首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The mRNA of human NF-kappaB repressing factor (NRF) contains a long 5'-untranslated region (UTR) that directs ribosomes to the downstream start codon by a cap-independent mechanism. Comparison of the nucleotide (nt) sequences of human and mouse NRF mRNAs reveals a high degree of identity throughout a fragment of 150 nt proximal to the start codon. Here, we show that this region constitutes a minimal internal ribosome entry segment (IRES) module. Enzymatic RNA structure analysis reveals a secondary structure model of the NRF IRES module. Point mutation analysis of the module determines a short, 14-nt RNA element (nt 640-653) as a mediator of IRES function. Purification of IRES binding cellular proteins and subsequent ESI/MS/MS sequence analysis led to identification of the RNA-binding protein, JKTBP1. EMSA experiments show that JKTBP1 binds upstream to the 14-nt RNA element in the NRF IRES module (nt 579-639). Over-expression of JKTBP1 significantly enhances activity of the NRF IRES module in dicistronic constructs. Moreover, siRNA experiments demonstrate that down-regulation of endogenous JKTBP1 decreases NRF IRES activity and the level of endogenous NRF protein. The data of this study show that JKTBP1 and the 14-nt element act independently to mediate NRF IRES activity.  相似文献   

2.
The 3'-untranslated regions (UTRs) of a group of novel uncapped viral RNAs allow efficient translation initiation at the 5'-proximal AUG. A well-characterized model is the Barley yellow dwarf virus class of cap-independent translation elements (BTE). It facilitates translation by forming kissing stem-loops between the BTE in the 3'-UTR and a BTE-complementary loop in the 5'-UTR. Here we investigate the mechanisms of the long-distance interaction and ribosome entry on the RNA. Upstream AUGs or 5'-extensions of the 5'-UTR inhibit translation, indicating that, unlike internal ribosome entry sites in many viral RNAs, the BTE relies on 5'-end-dependent ribosome scanning. Cap-independent translation occurs when the kissing sites are moved to different regions in either UTR, including outside of the BTE. The BTE can even confer cap-independent translation when fused to the 3'-UTR of a reporter RNA harboring dengue virus sequences that cause base-pairing between the 3'- and 5'-ends. Thus, the BTE serves as a functional sensor to detect sequences capable of long-distance base-pairing. We propose that the kissing interaction is repeatedly disrupted by the scanning ribosome and re-formed in an oscillating process that regulates ribosome entry on the RNA.  相似文献   

3.
Barley yellow dwarf virus RNA lacks both a 5' cap and a poly(A) tail, yet it is translated efficiently. It contains a cap-independent translation element (TE), located in the 3' UTR, that confers efficient translation initiation at the AUG closest to the 5' end of the mRNA. We propose that the TE must both recruit ribosomes and facilitate 3'-5' communication. To dissect its function, we determined the secondary structure of the TE and roles of domains within it. Nuclease probing and structure-directed mutagenesis revealed that the 105-nt TE (TE105) forms a cruciform secondary structure containing four helices connected by single-stranded regions. TE105 can function in either UTR in wheat germ translation extracts. A longer viral sequence (at most 869 nt) is required for full cap-independent translation in plant cells. However, substantial translation of uncapped mRNAs can be obtained in plant cells with TE105 combined with a poly(A) tail. All secondary structural elements and most primary sequences that were mutated are required for cap-independent translation in the 3' and 5' UTR contexts. A seven-base loop sequence was needed only in the 3' UTR context. Thus, this loop sequence may be involved only in communication between the UTRs and not directly in recruiting translational machinery. This structural and functional analysis provides a framework for understanding an emerging class of cap-independent translation elements distinguished by their location in the 3' UTR.  相似文献   

4.
Initiation of translation on poliovirus RNA occurs by internal binding of ribosomes to a region within the 5' untranslated region (UTR) of the mRNA. This region has been previously roughly mapped between nucleotides 140 and 631 of the 5' UTR and termed the ribosome landing pad. To identify cis-acting elements in the 5' UTR of poliovirus type 2 (Lansing strain) RNA that confer cap-independent internal initiation, we determined the in vitro translational efficiencies of a series of deletion and point mutations within the 5' UTR of the mRNA. The results demonstrate that the 3' border of the core poliovirus ribosome landing pad is located between nucleotides 556 and 585, whereas a region extending between nucleotides 585 and 612 confers enhanced translation. We studied two cis-acting elements within this region of the 5' UTR: a pyrimidine stretch which is critical for translation and an AUG (number 7 from the 5' end) that is located approximately 20 nucleotides downstream from the pyrimidine stretch and augments translation. We also show that the stem-loop structure which contains this AUG is not required for translation.  相似文献   

5.
The positive-strand RNA genome of the Hepatitis C virus (HCV) contains an internal ribosome entry site (IRES) in the 5′untranslated region (5′UTR) and structured sequence elements within the 3′UTR, but no poly(A) tail. Employing a limited set of initiation factors, the HCV IRES coordinates the 5′cap-independent assembly of the 43S pre-initiation complex at an internal initiation codon located in the IRES sequence. We have established a Huh7 cell-derived in vitro translation system that shows a 3′UTR-dependent enhancement of 43S pre-initiation complex formation at the HCV IRES. Through the use of tobramycin (Tob)-aptamer affinity chromatography, we identified the Insulin-like growth factor-II mRNA-binding protein 1 (IGF2BP1) as a factor that interacts with both, the HCV 5′UTR and 3′UTR. We report that IGF2BP1 specifically enhances translation at the HCV IRES, but it does not affect 5′cap-dependent translation. RNA interference against IGF2BP1 in HCV replicon RNA-containing Huh7 cells reduces HCV IRES-mediated translation, whereas replication remains unaffected. Interestingly, we found that endogenous IGF2BP1 specifically co-immunoprecipitates with HCV replicon RNA, the ribosomal 40S subunit, and eIF3. Furthermore eIF3 comigrates with IGF2BP1 in 80S ribosomal complexes when a reporter mRNA bearing both the HCV 5′UTR and HCV 3′UTR is translated. Our data suggest that IGF2BP1, by binding to the HCV 5′UTR and/or HCV 3′UTR, recruits eIF3 and enhances HCV IRES-mediated translation.  相似文献   

6.
Protein synthesis is tightly controlled by assembly of an intricate ribonucleoprotein complex at the m7GTP-cap on eukaryotic mRNAs. Ensuing linear scanning of the 5′ untranslated region (UTR) is believed to transfer the preinitiation complex to the initiation codon. Eukaryotic mRNAs are characterized by significant 5′ UTR heterogeneity, raising the possibility of differential control of translation initiation rate at individual mRNAs. Curiously, many mRNAs with unconventional, highly structured 5′ UTRs encode proteins with central biological roles in growth control, metabolism, or stress response. The 5′ UTRs of such mRNAs may influence protein synthesis rate in multiple ways, but most significantly they have been implicated in mediating alternative means of translation initiation. Cap-independent initiation bypasses strict control over the formation of initiation intermediates at the m7GTP cap. However, the molecular mechanisms that favor alternative means of ribosome recruitment are not understood. Here we provide evidence that eukaryotic initiation factor (eIF) 4G controls cap-independent translation initiation at the c-myc and vascular endothelial growth factor (VEGF) 5′ UTRs in vivo. Cap-independent translation was investigated in tetracycline-inducible cell lines expressing either full-length eIF4G or a C-terminal fragment (Ct) lacking interaction with eIF4E and poly(A) binding protein. Expression of Ct, but not intact eIF4G, potently stimulated cap-independent initiation at the c-myc/VEGF 5′ UTRs. In vitro RNA-binding assays suggest that stimulation of cap-independent translation initiation by Ct is due to direct association with the c-myc/VEGF 5′ UTR, enabling 43S preinitiation complex recruitment. Our work demonstrates that variant translation initiation factors enable unconventional translation initiation at mRNA subsets with distinct structural features.  相似文献   

7.
Guo L  Allen EM  Miller WA 《Molecular cell》2001,7(5):1103-1109
Translationally competent mRNAs form a closed loop via interaction of initiation factors with the 5' cap and poly(A) tail. However, many viral mRNAs lack a cap and/or a poly(A) tail. We show that an uncapped, nonpolyadenylated plant viral mRNA forms a closed loop by direct base-pairing (kissing) of a stem loop in the 3' untranslated region (UTR) with a stem loop in the 5' UTR. This allows a sequence in the 3' UTR to confer translation initiation at the 5'-proximal AUG. This base-pairing is also required for replication. Unlike other cap-independent translation mechanisms, the ribosome enters at the 5' end of the mRNA. This remarkably long-distance base-pairing reveals a novel mechanism of cap-independent translation and means by which mRNA UTRs can communicate.  相似文献   

8.
Mendrysa SM  McElwee MK  Perry ME 《Gene》2001,264(1):139-146
The murine double minute 2 (mdm2) gene is essential for embryogenesis in mice that express the p53 tumor suppressor protein. Mdm2 levels must be regulated tightly because overexpression of mdm2 contributes to tumorigenesis. We investigated whether the 5' and 3' untranslated regions (UTRs) of murine mdm2 affect the expression of MDM2 proteins. Induction of mdm2 expression by p53 results in synthesis of an mdm2 mRNA with a short 5' UTR. The long 5' UTR increases internal initiation of translation of a minor MDM2 protein, p76(MDM2), without affecting the efficiency of translation of the full-length p90(MDM2). We discovered two alternative 3' untranslated regions in murine mdm2 mRNA expressed in the testis. The longer 3' UTR contains a consensus instability element, but mdm2 mRNAs containing the long and short 3' UTRs have comparable half-lives. The 3' UTRs do not affect either initiation codon use or translation efficiency. Thus, the murine 5' UTR, but not the 3'UTR, influences the ratio of the two MDM2 proteins but neither UTR affects MDM2 abundance significantly.  相似文献   

9.
10.
During cap-dependent translation of eukaryotic mRNAs, initiation factors interact with the 5′ cap to attract ribosomes. When animal viruses translate in a cap-independent fashion, ribosomes assemble upstream of initiation codons at internal ribosome entry sites (IRES). In contrast, many plant viral genomes do not contain 5′ ends with substantial IRES activity but instead have 3′ translational enhancers that function by an unknown mechanism. A 393-nucleotide (nt) region that includes the entire 3′ UTR of the Turnip crinkle virus (TCV) synergistically enhances translation of a reporter gene when associated with the TCV 5′ UTR. The major enhancer activity was mapped to an internal region of ~140 nt that partially overlaps with a 100-nt structural domain previously predicted to adopt a form with some resemblance to a tRNA, according to a recent study by J.C. McCormack and colleagues. The T-shaped structure binds to 80S ribosomes and 60S ribosomal subunits, and binding is more efficient in the absence of surrounding sequences and in the presence of a pseudoknot that mimics the tRNA-acceptor stem. Untranslated TCV satellite RNA satC, which contains the TCV 3′ end and 6-nt differences in the region corresponding to the T-shaped element, does not detectably bind to 80S ribosomes and is not predicted to form a comparable structure. Binding of the TCV T-shaped element by 80S ribosomes was unaffected by salt-washing, reduced in the presence of AcPhe-tRNA, which binds to the P-site, and enhanced binding of Phe-tRNA to the ribosome A site. Mutations that reduced translation in vivo had similar effects on ribosome binding in vitro. This strong correlation suggests that ribosome entry in the 3′ UTR is a key function of the 3′ translational enhancer of TCV and that the T-shaped element contains some tRNA-like properties.  相似文献   

11.
12.
Sidiropoulos KG  Pontrelli L  Adeli K 《Biochemistry》2005,44(37):12572-12581
Insulin has been shown to acutely regulate hepatic apolipoprotein B (apoB) secretion at both translational and post-translational levels; however, mechanisms of apoB mRNA translational control are largely unknown. Recent studies of apoB untranslated regions (UTRs) revealed a potentially important role for cis-trans interactions at the 5' and 3' UTRs. In the present paper, deletion constructs of the UTR regions of apoB revealed that the 5' UTR was necessary and sufficient for insulin to inhibit synthesis of apoB15. Metabolic radiolabeling and in vitro translation experiments in the presence of protease inhibitors confirmed that the effect of insulin on the apoB 5' UTR was translational in nature. Using the nondenaturing electrophoretic mobility shift assay (EMSA), protein-RNA complexes were detected binding to the apoB 5' and 3' UTRs. Denaturing EMSA identified a 110-kDa protein interacting at the 5' UTR. Nondenaturing EMSA determined that insulin altered binding of large protein complexes to the 5' UTR. Binding specificity was determined by competition with both specific and nonspecific competitors. Insulin treatment decreased binding of the 110-kDa protein to the 5' UTR as visualized by EMSA. Absence of insulin increased binding of this trans-acting factor to the 5' UTR by 2-fold. Analysis of the 3' UTR showed no significant insulin-mediated changes in binding of trans-acting factors. We thus propose the existence of a novel RNA-binding insulin-sensitive factor that binds to the 5' UTR and may regulate apoB mRNA translation. Perturbations in hepatic insulin signaling as observed in insulin-resistant states may alter cis-trans interactions at the 5' UTR, leading to alterations in the rate of apoB mRNA translation, thus contributing to apoB-lipoprotein overproduction.  相似文献   

13.
Plus-strand RNA viruses without 5' caps require noncanonical mechanisms for ribosome recruitment. A translational enhancer in the 3' untranslated region (UTR) of Turnip crinkle virus (TCV) contains an internal T-shaped structure (TSS) that binds to 60S ribosomal subunits. We now report that the 63-nucleotide (nt) 5' UTR of TCV contains a 19-nt pyrimidine-rich element near the initiation codon that supports translation of an internal open reading frame (ORF) independent of upstream 5' UTR sequences. Addition of 80S ribosomes to the 5' UTR reduced the flexibility of the polypyrimidine residues and generated a toeprint consistent with binding to this region. Binding of salt-washed 40S ribosomal subunits was reduced 6-fold when the pyrimidine-rich sequence was mutated. 40S subunit binding generated the same toeprint as 80S ribosomes but also additional ones near the 5' end. Generation of out-of-frame AUGs upstream of the polypyrimidine region reduced translation, which suggests that 5'-terminal entry of 40S subunits is followed by scanning and that the polypyrimidine region is needed for an alternative function that requires ribosome binding. No evidence for RNA-RNA interactions between 5' and 3' sequences was found, suggesting that TCV utilizes an alternative means for circularizing its genome. Combining 5' and 3' UTR fragments in vitro had no discernible effect on the structures of the RNAs. In contrast, when 80S ribosomes were added to both fragments, structural changes were found in the 5' UTR polypyrimidine tract that were not evident when ribosomes interacted with the individual fragments. This suggests that ribosomes can promote an interaction between the 5' and 3' UTRs of TCV.  相似文献   

14.
S Wang  L Guo  E Allen    W A Miller 《RNA (New York, N.Y.)》1999,5(6):728-738
Highly efficient cap-independent translation initiation at the 5'-proximal AUG is facilitated by the 3' translation enhancer sequence (3'TE) located near the 3' end of barley yellow dwarf virus (BYDV) genomic RNA. The role of the 3'TE in regulating viral translation was examined. The 3'TE is required for translation and thus replication of the genomic RNA that lacks a 5' cap (Allen et al., 1999, Virology253:139-144). Here we show that the 3'TE also mediates translation of uncapped viral subgenomic mRNAs (sgRNA1 and sgRNA2). A 109-nt viral sequence is sufficient for 3'TE activity in vitro, but additional viral sequence is necessary for cap-independent translation in vivo. The 5' extremity of the sequence required in the 3' untranslated region (UTR) for cap-independent translation in vivo coincides with the 5' end of sgRNA2. Thus, sgRNA2 has the 3'TE in its 5' UTR. Competition studies using physiological ratios of viral RNAs showed that, in trans, the 109-nt 3'TE alone, or in the context of 869-nt sgRNA2, inhibited translation of genomic RNA much more than it inhibited translation of sgRNA1. The divergent 5' UTRs of genomic RNA and sgRNA1 contribute to this differential susceptibility to inhibition. We propose that sgRNA2 serves as a novel regulatory RNA to carry out the switch from early to late gene expression. Thus, this new mechanism for temporal control of translation control involves a sequence that stimulates translation in cis and acts in trans to selectively inhibit translation of viral mRNA.  相似文献   

15.
16.
A number of RNA-containing viruses such as hepatitis C (HCV) and poliovirus (PV) that infect human beings and cause serious diseases use a common mechanism for synthesis of viral proteins, termed internal ribosome entry site (IRES)-mediated translation. This mode of translation initiation involves entry of 40S ribosome internally to the 5' untranslated region (UTR) of viral RNA. Cap-dependent translation of cellular mRNAs, on the other hand, requires recognition of mRNA 5' cap by the translation machinery. In this review, we discuss two inhibitors that specifically inhibit viral IRES-mediated translation without interfering with cellular cap-dependent translation. We present evidence, which suggest that one of these inhibitors, a small RNA (called IRNA) originally isolated from the yeast Saccharomyces cerevisiae, inhibits viral IRES-mediated translation by sequestering both noncanonical transacting factors and canonical initiation factors required for IRES-mediated translation. The other inhibitor, a small peptide from the lupus autoantigen La (called LAP), appears to block binding of cellular transacting factors to viral IRES elements. These results suggest that it might be possible to target viral IRES-mediated translation for future development of therapeutic agents effective against a number of RNA viruses including HCV that exclusively use cap-independent translation for synthesis of viral proteins.  相似文献   

17.
Some 20 years ago, the study of picornaviral RNA translation led to the characterization of an alternative mechanism of initiation by direct ribosome binding to the 5′ UTR. By using a bicistronic vector, it was shown that the 5′ UTR of the poliovirus (PV) or the Encephalomyelitis virus (EMCV) had the ability to bind the 43S preinitiation complex in a 5′ and cap-independent manner. This is rendered possible by an RNA domain called IRES for Internal Ribosome Entry Site which enables efficient translation of an mRNA lacking a 5′ cap structure. IRES elements have now been found in many different viral families where they often confer a selective advantage to allow ribosome recruitment under conditions where cap-dependent protein synthesis is severely repressed. In this review, we compare and contrast the structure and function of IRESes that are found within 4 distinct family of RNA positive stranded viruses which are the (i) Picornaviruses; (ii) Flaviviruses; (iii) Dicistroviruses; and (iv) Lentiviruses.  相似文献   

18.
The translation efficiency of an mRNA molecule is typically determined by its 5'- and/or 3'-untranslated regions (UTRs). Previously, we have found that the 3'-UTR of Turnip yellow mosaic virus (TYMV) RNA enhances translation synergistically with a 5' cap. Here, we use a luciferase reporter system in cowpea protoplasts to show that the 5' 217 nucleotides from TYMV genomic RNA enhance expression relative to a vector-derived 17-nucleotide 5'-UTR. Maximum expression was observed from RNAs with a cap and both 5' and 3' TYMV sequences. In paired reporter constructs, the 5' 217 nucleotides harboring the UTR and the first 43 or 41 codons of the two overlapping TYMV open reading frames (ORFs), ORF-69 and ORF-206, respectively, were fused in frame with the luciferase gene. This allowed expression from the initiation codon of each ORF (AUG69 and AUG206) to be monitored separately but from the normal sequence environment. Expression from both AUG codons was heavily dependent on a 5' cap, with a threefold-higher expression occurring from AUG69 than from AUG206 in the presence of the genomic 3'-UTR. Changes that interrupted the cap/3'-UTR synergy (i.e., removal of the cap or TYMV 3'-UTR) resulted in a higher proportion of initiation from AUG206. Mutation of the 3'-UTR to prevent aminoacylation, as well as deletion of 75% of the 5'-UTR, likewise resulted in a lower ratio of expression from AUG69 relative to AUG206. Mutation of each AUG initiation codon increased initiation from the other. Taken together, these results do not fully conform to the expectations of standard leaky ribosomal scanning and leave open the precise mechanism of ribosome commitment to AUG69 and AUG206. However, our observations do not support a recent proposal based on in vitro studies in which the 3'-UTR is proposed to direct cap-independent initiation specifically at AUG206 and not at AUG69 (S. Barends et al., Cell 112:123-129, 2003).  相似文献   

19.
Hepatitis C virus (HCV) RNA translation initiation is dependent on the presence of an internal ribosome entry site (IRES) that is found mostly in its 5' untranslated region (5' UTR). While exhibiting the most highly conserved sequence within the genome, the 5' UTR accumulates small differences, which may be of biological and clinical importance. In this study, using a bicistronic dual luciferase expression system, we have examined the sequence of 5' UTRs from quasispecies characterized in the serum of a patient chronically infected with HCV genotype 1a and its corresponding translational activity. Sequence heterogeneity between IRES elements led to important changes in their translation efficiency both in vitro and in different cell cultures lines, implying that interactions of RNA with related transacting factors may vary according to cell type. These data suggest that variants occasionally carried by the serum prior to reinfection could be selected toward different compartments of the same infected organism, thus favoring the hypothesis of HCV multiple tropism.  相似文献   

20.
X-chromosome linked inhibitor of apoptosis, XIAP, is cellular caspase inhibitor and a key regulator of apoptosis. We and others have previously shown that XIAP expression is regulated primarily at the level of protein synthesis; the 5′ untranslated region (UTR) of XIAP mRNA contains an Internal Ribosome Entry Site (IRES) that supports cap-independent expression of XIAP protein during conditions of pathophysiological stress, such as serum deprivation or gamma irradiation. Here, we show that XIAP is encoded by two distinct mRNAs that differ in their 5′ UTRs. We further show that the dominant, shorter, 5′ UTR promotes a basal level of XIAP expression under normal growth conditions. In contrast, the less abundant longer 5′ UTR contains an IRES and supports cap-independent translation during stress. Our data suggest that the combination of alternate regulatory regions and distinct translational initiation modes is critical in maintaining XIAP levels in response to cellular stress and may represent a general mechanism of cellular adaptation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号