首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Du QS  Meng JZ  Wang CH  Long SY  Huang RB 《PloS one》2011,6(12):e28206

Background

The proteins in a family, which perform the similar biological functions, may have very different amino acid composition, but they must share the similar 3D structures, and keep a stable central region. In the conservative structure region similar biological functions are performed by two or three catalytic residues with the collaboration of several functional residues at key positions. Communication signals are conducted in a position network, adjusting the biological functions in the protein family.

Methodology

A computational approach, namely structural position correlation analysis (SPCA), is developed to analyze the correlation relationship between structural segments (or positions). The basic hypothesis of SPCA is that in a protein family the structural conservation is more important than the sequence conservation, and the local structural changes may contain information of biology functional evolution. A standard protein P(0) is defined in a protein family, which consists of the most-frequent amino acids and takes the average structure of the protein family. The foundational variables of SPCA is the structural position displacements between the standard protein P(0) and individual proteins Pi of the family. The structural positions are organized as segments, which are the stable units in structural displacements of the protein family. The biological function differences of protein members are determined by the position structural displacements of individual protein Pi to the standard protein P(0). Correlation analysis is used to analyze the communication network among segments.

Conclusions

The structural position correlation analysis (SPCA) is able to find the correlation relationship among the structural segments (or positions) in a protein family, which cannot be detected by the amino acid sequence and frequency-based methods. The functional communication network among the structural segments (or positions) in protein family, revealed by SPCA approach, well illustrate the distantly allosteric interactions, and contains valuable information for protein engineering study.  相似文献   

2.
Vertebrate group XII phospholipases A2 (GXII PLA2, conserved domain pfam06951) are proteins with unique structural and functional features within the secreted PLA2 family. In humans, two genes (GXIIA PLA2 and GXIIB PLA2) have been characterised. GXIIA PLA2 is enzymatically active whereas GXIIB PLA2 is devoid of catalytic activity. Recently, putative homologues of the vertebrate GXII PLA2s were described in non-vertebrates. In the current study a total of 170 GXII PLA2 sequences were identified in vertebrates, invertebrates, non-metazoan eukaryotes, fungi and bacteria. GXIIB PLA2 was found only in vertebrates and the searches failed to identify putative GXII PLA2 homologues in Archaea. Comparisons of the predicted functional domains of GXII PLA2s revealed considerable structural identity within the Ca2 +-binding and the catalytic sites among the various organisms suggesting that functional conservation may have been retained across evolution. The preservation of GXII PLA2 family members from bacteria to human indicates that they have emerged early in evolution and evolved via gene/genome duplication events prior to Eubacteria. Gene duplicates were identified in some invertebrate taxa suggesting that species-specific duplications occurred. The analysis of the GXII PLA2 homologue genome environment revealed that gene synteny and gene order are preserved in vertebrates. Conservation of GXII PLA2s indicates that important functional roles involved in species survival and were maintained across evolution and may be dependent on or independent of the enzyme's phospholipolytic activity.  相似文献   

3.
In Oryza sativa (rice) there are seven members in the NRAMP (natural resistance- associated macrophage protein) family of transporter proteins. They have been identified as OsNRAMP1, OsNRAMP2, OsNRAMP3, OsNRAMP4, OsNRAMP5, OsNRAMP6 and OsNRAMP7. Several metal ions like Zn2+, Mn2+, Fe2+, Cd2+ etc. have been studied to be transported via NRAMP transporter proteins in rice plant. In spite of this, very little information is available regarding these transporters. Hence it is important to computationally predict and characterize the OsNRAMP family of transporters for studying and understanding their molecular insights in future studies. For this purpose, various in silico methods and tools were used for the characterization of OsNRAMP family of transporter proteins. Physico-chemical properties of the protein sequences were calculated, putative transmembrane domains (TMDs) and conserved motif signatures were determined and their interaction partners were predicted. 3D models of all the members of OsNRAMP transporters were generated using online structure prediction tool followed by their analysis. In silico microarray analysis was done to understand the expression pattern of these transporters in rice plant. Currently, only limited knowledge is available about the structural and functional aspects of these transporters, hence this study would provide more theoretical information about them.  相似文献   

4.
5.
Enteropathogenic Yersinia expresses several invasins that are fundamental virulence factors required for adherence and colonization of tissues in the host. Within the invasin‐family of Yersinia adhesins, to date only Invasin has been extensively studied at both structural and functional levels. In this work, we structurally characterize the recently identified inverse autotransporter InvasinE from Yersinia pseudotuberculosis (formerly InvasinD from Yersinia pseudotuberculosis strain IP31758) that belongs to the invasin‐family of proteins. The sequence of the C‐terminal adhesion domain of InvasinE differs significantly from that of other members of the Yersinia invasin‐family and its detailed cellular and molecular function remains elusive. In this work, we present the 1.7 Å crystal structure of the adhesion domain of InvasinE along with two Immunoglobulin‐like domains. The structure reveals a rod shaped architecture, confirmed by small angle X‐ray scattering in solution. The adhesion domain exhibits strong structural similarities to the C‐type lectin‐like domain of Yersinia pseudotuberculosis Invasin and enteropathogenic/enterohemorrhagic E. coli Intimin. However, despite the overall structural similarity, the C‐type lectin‐like domain in InvasinE lacks motifs required for Ca2+/carbohydrate binding as well as sequence or structural features critical for Tir binding in Intimin and β1‐integrin binding in Invasin, suggesting that InvasinE targets a distinct, yet unidentified molecule on the host‐cell surface. Although the biological role and target molecule of InvasinE remain to be elucidated, our structural data provide novel insights into the architecture of invasin‐family proteins and a platform for further studies towards unraveling the function of InvasinE in the context of infection and host colonization.  相似文献   

6.
Phosphate transport in plants   总被引:19,自引:5,他引:14  
Smith  Frank W.  Mudge  Stephen R.  Rae  Anne L.  Glassop  Donna 《Plant and Soil》2003,248(1-2):71-83
Transport of inorganic phosphate (Pi) through plant membranes is mediated by a number of families of transporter proteins. Studies on the topology, function, regulation and sites of expression of the genes that encode the members of these transporter families are enabling roles to be ascribed to each of them. The Pht1 family, of which there are nine members in the Arabidopsis genome, includes proteins involved in the uptake of Pi from the soil solution and the redistribution of Pi within the plant. Members of this family are H2PO4 /H+ symporters. Most of the genes of the Pht1 family that are expressed in roots are up-regulated in P-stressed plants. Two members of the Pht1 family have been isolated from the cluster roots of white lupin. These same genes are expressed in non-cluster roots. The evidence available to date suggests that there are no major differences between the types of transport systems that cluster roots and non-cluster roots use to acquire Pi. Differences in uptake rates between cluster and non-cluster roots can be ascribed to more high-affinity Pi transporters in the plasma membranes of cluster roots, rather than any difference in the characteristics of the transporters. The efficient acquisition of Pi by cluster roots arises primarily from their capacity to increase the availability of soil Pi immediately adjacent to the rootlets by excretion of carboxylates, protons and phosphatases within the cluster. This paper reviews Pi transport processes, concentrating on those mediated by the Pht1 family of transporters, and attempts to relate those processes involved in Pi acquisition to likely Pi transport processes in cluster roots.  相似文献   

7.
The plant cell wall is of supermolecular architecture, and is composed of various types of heterogeneous polymers. A few thousand enzymes and structural proteins are directly involved in the construction processes, and in the functional aspects of the dynamic architecture in Arabidopsis thaliana. Most of these proteins are encoded by multigene families, and most members within each family share significant similarities in structural features, but often exhibit differing expression profiles and physiological functions. Thus, for the molecular dissection of cell wall dynamics, it is necessary to distinguish individual members within a family of proteins. As a first step towards characterizing the processes involved in cell wall dynamics, we have manufactured a gene-specific 70-mer oligo microarray that consists of 765 genes classified into 30 putative families of proteins that are implicated in the cell wall dynamics of Arabidopsis. By using this array system, we identified several sets of genes that exhibit organ preferential expression profiles. We also identified gene sets that are expressed differentially at certain specific growth stages of the Arabidopsis inflorescence stem. Our results indicate that there is a division of roles among family members within each of the putative cell wall-related gene families.  相似文献   

8.
The repair of damaged DNA is coupled to the completion of DNA replication by several cell cycle checkpoint proteins, including, for example, in fission yeast Rad1Sp, Hus1Sp, Rad9Sp and Rad17Sp. We have found that these four proteins are conserved with protein sequences throughout eukaryotic evolution. Using computational techniques, including fold recognition, comparative modeling and generalized sequence profiles, we have made high confidence structure predictions for the each of the Rad1, Hus1 and Rad9 protein families (Rad17Sc, Mec3Sc and Ddc1Sc in budding yeast, respectively). Each of these families was found to share a common protein fold with that of PCNA, the sliding clamp protein that tethers DNA polymerase to its template. We used previously reported genetic and biochemical data for these proteins from yeast and human cells to predict a heterotrimeric PCNA-like ring structure for the functional Rad1/Rad9/Hus1 complex and to determine their exact order within it. In addition, for each individual protein family, contact regions with neighbors within the PCNA-like ring were identified. Based on a molecular model for Rad17Sp, we concluded that members of this family, similar to the subunits of the RFC clamp-loading complex, are capable of coupling ATP binding with conformational changes required to load a sliding clamp onto DNA. This model substantiates previous findings regarding the behavior of Rad17 family proteins upon DNA damage and within the RFC complex of clamp-loading proteins.  相似文献   

9.
The synaptopodin family of proteins consists of at least 3 members: synaptopodin, the synaptopodin 2 proteins, and the synaptopodin 2-like proteins. Each family member has at least 3 isoforms that are produced by alternative splicing. Synaptopodin family members are basic proteins that are rich in proline and have little regular 2° or 3° structure at physiological temperature, pH and ionic strength. Like other natively unfolded proteins, synaptopodin family members have multiple binding partners including actin and other actin-binding proteins. Several members of the synaptopodin family have been shown to stimulate actin polymerization and to bundle actin filaments either on their own or in collaboration with other proteins. Synaptopodin 2 has been shown to accelerate nucleation of actin filament formation and to induce actin bundling. The actin polymerization activity is inhibited by Ca2+-calmodulin. Synaptopodin 2 proteins are localized in Z-bands of striated and heart muscle and dense bodies of smooth muscle cells. Depending on the developmental status and stress, at least one member of the synaptopodin family can occupy nuclei of some cells. Members of the synaptopodin 2 subfamily have been implicated in cancers.  相似文献   

10.
The 2-oxoglutarate (2OG)/Fe2 +-dependent oxygenases (2OG oxygenases) are a large family of proteins that share a similar overall three-dimensional structure and catalyze a diverse array of oxidation reactions. The Jumonji C (JmjC)-domain-containing proteins represent an important subclass of the 2OG oxygenase family that typically catalyze protein hydroxylation; however, recently, other reactions have been identified, such as tRNA modification. The Escherichia coli gene, ycfD, was predicted to be a JmjC-domain-containing protein of unknown function based on primary sequence. Recently, YcfD was determined to act as a ribosomal oxygenase, hydroxylating an arginine residue on the 50S ribosomal protein L-16 (RL-16). We have determined the crystal structure of YcfD at 2.7 Å resolution, revealing that YcfD is structurally similar to known JmjC proteins and possesses the characteristic double-stranded β-helix fold or cupin domain. Separate from the cupin domain, an additional globular module termed α-helical arm mediates dimerization of YcfD. We further have shown that 2OG binds to YcfD using isothermal titration calorimetry and identified key binding residues using mutagenesis that, together with the iron location and structural similarity with other cupin family members, allowed identification of the active site. Structural homology to ribosomal assembly proteins combined with GST (glutathione S-transferase)-YcfD pull-down of a ribosomal protein and docking of RL-16 to the YcfD active site support the role of YcfD in regulation of bacterial ribosome assembly. Furthermore, overexpression of YcfD is shown to inhibit cell growth signifying a toxic effect on ribosome assembly.  相似文献   

11.
Fatty acid-binding proteins (FABPs) are a family of proteins that modulate the transfer of various fatty acids in the cytosol and constitute a significant portion in many energy-consuming cells. The ligand binding properties and specific functions of a particular type of FABP seem to be diverse and depend on the respective binding cavity as well as the cell type from which this protein is derived. Previously, a novel FABP (lcFABP; lc: Luciola cerata) was identified in the light organ of Taiwanese fireflies. The lcFABP was proved to possess fatty acids binding capabilities, especially for fatty acids of length C14–C18. However, the structural details are unknown, and the structure–function relationship has remained to be further investigated. In this study, we finished the 1H, 15N and 13C chemical shift assignments of 15N/13C-enriched lcFABP by solution NMR spectroscopy. In addition, the secondary structure distribution was revealed based on the backbone N, H, Cα, Hα, C and side chain Cβ assignments. These results can provide the basis for further structural exploration of lcFABP.  相似文献   

12.
13.
The electrogenic Na+-HCO3 cotransporters play an essential role in regulating intracellular pH and extracellular acid-base homeostasis. Of the known members of the bicarbonate transporter superfamily (BTS), NBC1 and NBC4 proteins have been shown to be electrogenic. The electrogenic nature of these transporters results from the unequal coupling of anionic and cationic fluxes during each transport cycle. This unique property distinguishes NBC1 and NBC4 proteins from other sodium bicarbonate cotransporters and members of the bicarbonate transporter superfamily that are known to be electroneutral. Structure-function studies have played an essential role in revealing the basis for the modulation of the coupling ratio of NBC1 proteins. In addition, the recent transmembrane topographic analysis of pNBC1 has shed light on the potential structural determinants that are responsible for ion permeation through the cotransporter. The experimentally difficult problem of determining the nature of anionic species being transported by these proteins (HCO3 versus CO32–) is analyzed using a theoretical equilibrium thermodynamics approach. Finally, our current understanding of the molecular mechanisms responsible for the regulation of ion coupling and flux through electrogenic sodium bicarbonate cotransporters is reviewed in detail.  相似文献   

14.
The sequenced members of a novel family of small, hydrophobic, bacterial multidrug-resistance efflux proteins, which we have designated the small multidrug resistance (SMR) protein family, are identified and analysed. Two distinct clusters of proteins were identified within this family: (i) small multidrug efflux systems; and (ii) Sug proteins, potentially involved in the suppression of groEL mutations. Hydropathy and residue distribution analyses of this family suggest a structural model in which the polypeptide chain spans the membrane four times as mildly amphipathic α-helices. The roles of specific residues, a possible mechanistic model of drug efflux, and the primary physiological role(s) of the SMR proteins are discussed.  相似文献   

15.

Background

Ca2+-binding proteins are important for the transduction of Ca2+ signals into physiological outcomes. As in calmodulin many of the Ca2+-binding proteins bind Ca2+ through EF-hand motifs. Amongst the large number of EF-hand containing Ca2+-binding proteins are a subfamily expressed in neurons and retinal photoreceptors known as the CaBPs and the related calneuron proteins. These were suggested to be vertebrate specific but exactly which family members are expressed outside of mammalian species had not been examined.

Findings

We have carried out a bioinformatic analysis to determine when members of this family arose and the conserved aspects of the protein family. Sequences of human members of the family obtained from GenBank were used in Blast searches to identify corresponding proteins encoded in other species using searches of non-redundant proteins, genome sequences and mRNA sequences. Sequences were aligned and compared using ClustalW. Some families of Ca2+-binding proteins are known to show a progressive expansion in gene number as organisms increase in complexity. In contrast, the results for CaBPs and calneurons showed that a full complement of CaBPs and calneurons are present in the teleost fish Danio rerio and possibly in cartilaginous fish. These findings suggest that the entire family of genes may have arisen at the same time during vertebrate evolution. Certain members of the family (for example the short form of CaBP1 and calneuron 1) are highly conserved suggesting essential functional roles.

Conclusions

The findings support the designation of the calneurons as a distinct sub-family. While the gene number for CaBPs/calneurons does not increase, a distinctive evolutionary change in these proteins in vertebrates has been an increase in the number of splice variants present in mammals.  相似文献   

16.
Despite the significance of actin in plant growth and development, little is known of the structure, expression and evolution of the actin gene family in woody plants. In this study, we systematically examined the diversification of the actin gene family in Populus by integrating genomic organization, expression, and phylogeny data. Genome-wide analysis of the Populus genome indicated that actin is a multigene family consisting of eight members, all predicted to encode 377-amino acid polypeptides that share high sequence homology ranging from 94.2 to 100% identity. Microarray and real-time PCR expression analysis showed that the PtrACT family members are differentially expressed in different tissues, exhibiting overlapping and unique expression patterns. Of particular interest, all PtrACT genes have been found to be preferentially expressed in the stem phloem and xylem, suggesting that poplar PtrACTs are involved in the wood formation. Gene structural and phylogenetic analyses revealed that the PtrACT family is composed of two main subgroups that share an ancient common ancestor. Extremely high intraspecies synonymous nucleotide diversity of πsyn = 0.01205 was detected, and the πnon-synsyn ratio was significantly less than 1; therefore, the PtACT1 appears to be evolving in Populus, primarily under purifying selection. We demonstrated that the actin gene family in Populus is divided into two distinct subgroups, suggesting functional divergence. The results reported here will be useful in conducting future functional genomics studies to understand the detailed function of actin genes in tree growth and development.  相似文献   

17.
Apoptosis or programmed cell death is a regulatory process in cells in response to stimuli perturbing physiological conditions. The Bcl‐2 family of proteins plays an important role in regulating homeostasis during apoptosis. In the process, the molecular interactions among the three members of this family, the pro‐apoptotic, anti‐apoptotic and BH3‐only proteins at the mitochondrial outer membrane define the fate of a cell. Here, we report the crystal structures of the human anti‐apoptotic protein Bcl‐XL in complex with BH3‐only BIDBH3 and BIMBH3 peptides determined at 2.0 Å and 1.5 Å resolution, respectively. The BH3 peptides bind to the canonical hydrophobic pocket in Bcl‐XL and adopt an alpha helical conformation in the bound form. Despite a similar structural fold, a comparison with other BH3 complexes revealed structural differences due to their sequence variations. In the Bcl‐XL‐BIDBH3 complex we observed a large pocket, in comparison with other BH3 complexes, lined by residues from helices α1, α2, α3, and α5 located adjacent to the canonical hydrophobic pocket. These results suggest that there are differences in the mode of interactions by the BH3 peptides that may translate into functional differences in apoptotic regulation. Proteins 2015; 83:1262–1272. © 2015 Wiley Periodicals, Inc.  相似文献   

18.
The molecular mechanisms underlying the organization of ion channels and signaling molecules at the synaptic junction are largely unknown. Recently, members of the PSD-95/SAP90 family of synaptic MAGUK (membrane-associated guanylate kinase) proteins have been shown to interact, via their NH2-terminal PDZ domains, with certain ion channels (NMDA receptors and K+ channels), thereby promoting the clustering of these proteins. Although the function of the NH2-terminal PDZ domains is relatively well characterized, the function of the Src homology 3 (SH3) domain and the guanylate kinase-like (GK) domain in the COOH-terminal half of PSD-95 has remained obscure. We now report the isolation of a novel synaptic protein, termed GKAP for guanylate kinase-associated protein, that binds directly to the GK domain of the four known members of the mammalian PSD-95 family. GKAP shows a unique domain structure and appears to be a major constituent of the postsynaptic density. GKAP colocalizes and coimmunoprecipitates with PSD-95 in vivo, and coclusters with PSD-95 and K+ channels/ NMDA receptors in heterologous cells. Given their apparent lack of guanylate kinase enzymatic activity, the fact that the GK domain can act as a site for protein– protein interaction has implications for the function of diverse GK-containing proteins (such as p55, ZO-1, and LIN-2/CASK).  相似文献   

19.
The nuclear transport factor 2 (NTF2) like superfamily includes members of the NTF2 family, delta-5-3-ketosteroid isomerases, and the beta subunit of ring hydroxygenases. This family plays important roles in both eukaryotic and prokaryotic cells, and is taken as a classic example of divergent evolution because proteins in this family exhibit diverse biological functions, although share common structural features. We cloned the gene RHE_RS02845 encoding a predicted NTF2-like domain-containing protein in Rhizobium etli, and prepared U-13C/15N-labeled protein samples for its three-dimensional NMR structural determination. Here, chemical shift assignments for both backbone and side-chain atoms are reported, which is prerequisite for further structural calculation and functional research using NMR spectroscopy.  相似文献   

20.
The GRAM domain was found in glucosyltransferases, myotubularins and other membrane-associated proteins. So far, functions for majority of these proteins are yet to be uncovered. In order to address the evolutionary and functional significance of this family members, we have performed a comprehensive investigation on their genome-wide identification, phylogenetic relationship and expression divergence in five different organisms representing monocot/dicot plants, vertebrate/invertebrate animals and yeast, namely, Oryza sativa, Arabidopsis thaliana, Mus musculus, Drosophila melanogaster and Saccharomyces cerevisiae, respectively. We have identified 65 members of GRAM domain family from these organisms. Our data revealed that this family was an ancient group and various organisms had evolved into different family sizes. Large-scale genome duplication and divergence in both expression patterns and functions were significantly contributed to the expansion and retention of this family. Mouse and Drosophila members showed higher divergences in their proteins as indicated by higher Ka/Ks ratios and possessed multiple domains in various combinations. However, in plants, their protein functions were possibly retained with a relatively low divergence as signified by lower Ka/Ks ratios and only one additional domain was combined during evolution. On the other hand, this family in all five organisms exhibited high divergence in their expression patterns both at tissue level and under various biotic and abiotic stresses. These highly divergent expression patterns unraveled the complexity of functions of GRAM domain family. Each member may play specialized roles in a specific tissue or stress condition and may function as regulators of environmental and hormonal signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号