首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The in vitro reassembled species of OmpF porin, which was renatured from its denatured monomer using n-octyl-β-D-glucopyranoside, was characterized by low-angle laser light scattering photometry, circular dichroism spectroscopy and synchrotron radiation small-angle X-ray scattering measurements. The light scattering measurement reconfirmed that the reassembled species was the dimer of the protein. Circular dichroism spectra of the reassembled dimer showed a native-like β-structure. A small-angle X-ray scattering measurement indicated that the size of the reassembled dimer was nearly equal to that of the native trimer under the present experimental conditions. In a thermal denaturation experiment followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the reassembled dimer was less stable than the native trimer.  相似文献   

2.
Tom70 is a mitochondrial protein import receptor composed of 11 tetratricopeptide repeats (TPRs). The first three TPRs form an N-terminal domain that recruits heat shock protein family chaperones, while the eight C-terminal TPRs form a domain that receives, from the bound chaperone, mitochondrial precursor proteins destined for import. Analytical ultracentrifugation and solution small-angle X-ray scattering (SAXS) analysis characterized Tom70 as an elongated monomer. A model for the Tom70 monomer was proposed based on the alternate interpretation of the domain pairings observed in the crystal structure of the Tom70 dimer and refined against the SAXS data. In this “open” model of the Tom70 monomer, the chaperone- and precursor-binding sites are exposed and lay side by side on one face of the molecule. Fluorescence anisotropy measurements indicated that monomeric Tom70 can bind both chaperone and precursor peptides and that chaperone peptide binding does not alter the affinity of Tom70 for the precursor peptide. SAXS was unable to detect any shape change in Tom70 upon chaperone binding. However, molecular modeling indicated that chaperone binding is incompatible with Tom70 dimer formation. It is proposed that the Tom70 monomer is the functional unit mediating initial chaperone docking and precursor recognition.  相似文献   

3.
The emergence of resistance to vancomycin and related glycopeptide antibiotics is spurring efforts to develop new antimicrobial therapeutics. High-resolution structural information about antibiotic-ligand recognition should prove valuable in the rational design of improved drugs. We have determined the X-ray crystal structure of the complex of vancomycin with N-acetyl-d-Ala-d-Ala, a mimic of the natural muramyl peptide target, and refined this structure at a resolution of 1.3 Å to R and Rfree values of 0.172 and 0.195, respectively. The crystal asymmetric unit contains three back-back vancomycin dimers; two of these dimers participate in ligand-mediated face-face interactions that produce an infinite chain of molecules running throughout the crystal. The third dimer packs against the side of a face-face interface in a tight “side-side” interaction that involves both polar contacts and burial of hydrophobic surface. The trimer of dimers found in the asymmetric unit is essentially identical to complexes seen in three other crystal structures of glycopeptide antibiotics complexed with peptide ligands. These four structures are derived from crystals belonging to different space groups, suggesting that the trimer of dimers may not be simply a crystal packing artifact and prompting us to ask if ligand-mediated oligomerization could be observed in solution. Using size-exclusion chromatography, dynamic light scattering, and small-angle X-ray scattering, we demonstrate that vancomycin forms discrete supramolecular complexes in the presence of tripeptide ligands. Size estimates for these complexes are consistent with assemblies containing four to six vancomycin monomers.  相似文献   

4.
Xu C  Song J  Ding Y  Yu F  Sun L  Tang L  Hu X  Zhang Z  He J 《Protein and peptide letters》2007,14(5):505-506
Sau3AI is a type II restriction endonuclease that recognizes the palindromic sequence 5'-GATC-3' and cleaves 5' to G residue on each strand. The E64A mutant full length protein was cloned and expressed in Escherichia coli. The purified (His) (6)-tagged protein has monomer and dimer fraction and was crystallized by the hanging-drop vapor-diffusion technique. The dimer protein crystals can diffract to 3.0A. resolution and the monomer protein crystals can diffract to better than 2.8A. resolution. One completed dataset has been collected and it shows that the monomer orthorhombic Sau3AI/E64A crystal is in space group C2221 with unit cell parameters (69.44, 197.60, 191.46, 90, 90, 90) and contains two molecules in one asymmetric unit.  相似文献   

5.
β-Lactoglobulin (βlg) is the most abundant whey protein in the milks of ruminant animals. While bovine βlg has been subjected to a vast array of studies, little is known about the caprine ortholog. We present an ultra-high resolution crystal structure of caprine βlg complemented by analytical ultracentrifugation and small-angle X-ray scattering data. In both solution and crystalline states caprine βlg is dimeric (KD < 5 μM); however, our data suggest a flexible quaternary arrangement of subunits within the dimer. These structural findings will provide insight into relationships among structural, processing, nutritional and immunological characteristics that distinguish cow’s and goat’s milk.  相似文献   

6.
Filamin C is a dimeric, actin-binding protein involved in organization of cortical cytoskeleton and of the sarcomere. We performed crystallographic, small-angle X-ray scattering and analytical ultracentrifugation experiments on the constructs containing carboxy-terminal domains of the protein (domains 23-24 and 19-21). The crystal structure of domain 23 of filamin C showed that the protein adopts the expected immunoglobulin (Ig)-like fold. Small-angle X-ray scattering experiments performed on filamin C tandem Ig-like domains 23 and 24 reveal a dimer that is formed by domain 24 and that domain 23 has little interactions with itself or with domain 24, while the analytical ultracentrifugation experiments showed that the filamin C domains 19-21 form elongated monomers in diluted solutions.  相似文献   

7.
The mammalian peptidoglycan recognition protein-S (PGRP-S) binds to peptidoglycans (PGNs), which are essential components of the cell wall of bacteria. The protein was isolated from the samples of milk obtained from camels with mastitis and purified to homogeneity and crystallized. The crystals belong to orthorhombic space group I222 with a = 87.0 Å, b = 101.7 Å and c = 162.3 Å having four crystallographically independent molecules in the asymmetric unit. The structure has been determined using X-ray crystallographic data and refined to 1.8 Å resolution. Overall, the structures of all the four crystallographically independent molecules are identical. The folding of PGRP-S consists of a central β-sheet with five β-strands, four parallel and one antiparallel, and three α-helices. This protein fold provides two functional sites. The first of these is the PGN-binding site, located on the groove that opens on the surface in the direction opposite to the location of the N terminus. The second site is implicated to be involved in the binding of non-PGN molecules, it also includes putative N-terminal segment residues (1-31) and helix α2 in the extended binding. The structure reveals a novel arrangement of PGRP-S molecules in which two pairs of molecules associate to form two independent dimers. The first dimer is formed by two molecules with N-terminal segments at the interface in which non-PGN binding sites are buried completely, whereas the PGN-binding sites of two participating molecules are fully exposed at the opposite ends of the dimer. In the second dimer, PGN-binding sites are buried at the interface while non-PGN binding sites are fully exposed at the opposite ends of the dimer. This form of dimeric arrangement is unique and seems to be aimed at enhancing the capability of the protein against specific invading bacteria. This mode of functional dimerization enhances efficiency and specificity, and is observed for the first time in the family of PGRP molecules.  相似文献   

8.
Small heat shock proteins (sHSPs) are a family of evolutionary conserved ATP-independent chaperones. These proteins share a common architecture defined by a signature α-crystallin domain (ACD) flanked by highly variable N- and C-terminal extensions. The ACD, which has an immunoglobulin-like fold, plays an important role in sHSP assembly. This domain mediates dimer formation of individual protomers, which then may assemble into larger oligomers. In vertebrate sHSPs, the dimer interface is formed by the symmetrical antiparallel pairing of two β-strands (β7), generating an extended β-sheet on one face of the ACD dimer. Recent structural studies of isolated ACDs from a number of vertebrate sHSPs suggest a variability in the register of the β7/β7 strand interface, which may, in part, give rise to the polydispersity often associated with the full-length proteins. To further analyze the structure of ACD dimers, we have employed a combination of X-ray crystallography and solution small-angle X-ray scattering (SAXS) to study the ACD-containing fragments of human HSPB1 (HSP27) and HSPB6 (HSP20). Unexpectedly, the obtained crystal structure of the HSPB1 fragment does not reveal the typical β7/β7 dimers but, rather, hexamers formed by an asymmetric contact between the β4 and the β7 strands from adjacent ACDs. Nevertheless, in solution, both ACDs form stable dimers via the symmetric antiparallel interaction of β7 strands. Using SAXS, we show that it is possible to discriminate between different putative registers of the β7/β7 interface, with the results indicating that, under physiological conditions, there is only a single register of the strands for both proteins.  相似文献   

9.
The extracellular matrix protein F-spondin mediates axon guidance during neuronal development. Its N-terminal domain, termed the reelin-N domain, is conserved in F-spondins, reelins, and other extracellular matrix proteins. In this study, a recombinant human reelin-N domain has been expressed, purified, and shown to bind heparin. The crystal structure of the reelin-N domain resolved to 2.0 Å reveals a variant immunoglobulin-like fold and potential heparin-binding sites. Substantial conformational variations even in secondary structure are observed between the two chemically identical reelin-N domains in one crystallographic asymmetric unit. The variations may result from extensive, highly specific interactions across the interface of the two reelin-N domains. The calculated values of buried surface area and the interface's shape complementarity are consistent with the formation of a weak dimer. The homophilic asymmetric dimer can potentially offer advantages in binding to ligands such as glycosaminoglycans, which may, in turn, bridge the two reelin-N domains and stabilize the dimer.  相似文献   

10.
ApoA-IV is an amphipathic protein that can emulsify lipids and has been linked to protective roles against cardiovascular disease and obesity. We previously reported an x-ray crystal structure of apoA-IV that was truncated at its N and C termini. Here, we have extended this work by demonstrating that self-associated states of apoA-IV are stable and can be structurally studied using small-angle x-ray scattering. Both the full-length monomeric and dimeric forms of apoA-IV were examined, with the dimer showing an elongated rod core with two nodes at opposing ends. The monomer is roughly half the length of the dimer with a single node. Small-angle x-ray scattering visualization of several deletion mutants revealed that removal of both termini can have substantial conformational effects throughout the molecule. Additionally, the F334A point mutation, which we previously showed increases apoA-IV lipid binding, also exhibited large conformational effects on the entire dimer. Merging this study''s low-resolution structural information with the crystal structure provides insight on the conformation of apoA-IV as a monomer and as a dimer and further defines that a clasp mechanism may control lipid binding and, ultimately, protein function.  相似文献   

11.
12.
The structure of streptokinase in solution has been studied by dynamic light scattering, small-angle X-ray scattering and circular dichroism spectroscopy. The Stokes' radius and radius of gyration of the protein monomer are 3.58 nm and 4.03 nm, respectively. The maximum intraparticle distance of the molecule is 14 nm. More than half of the amino acids of the molecule are organized in regular secondary structures. The X-ray scattering curve, the results from dynamic light scattering, and the finding that at least 50% of the amino acid residues are organized in regularly folded secondary structures are consistent with the following structural model. Streptokinase consists of four compact, separately folded, domains linked by mobile segments of the protein chain. The molecule exhibits the conformation of a flexible string-of-beads in solution.  相似文献   

13.
The X-ray crystallographic structure of osmotically inducible Protein C from the thermophilic bacterium, Thermus thermophilus HB8, was solved to 1.6A using the multiple wavelength anomalous dispersion method and a selenomethionine incorporated protein (Se-MAD). The crystal space group was P1 with cell dimensions of a=37.58 A, b=40.95 A, c=48.14 A, alpha=76.9 degrees, beta=74.0 degrees and gamma=64.1 degrees. The two tightly interacting monomers in the asymmetric unit are related by a non-crystallographic 2-fold. The dimer structure is defined primarily by two very long anti-parallel, over-lapping alpha-helices at the core, with a further six-stranded anti-parallel beta-sheet on the outside of the structure. With respect to the beta-sheets, both A and B monomers contribute three strands each resulting in an intertwining of the structure. The active site consists of two cysteine residues from one monomer and an arginine and glutamic acid from the other. Enzymatic assays have revealed that T.thermophilus OsmC has a hydroperoxide peroxidase activity.  相似文献   

14.
The crystal structure of the enzyme phosphoglucomutase from Salmonella typhimurium (StPGM) is reported at 1.7 A resolution. This is the first high-resolution structural characterization of a bacterial protein from this large enzyme family, which has a central role in metabolism and is also important to bacterial virulence and infectivity. A comparison of the active site of StPGM with that of other phosphoglucomutases reveals conserved residues that are likely involved in catalysis and ligand binding for the entire enzyme family. An alternate crystal form of StPGM and normal mode analysis give insights into conformational changes of the C-terminal domain that occur upon ligand binding. A novel observation from the StPGM structure is an apparent dimer in the asymmetric unit of the crystal, mediated largely through contacts in an N-terminal helix. Analytical ultracentrifugation and small-angle X-ray scattering confirm that StPGM forms a dimer in solution. Multiple sequence alignments and phylogenetic studies show that a distinct subset of bacterial PGMs share the signature dimerization helix, while other bacterial and eukaryotic PGMs are likely monomers. These structural, biochemical, and bioinformatic studies of StPGM provide insights into the large α-D-phosphohexomutase enzyme superfamily to which it belongs, and are also relevant to the design of inhibitors specific to the bacterial PGMs.  相似文献   

15.
The crystal structure of the C-terminal domain of a hook-capping protein FlgD from the plant pathogen Xanthomonas campestris (Xc) has been determined to a resolution of ca 2.5 Å using X-ray crystallography. The monomer of whole FlgD comprises 221 amino acids with a molecular mass of 22.7 kDa, but the flexible N-terminus is cleaved for up to 75 residues during crystallization. The final structure of the C-terminal domain reveals a novel hybrid comprising a tudor-like domain interdigitated with a fibronectin type III domain. The C-terminal domain of XcFlgD forms three types of dimers in the crystal. In agreement with this, analytical ultracentrifugation and gel filtration experiments reveal that they form a stable dimer in solution. From these results, we propose that the Xc flagellar hook cap protein FlgD comprises two individual domains, a flexible N-terminal domain that cannot be detected in the current study and a stable C-terminal domain that forms a stable dimer.  相似文献   

16.
17.
Protein kinase CK2 is a tetramer composed of two alpha catalytic subunits and two beta regulatory subunits. The structure of a C-terminal truncated form of the human beta subunit has been determined by X-ray crystallography to 1.7 A resolution. One dimer is observed in the asymmetric unit of the crystal. The most striking feature of the structure is the presence of a zinc finger mediating the dimerization. The monomer structure consists of two domains, one entirely alpha-helical and one including the zinc finger. The dimer has a crescent shape holding a highly acidic region at both ends. We propose that this acidic region is involved in the interactions with the polyamines and/or catalytic subunits. Interestingly, conserved amino acid residues among beta subunit sequences are clustered along one linear ridge that wraps around the entire dimer. This feature suggests that protein partners may interact with the dimer through a stretch of residues in an extended conformation.  相似文献   

18.
Hexokinase I governs the rate-limiting step of glycolysis in brain tissue, being inhibited by its product, glucose 6-phosphate, and allosterically relieved of product inhibition by phosphate. On the basis of small-angle X-ray scattering, the wild-type enzyme is a monomer in the presence of glucose and phosphate at protein concentrations up to 10 mg/mL, but in the presence of glucose 6-phosphate, is a dimer down to protein concentrations as low as 1 mg/mL. A mutant form of hexokinase I, specifically engineered by directed mutation to block dimerization, remains monomeric at high protein concentration under all conditions of ligation. This nondimerizing mutant exhibits wild-type activity, potent inhibition by glucose 6-phosphate, and phosphate reversal of product inhibition. Small-angle X-ray scattering data from the mutant hexokinase I in the presence of glucose/phosphate, glucose/glucose 6-phosphate, and glucose/ADP/Mg2+/AlF3 are consistent with a rodlike conformation for the monomer similar to that observed in crystal structures of the hexokinase I dimer. Hence, any mechanism for allosteric regulation of hexokinase I should maintain a global conformation of the polypeptide similar to that observed in crystallographic structures.  相似文献   

19.
Prokaryotic thermophiles supply stable human protein homologs for structural biology; yet, eukaryotic thermophiles would provide more similar macromolecules plus those missing in microbes. Alvinella pompejana is a deep-sea hydrothermal-vent worm that has been found in temperatures averaging as high as 68 °C, with spikes up to 84 °C. Here, we used Cu,Zn superoxide dismutase (SOD) to test if this eukaryotic thermophile can provide insights into macromolecular mechanisms and stability by supplying better stable mammalian homologs for structural biology and other biophysical characterizations than those from prokaryotic thermophiles. Identification, cloning, characterization, X-ray scattering (small-angle X-ray scattering, SAXS), and crystal structure determinations show that A. pompejana SOD (ApSOD) is superstable, homologous, and informative. SAXS solution analyses identify the human-like ApSOD dimer. The crystal structure shows the active site at 0.99 Å resolution plus anchoring interaction motifs in loops and termini accounting for enhanced stability of ApSOD versus human SOD. Such stabilizing features may reduce movements that promote inappropriate intermolecular interactions, such as amyloid-like filaments found in SOD mutants causing the neurodegenerative disease familial amyotrophic lateral sclerosis or Lou Gehrig's disease. ApSOD further provides the structure of a long-sought SOD product complex at 1.35 Å resolution, suggesting a unified inner-sphere mechanism for catalysis involving metal ion movement. Notably, this proposed mechanism resolves apparent paradoxes regarding electron transfer. These results extend knowledge of SOD stability and catalysis and suggest that the eukaryote A. pompejana provides macromolecules highly similar to those from humans, but with enhanced stability more suitable for scientific and medical applications.  相似文献   

20.
The three-dimensional structure of the enzyme diaminopimelate decarboxylase from Mycobacterium tuberculosis has been determined in a new crystal form and refined to a resolution of 2.33 Å. The monoclinic crystals contain one tetramer exhibiting D2-symmetry in the asymmetric unit. The tetramer exhibits a donut-like structure with a hollow interior. All four active sites are accessible only from the interior of the tetrameric assembly. Small-angle X-ray scattering indicates that in solution the predominant oligomeric species of the protein is a dimer, but also that higher oligomers exist at higher protein concentrations. The observed scattering data are best explained by assuming a dimer–tetramer equilibrium with about 7% tetramers present in solution. Consequently, at the elevated protein concentrations in the crowded environment inside the cell the observed tetramer may constitute the biologically relevant functional unit of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号