showing a new protein fold. It is an all-alpha five-helix bundle with five disulfide bridges. The structure was used to model the homologous domain 2, the other half of the GDNF-binding fragment, and to construct the first structural model of the GDNF-GFRalpha1 interaction. Using site-directed mutagenesis, we identified closely spaced residues, Phe213, Arg224, Arg225 and Ile229, comprising a putative GDNF-binding surface. Mutating each one of them had slightly different effects on GDNF binding and RET phosphorylation. In addition, the R217E mutant bound GDNF equally well in the presence and absence of RET. Arg217 may thus be involved in the allosteric properties of GFRalpha1 or in binding RET. 相似文献
6.
Hao Zhang Yu-Chung Chang Mark L. Brennan Jinhua Wu 《分子细胞生物学报》2014,(2):128-139
The small GTPase Rap1 induces integrin activation via an inside-out signaling pathway mediated by the Rapl-interacting adaptor mol- ecule (RIAM). Blocking this pathway may suppress tumor metastasis and other diseases that are related to hyperactive integrins. However, the molecular basis for the specific recognition of RIAM by Rap1 remains largely unknown. Herein we present the crystal structure of an active, GTP-bound GTPase domain of Rap1 in complex with the Ras association (RA)-pleckstrin homology (PH) structural module of RIAM at 1.65 A. The structure reveals that the recognition of RIAM by Rap1 is governed by side-chain interactions. Several side chains are critical in determining specificity of this recognition, particularly the Lys31 residue in Rap1 that is oppositely charged compared with the Glu31/Asp31 residue in other Ras GTPases. Lys31 forms a salt bridge with RIAM residue Glu212, making it the key specificity determinant of the interaction. We also show that disruption of these interactions results in reduction of Rapl:RIAM association, leadingto a loss of co-clustering and cell adhesion. Our findings elucidate the molecular mechanism by which RIAM med- iates Rapl-induced integrin activation. The crystal structure also offers new insight into the structural basis for the specific recruitment of RA-PH module-containing effector proteins by their smaU GTPase partners. 相似文献
7.
8.
BRCA1 is a DNA damage response protein and functions in the nucleus to stimulate DNA repair and at the centrosome to inhibit centrosome overduplication in response to DNA damage. The loss or mutation of BRCA1 causes centrosome amplification and abnormal mitotic spindle assembly in breast cancer cells. The BRCA1-BARD1 heterodimer binds and ubiquitinates γ-tubulin to inhibit centrosome amplification and promote microtubule nucleation; however regulation of BRCA1 targeting and function at the centrosome is poorly understood. Here we show that both N and C termini of BRCA1 are required for its centrosomal localization and that BRCA1 moves to the centrosome independently of BARD1 and γ-tubulin. Mutations in the C-terminal phosphoprotein-binding BRCT domain of BRCA1 prevented localization to centrosomes. Photobleaching experiments identified dynamic (60%) and immobilized (40%) pools of ectopic BRCA1 at the centrosome, and these are regulated by the nuclear export receptor CRM1 (chromosome region maintenance 1) and BARD1. CRM1 mediates nuclear export of BRCA1, and mutation of the export sequence blocked BRCA1 regulation of centrosome amplification in irradiated cells. CRM1 binds to undimerized BRCA1 and is displaced by BARD1. Photobleaching assays implicate CRM1 in driving undimerized BRCA1 to the centrosome and revealed that when BRCA1 subsequently binds to BARD1, it is less well retained at centrosomes, suggesting a mechanism to accelerate BRCA1 release after formation of the active heterodimer. Moreover, Aurora A binding and phosphorylation of BRCA1 enhanced its centrosomal retention and regulation of centrosome amplification. Thus, CRM1, BARD1 and Aurora A promote the targeting and function of BRCA1 at centrosomes. 相似文献
9.
Phytochromes are light-sensing macromolecules that are part of a two component phosphorelay system controlling gene expression. Photoconversion between the Pr and Pfr forms facilitates autophosphorylation of a histidine in the dimerization domain (DHp). We report the low-resolution structure of a bacteriophytochrome (Bph) in the catalytic (CA) Pr form in solution determined by small-angle X-ray scattering (SAXS). Ab initio modeling reveals, for the first time, the domain organization in a typical bacteriophytochrome, comprising an chromophore binding and phytochrome (PHY) N terminal domain followed by a C terminal histidine kinase domain. Homologous high-resolution structures of the light-sensing chromophore binding domain (CBD) and the cytoplasmic part of a histidine kinase sensor allows us to model 75% of the structure with the remainder comprising the phytochrome domain which has no 3D representative in the structural database. The SAXS data reveal a dimeric Y shaped macromolecule and the relative positions of the chromophores (biliverdin), autophosphorylating histidine residues and the ATP molecules in the kinase domain. SAXS data were collected from a sample in the autophosphorylating Pr form and reveal alternate conformational states for the kinase domain that can be modeled in an open (no-catalytic) and closed (catalytic) state. This model suggests how light-induced signal transduction can stimulate autophosphorylation followed by phosphotransfer to a response regulator (RR) in the two-component system. 相似文献
10.
Crystal structure of the Melampsora lini effector AvrP reveals insights into a possible nuclear function and recognition by the flax disease resistance protein P
下载免费PDF全文

Xiaoxiao Zhang Nadya Farah Laura Rolston Daniel J. Ericsson Ann‐Maree Catanzariti Maud Bernoux Thomas Ve Katerina Bendak Chunhong Chen Joel P. Mackay Gregory J. Lawrence Adrienne Hardham Jeffrey G. Ellis Simon J. Williams Peter N. Dodds David A. Jones Bostjan Kobe 《Molecular Plant Pathology》2018,19(5):1196-1209
The effector protein AvrP is secreted by the flax rust fungal pathogen (Melampsora lini) and recognized specifically by the flax (Linum usitatissimum) P disease resistance protein, leading to effector‐triggered immunity. To investigate the biological function of this effector and the mechanisms of specific recognition by the P resistance protein, we determined the crystal structure of AvrP. The structure reveals an elongated zinc‐finger‐like structure with a novel interleaved zinc‐binding topology. The residues responsible for zinc binding are conserved in AvrP effector variants and mutations of these motifs result in a loss of P‐mediated recognition. The first zinc‐coordinating region of the structure displays a positively charged surface and shows some limited similarities to nucleic acid‐binding and chromatin‐associated proteins. We show that the majority of the AvrP protein accumulates in the plant nucleus when transiently expressed in Nicotiana benthamiana cells, suggesting a nuclear pathogenic function. Polymorphic residues in AvrP and its allelic variants map to the protein surface and could be associated with differences in recognition specificity. Several point mutations of residues on the non‐conserved surface patch result in a loss of recognition by P, suggesting that these residues are required for recognition. 相似文献
11.
The structure of the aquaporin-1 water channel: a comparison between cryo-electron microscopy and X-ray crystallography 总被引:1,自引:0,他引:1
Three different medium-resolution structures of the human water channel aquaporin-1 (AQP1) have been solved by cryo-electron microscopy (cryo-EM) during the last two years. Recently, the structure of the strongly related bovine AQP1 was solved by X-ray crystallography at higher resolution, allowing a validation of the original medium-resolution structures, and providing a good indication for the strengths and limitations of state of the art cryo-EM methods. We present a detailed comparison between the different models, which shows that overall, the structures are highly similar, deviating less than 2.5 A from each other in the helical backbone regions. The two original cryo-EM structures, however, also show a number of significant deviations from the X-ray structure, both in the backbone positions of the transmembrane helices and in the location of the amino acid side-chains facing the pore. In contrast, the third cryo-EM structure that included information from the X-ray structure of the homologous bacterial glycerol facilitator GlpF and that was subsequently refined against cryo-EM AQP1 data, shows a root mean square deviation of 0.9A from the X-ray structure in the helical backbone regions. 相似文献
12.
A new series of chiral carboxylate-bridged complexes of Mn(II), Co(II), and Ni(II) has been synthesized by reaction of M(II) salts with (S)-2-hydroxy-2-methyl-butanedioic acid ((S)-citramalic acid) under solvothermal conditions. The Mn(II) compound 1 is obtained as a crystalline powder, whereas the Co(II) and Ni(II) compounds (2 and 3 respectively) are obtained as single crystals. All the compounds crystallize in orthorhombic chiral space group P212121. Compounds 2 and 3 are isostructural, and their structure consists in helicoïdal chains of M(II) centres linked by carboxylate bridges. The magnetic data indicate a rather weak coupling interaction between paramagnetic centres. The Mn(II) compound 1 exhibits antiferromagnetic ordering at TN = 2.64 K. The Co(II) and Ni(II) compounds show ferromagnetic interactions within the chains. For 3, the chains couple antiferromagnetically, which leads to a metamagnetic behaviour with TN = 1.69 K. 相似文献
13.
The structure of bovine F1-ATPase inhibited with ADP and beryllium fluoride at 2.0 angstroms resolution contains two ADP.BeF3- complexes mimicking ATP, bound in the catalytic sites of the beta(TP) and beta(DP) subunits. Except for a 1 angstrom shift in the guanidinium of alphaArg373, the conformations of catalytic side chains are very similar in both sites. However, the ordered water molecule that carries out nucleophilic attack on the gamma-phosphate of ATP during hydrolysis is 2.6 angstroms from the beryllium in the beta(DP) subunit and 3.8 angstroms away in the beta(TP) subunit, strongly indicating that the beta(DP) subunit is the catalytically active conformation. In the structure of F1-ATPase with five bound ADP molecules (three in alpha-subunits, one each in the beta(TP) and beta(DP) subunits), which has also been determined, the conformation of alphaArg373 suggests that it senses the presence (or absence) of the gamma-phosphate of ATP. Two catalytic schemes are discussed concerning the various structures of bovine F1-ATPase. 相似文献
14.
Dasarath Mal Chandan Adhikary Philipp Gütlich Ken-Ichi Okamoto 《Inorganica chimica acta》2008,361(1):183-187
Reaction of Ni(NO3)2 · 6H2O and sodium dicyanamide (Nadca) yields a 1D infinite chain complex {[Ni(dien)(μ1,5-dca)(H2O)](NO3)}n (1) (where dien = diethylenetriamine). The coordination environment in complex 1 around the nickel(II) ions is distorted octahedron. Three nitrogen atoms of the ligand diethylenetriamine and an oxygen atom of H2O molecule constitute the four coordination sites of the basal plane of the octahedron. Of two axial positions of the octahedron, one position is occupied by the nitrogen atom of a μ1,5-dca anion the remaining coordination site is occupied by a nitrogen atom of another end-to-end bridging dca from an adjacent [Ni(dien)(μ1,5-dca)(H2O)] moiety, yielding 1D infinite chains which propagate parallel to crystallographic a-axis. No measurable magnetic interaction was evidenced through variable temperature magnetic susceptibility measurements (4-300 K). However, the magnetic susceptibility of the compound can be explained in terms of single-ion anisotropic model with zero-field splitting for nickel(II) ions. 相似文献
15.
Williams CL 《Cellular signalling》2003,15(12):1071-1080
Many small GTPases in the Ras and Rho families have a C-terminal polybasic region (PBR) comprised of multiple lysines or arginines. The PBR controls diverse functions of these small GTPases, including their ability to associate with membranes, interact with specific proteins, and localize in subcellular compartments. Different signaling pathways mediated by Ras and Rho family members may converge when the small GTPases are directed by their PBRs to shared binding sites in specific proteins or at cell membranes. The PBR promotes the interactions of small GTPases with SmgGDS, which is a nucleocytoplasmic shuttling protein that stimulates guanine nucleotide exchange by small GTPases. The PBR of Rac1 was recently found to have a functional nuclear localization signal (NLS) sequence, which enhances the nuclear accumulation of protein complexes containing SmgGDS and Rac1. Sequence analysis demonstrates that canonical NLS sequences (K-K/R-x-K/R) are present in the PBRs of additional Ras and Rho family members, and are evolutionarily conserved across several phyla. These findings suggest that the PBR regulates the nucleocytoplasmic shuttling of some Ras and Rho family members when they are in protein complexes that are too large to diffuse through nuclear pores. These diverse functions of the PBR indicate its critical role in signaling by Ras and Rho family GTPases. 相似文献
16.
Mannock DA Collins MD Kreichbaum M Harper PE Gruner SM McElhaney RN 《Chemistry and physics of lipids》2007,148(1):26-50
The thermotropic phase behaviour of aqueous dispersions of some synthetic 1,2-di-O-alkyl-3-O-(beta-D-galactosyl)-rac-glycerols (rac-beta-D-GalDAGs) with both odd and even hydrocarbon chain lengths was studied by differential scanning calorimetry (DSC), small-angle (SAXS) and wide-angle (WAXS) X-ray diffraction. DSC heating curves show a complex pattern of lamellar (L) and nonlamellar (NL) phase polymorphism dependent on the sample's thermal history. On cooling from 95 degrees C and immediate reheating, rac-beta-D-GalDAGs typically show a single, strongly energetic phase transition, corresponding to either a lamellar gel/liquid-crystalline (L(beta)/L(alpha)) phase transition (N< or =15 carbon atoms) or a lamellar gel/inverted hexagonal (L(beta)/H(II)) phase transition (N> or =16). At higher temperatures, some shorter chain compounds (N=10-13) exhibit additional endothermic phase transitions, identified as L/NL phase transitions using SAXS/WAXS. The NL morphology and the number of associated intermediate transitions vary with hydrocarbon chain length. Typically, at temperatures just above the L(alpha) phase boundary, a region of phase coexistence consisting of two inverted cubic (Q(II)) phases are observed. The space group of the cubic phase seen on initial heating has not been determined; however, on further heating, this Q(II) phase disappears, enabling the identification of the second Q(II) phase as Pn3 m (space group Q(224)). Only the Pn3 m phase is seen on cooling. Under suitable annealing conditions, rac-beta-D-GalDAGs rapidly form highly ordered lamellar-crystalline (L(c)) phases at temperatures above (N< or =15) or below (N=16-18) the L(beta)/L(alpha) phase transition temperature (T(m)). In the N< or =15 chain length lipids, DSC heating curves show two overlapping, highly energetic, endothermic peaks on heating above T(m); corresponding changes in the first-order spacings are observed by SAXS, accompanied by two different, complex patterns of reflections in the WAXS region. The WAXS data show that there is a difference in hydrocarbon chain packing, but no difference in bilayer dimensions or hydrocarbon chain tilt for these two L(c) phases (termed L(c1) and L(c2), respectively). Continued heating of suitably annealed, shorter chain rac-beta-D-GalDAGs from the L(c2) phase results in a phase transition to an L(alpha) phase and, on further heating, to the same Q(II) or H(II) phases observed on first heating. On reheating annealed samples with longer chain lengths, a subgel phase is formed. This is characterized by a single, poorly energetic endotherm visible below the T(m). SAXS/WAXS identifies this event as an L(c)/L(beta) phase transition. However, the WAXS reflections in the di-16:0 lipid do not entirely correspond to the reflections seen for either the L(c1) or L(c2) phases present in the shorter chain rac-beta-D-GalDAGs; rather these consist of a combination of L(c1), L(c2) and L(beta) reflections, consistent with DSC data where all three phase transitions occur within a span of 5 degrees C. At very long chain lengths (N> or =19), the L(beta)/L(c) conversion process is so slow that no L(c) phases are formed over the time scale of our experiments. The L(beta)/L(c) phase conversion process is significantly faster than that seen in the corresponding rac-beta-D-GlcDAGs, but is slower than in the 1,2-sn-beta-D-GalDAGs already studied. The L(alpha)/NL phase transition temperatures are also higher in the rac-beta-D-GalDAGs than in the corresponding rac-beta-D-GlcDAGs, suggesting that the orientation of the hydroxyl at position 4 and the chirality of the glycerol molecule in the lipid/water interface influence both the L(c) and NL phase properties of these lipids, probably by controlling the relative positions of hydrogen bond donors and acceptors in the polar region of the membrane. 相似文献
17.
Furtado PB Whitty PW Robertson A Eaton JT Almogren A Kerr MA Woof JM Perkins SJ 《Journal of molecular biology》2004,338(5):921-941
Immunoglobulin A (IgA), the most abundant human immunoglobulin, mediates immune protection at mucosal surfaces as well as in plasma. It exists as two subclasses IgA1 and IgA2, and IgA2 is found in at least two allotypic forms, IgA2m(1) or IgA2m(2). Compared to IgA1, IgA2 has a much shorter hinge region, which joins the two Fab and one Fc fragments. In order to assess its solution structure, monomeric recombinant IgA2m(1) was studied by X-ray and neutron scattering. Its Guinier X-ray radius of gyration R(G) is 5.18 nm and its neutron R(G) is 5.03 nm, both of which are significantly smaller than those for monomeric IgA1 at 6.1-6.2 nm. The distance distribution function P(r)for IgA2m(1) showed a broad peak with a subpeak and gave a maximum dimension of 17 nm, in contrast to the P(r) curve for IgA1, which showed two distinct peaks and a maximum dimension of 21 nm. The sedimentation coefficients of IgA1 and IgA2m(1) were 6.2S and 6.4S, respectively. These data show that the solution structure of IgA2m(1) is significantly more compact than IgA1. The complete monomeric IgA2m(1) structure was modelled using molecular dynamics to generate random IgA2 hinge structures, to which homology models for the Fab and Fc fragments were connected to generate 10,000 full models. A total of 104 compact best-fit IgA2m(1) models gave good curve fits. These best-fit models were modified by linking the two Fab light chains with a disulphide bridge that is found in IgA2m(1), and subjecting these to energy refinement to optimise this linkage. The averaged solution structure of the arrangement of the Fab and Fc fragments in IgA2m(1) was found to be predominantly T-shaped and flexible, but also included Y-shaped structures. The IgA2 models show full steric access to the two FcalphaRI-binding sites at the Calpha2-Calpha3 interdomain region in the Fc fragment. Since previous scattering modelling had shown that IgA1 also possessed a flexible T-shaped solution structure, such a T-shape may be common to both IgA1 and IgA2. The final models suggest that the combination of the more compact IgA2m(1) and the more extended IgA1 structures will enable human IgA to access a broader range of antigens than either acting alone. The hinges of both IgA subclasses appear to show reduced flexibility when compared to their equivalents in IgG, and this may be important for maintaining an extended IgA structure. 相似文献
18.
Mac Sweeney A Lange R Fernandes RP Schulz H Dale GE Douangamath A Proteau PJ Oefner C 《Journal of molecular biology》2005,345(1):115-127
The key enzyme in the non-mevalonate pathway of isoprenoid biosynthesis, 1-deoxy-D-xylulose 5-phosphate reductoisomerase (DXR) has been shown to be the target enzyme of fosmidomycin, an antimalarial, antibacterial and herbicidal compound. Here we report the crystal structure of selenomethionine-labelled Escherichia coli DXR in a ternary complex with NADPH and fosmidomycin at 2.2 A resolution. The structure reveals a considerable conformational rearrangement upon fosmidomycin binding and provides insights into the slow, tight binding inhibition mode of the inhibitor. Although the inhibitor displays an unusual non-metal mediated mode of inhibition, which is an artefact most likely due to the low metal affinity of DXR at the pH used for crystallization, the structural data add valuable information for the rational design of novel DXR inhibitors. Using this structure together with the published structural data and the 1.9 A crystal structure of DXR in a ternary complex with NADPH and the substrate 1-deoxy-D-xylulose 5-phosphate, a model for the physiologically relevant tight-binding mode of inhibition is proposed. The structure of the substrate complex must be interpreted with caution due to the presence of a second diastereomer in the active site. 相似文献
19.
Shukun Luo ) Xiaoran Xin ) Li-Lin Du ) Keqiong Ye ) Yi Wei ) 《The Journal of biological chemistry》2015,290(34):21054-21066
MDC1 is a key factor of DNA damage response in mammalian cells. It possesses two phospho-binding domains. In its C terminus, a tandem BRCA1 C-terminal domain binds phosphorylated histone H2AX, and in its N terminus, a forkhead-associated (FHA) domain mediates a phosphorylation-enhanced homodimerization. The FHA domain of the Drosophila homolog of MDC1, MU2, also forms a homodimer but utilizes a different dimer interface. The functional importance of the dimerization of MDC1 family proteins is uncertain. In the fission yeast Schizosaccharomyces pombe, a protein sharing homology with MDC1 in the tandem BRCA1 C-terminal domain, Mdb1, regulates DNA damage response and mitotic spindle functions. Here, we report the crystal structure of the N-terminal 91 amino acids of Mdb1. Despite a lack of obvious sequence conservation to the FHA domain of MDC1, this region of Mdb1 adopts an FHA-like fold and is therefore termed Mdb1-FHA. Unlike canonical FHA domains, Mdb1-FHA lacks all the conserved phospho-binding residues. It forms a stable homodimer through an interface distinct from those of MDC1 and MU2. Mdb1-FHA is important for the localization of Mdb1 to DNA damage sites and the spindle midzone, contributes to the roles of Mdb1 in cellular responses to genotoxins and an antimicrotubule drug, and promotes in vitro binding of Mdb1 to a phospho-H2A peptide. The defects caused by the loss of Mdb1-FHA can be rescued by fusion with either of two heterologous dimerization domains, suggesting that the main function of Mdb1-FHA is mediating dimerization. Our data support that FHA-mediated dimerization is conserved for MDC1 family proteins. 相似文献
20.
Summary The SARS related Coronavirus genome contains a variety of novel accessory genes. One of these, called ORF7a or ORF8, code for a protein, known as 7a, U122 or X4. We set out to determine the three-dimensional structure of the soluble ectodomain of this type-I transmembrane protein by nuclear magnetic resonance spectroscopy. The fold of the protein is the first member of a further variation of the immunoglobulin like beta-sandwich fold. Because X4 does not reveal significant sequence homologies to proteins in the data bases, we carried out a structure based similarity search for proteins with known function. High structural similarity to Dl domains of ICAM-1 and ICAM-2, and common features in amino acid sequence between X4 and ICAM-1, suggest X4 to possess binding activity for the integrin I domain of LFA-1. Further, based on this structure based prediction, potential functions of X4 in virus replication and pathogenesis are discussed.The authors Karen Hänel and Thomas Stangler contributed equally to work. 相似文献