首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Shulga YV  Topham MK  Epand RM 《FEBS letters》2011,585(24):4025-4028
We show that diacylglycerol kinase-ε (DGKε) has less preference for the acyl chain at the sn-1 position of diacylglycerol (DAG) than the one at the sn-2 position. Although DGKε discriminates between 1-stearoyl-2-arachidonoyl-DAG and 1-palmitoyl-2-arachidonoyl-DAG, it has similar substrate preference for 1-stearoyl-2-arachidonoyl-DAG and 1,2-diarachidonoyl-DAG. We suggest that in addition to binding to the enzyme, the acyl chain at the sn-1 position may contribute to the depth of insertion of the DAG into the membrane. Thus, the DAG intermediate of the PI-cycle, 1-stearoyl-2-arachidonoyl-DAG, is not the only DAG that is a good substrate for DGKε, the DGK isoform involved in PI-cycling.  相似文献   

2.
The phorbol esters are among the most potent tumor promoters. On addition of 12-O-tetradecanoylphorbol 13-acetate (TPA) to isolated human platelets prelabelled with [32P]orthophosphate we found a rapid increase in 32P incorporation into phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. In view of similar findings with cells infected with the oncogene Rous sarcoma virus, it is suggested that inositol lipid phosphorylation might be a key event in the molecular action of phorbol esters.  相似文献   

3.
There are six major species of phospholipids in eukaryotes, each of which plays unique structural and functional roles. One species, phosphatidylinositol (PI) only contributes about 2–10% of the total phospholipid pool. However, they are critical factors in the regulation of several fundamental processes such as in membrane dynamics and signal transduction pathways. Although numerous acyl species exist, PI species are enriched with one specific acyl chain composition at both sn−1 and sn−2 positions. Recent work has identified several enzymes that act on lipids to lead to the formation or interconversion of PI species that exhibit acyl chain specificity. These enzymes contribute to this lipid's enrichment with specific acyl chains. The nature of the acyl chains on signaling lipids has been shown to contribute to their specificity. Here we review some of the critical functions of PI and the multiple pathways in which PI can be produced and metabolized. We also discuss a common motif that may confer arachidonoyl specificity to several of the enzymes involved. This article is part of a Special Issue entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy.  相似文献   

4.
本文研究了腺苷及其类似物对猪红细胞膜上磷脂酰肌醇磷酸化的影响。研究结果表明:1、腺苷对磷脂酰肌醇磷酸化有明显的抑制作用,IC_(50)=15μmol/L;动力学分析表明,这种抑制作用机理是与ATP竞争性的;2、腺嘌呤、AMP、ADP、5'-氯-5'-脱氧腺苷、阿糖腺苷、2'-脱氧腺苷对磷脂酰肌醇磷酸化有不同程度的抑制作用;3、cAMP对磷脂酰肌醇磷酸化也有抑制作用,这提示了cAMP与肌醇脂质信使系统有联系;5、6-氯-嘌呤核苷(100μmol/L)对该磷酸化无显著抑制作用。  相似文献   

5.
6.
Phosphatidic acid (PA) production by receptor-stimulated phospholipase D is believed to play an important role in the regulation of cell function. The second messenger function of PA remains to be elucidated. PA can bind and affect the activities of different enzymes and here we summarise the current status of activation of Type I phosphatidylinositol 4-phosphate 5-kinase by PA. Type 1 phosphatidylinositol 4-phosphate 5-kinase is also regulated by ARF proteins as is phospholipase D and we discuss the contributions of ARF and PA towards phosphatidylinositol(4,5)bisphosphate synthesis at the plasma membrane.  相似文献   

7.
Diacylglycerol (DAG) is one of the primary products formed upon activation of platelets with stimuli that induce inositol lipid turnover. Its synthetic analog, 1-oleoyl-2-acetyl-glycerol (OAG) is often used as a tool for studying the involvement of the lipid in platelet activation. We found that OAG induces a concomitant increase in [32P]-incorporation in phosphatidylinositol 4-phosphate (PIP) and in the 40K protein, the endogenous substrate for protein kinase C in human platelets. It is hypothesized that in receptor mediated platelet activation a metabolic link might exist between both processes.  相似文献   

8.
A proteomics approach was used to search for novel phospholipid binding proteins in Saccharomyces cerevisiae. Phospholipids were immobilized on a solid support and the lipids were probed with soluble yeast protein extracts. From this, the phosphatidic acid binding proteins were eluted and identified by mass spectrometry. Thirteen proteins were identified and 11 of these were previously unknown lipid binding proteins. The protein-lipid interactions identified would not have been predicted using bioinformatics approaches as none possessed a known lipid binding motif. A subset of the identified proteins was purified to homogeneity and determined to directly bind phospholipids immobilized on a solid support or organized into liposomes. This simple approach could be systematically applied to perform an exhaustive screen for soluble lipid binding proteins in S. cerevisiae or other organisms.  相似文献   

9.
Type I phosphatidylinositol 4-phosphate 5-kinase (PI4P5K) catalyzes the phosphorylation of phosphatidylinositol 4 phosphate [PI(4)P] at carbon 5, producing phosphatidylinositol 4,5 bisphosphate [PI(4,5)P2]. Phosphatidic acid (PA) activates PI4P5K in vitro and plays a central role in the activation of PIP5K pathways in vivo. This report demonstrates that actin fiber formation in murine fibroblasts involves PA activation of PIP5Ks and defines biochemical interactions between PA and the PIP5Ks. Inhibition of phospholipase D production of PA results in the loss of actin fibers. Overexpression of the beta isoform of the type I murine phosphatidylinositol 4-phosphate 5-kinase (mPIP5K-Ibeta) maintains actin fiber structure in the face of phospholipase D inhibition. PA activates mPIP5K-Ibeta by direct binding to mPIP5K-Ibeta through both electrostatic and hydrophobic interactions, with the fatty acid acyl chain length and degree of saturation acting as critical determinants of binding and activation. Furthermore, kinetic analysis suggests that phosphorylation of the PI(4)P substrate does not follow classical Michaelis-Menten kinetics. Instead, the kinetic data are consistent with a model in which mPIP5K-Ibeta initially binds to the lipid micelle and subsequently binds the PI(4)P substrate. In addition, the kinetics indicate substrate inhibition, suggesting that mPIP5K-Ibeta contains an inhibitory PI(4)P-binding site. These results suggest a model in which mPIP5K-Ibeta is surrounded by PI(4)P, but is unable to catalyze its conversion to PI(4,5)P2 unless PA is bound.  相似文献   

10.
11.
The metabolism of polyphosphoinositides was examined in human platelets activated by thrombin. The addition of thrombin to [3H]glycerol-labeled platelets induced an initial loss and a subsequent increase of the radioactivity in phosphatidylinositol-4,5-bisphosphate (TPI) without any significant change in phosphatidylinositol-4-phosphate (DPI). A marked enhancement of [32P]Pi incorporation into TPI occurred in parallel with an increase in this lipid content, which was accompanied with a conccurent decrease in phosphatidylinositol (PI). The rate of this subsequent increase in TPI was smaller than that observed in [3H]arachidonic acid-labeled platelets, suggesting that formed TPI in activated platelets may contain much greater amount of arachidonate than preexisting TPI in resting platelets. These data indicate that thrombin causes a rapid change in TPI metabolism (initial degradation of preexisting TPI and subsequent production of arachidonate-rich TPI), which might be a primary candidate to modulate thrombin-induced function in human platelets.  相似文献   

12.
Diacylglycerol (DAG) and phosphatidic acid (PA) are lipids with unique functions as metabolic intermediates, basic membrane constituents, and second-signal components. Diacylglycerol kinases (DGK) regulate the levels of these two lipids, catalyzing the interconversion of one to the other. The DGK family of enzymes is composed of 10 isoforms, grouped into five subfamilies based on the presence of distinct regulatory domains. From its initial characterization as a type IV DGK to the generation of mouse models showing its importance in cardiac dysfunction and immune pathologies, diacylglycerol kinase ζ (DGKζ) has proved an excellent example of the critical role of lipid-metabolizing enzymes in the control of cell responses. Although the mechanism that regulates this enzyme is not well known, many studies demonstrate its subtle regulation and its strategic function in specific signaling and as part of adaptor protein complexes. These data suggest that DGKζ offers new opportunities for therapeutic manipulation of lipid metabolism.  相似文献   

13.
Phosphatidylinositol 5-phosphate (PtdIns5P) is a relatively recently discovered inositol lipid whose metabolism and functions are not yet clearly understood. We have transfected cells with a number of enzymes that are potentially implicated in the synthesis or metabolism of PtdIns5P, or subjected cells to a variety of stimuli, and then measured cellular PtdIns5P levels by a specific mass assay. Stable or transient overexpression of Type IIalpha PtdInsP kinase, or transient overexpression of Type Ialpha or IIbeta PtdInsP kinases caused no significant change in cellular PtdIns5P levels. Similarly, subjecting cells to oxidative stress or EGF stimulation had no significant effect on PtdIns5P, but stimulation of HeLa cells with a phosphoinositide-specific PLC-coupled agonist, histamine, caused a 40% decrease within 1 min. Our data question the degree to which inositide kinases regulate PtdIns5P levels in cells, and we discuss the possibility that a significant part of both the synthesis and removal of this lipid may be regulated by phosphatases and possibly phospholipases.  相似文献   

14.
Thrombin stimulation of human blood platelets caused an extensive (up to 45%) and rapid (5-10 s) decline in endogenous phosphatidylinositol 4,5-bisphosphate (PI-P2). Thrombin initiated an equally rapid loss of membrane-bound Ca, as indicated by the decrease in fluorescence of chlortetracycline (CTC)-loaded platelets. PI-P2 breakdown also correlated with decreased CTC fluorescence upon use of other platelet stimuli: Arachidonate caused moderate and slow decreases in both PI-P2 and CTC fluorescence, while ionophore only induced minimal changes. Thrombin-induced decreases in PI-P2 content could account for release of sufficient membrane-bound Ca to raise cytoplasmic free [Ca2+] to 1-2 microM, supporting the hypothesis that PI-P2 represents the Ca-binding site involved in the stimulus-dependent increase in cytoplasmic Ca2+ evoked by receptor-ligand interactions.  相似文献   

15.
16.
Annexin A2 (AnxA2) interacts with numerous ligands, including calcium, lipids, mRNAs and intracellular and extracellular proteins. Different post-translational modifications participate in the discrimination of the functions of AnxA2 by modulating its ligand interactions. Here, phospho-mimicking mutants (AnxA2-S25E and AnxA2-S25D) were employed to investigate the effects of Ser25 phosphorylation on the structure and function of AnxA2 by using AnxA2-S25A as a control. The overall α-helical structure of AnxA2 is not affected by the mutations, since the thermal stabilities and aggregation tendencies of the mutants differ only slightly from the wild-type (wt) protein. Unlike wt AnxA2, all mutants bind the anxA2 3′ untranslated region and β-γ-G-actin with high affinity in a Ca2 +-independent manner. AnxA2-S25E is not targeted to the nucleus in transfected PC12 cells. In vitro phosphorylation of AnxA2 by protein kinase C increases its affinity to mRNA and inhibits its nuclear localisation, in accordance with the data obtained with the phospho-mimicking mutants. Ca2 +-dependent binding of wt AnxA2 to phosphatidylinositol, phosphatidylinositol-3-phosphate, phosphatidylinositol-4-phosphate and phosphatidylinositol-5-phosphate, as well as weaker but still Ca2 +-dependent binding to phosphatidylserine and phosphatidylinositol-3,5-bisphosphate, was demonstrated by a protein–lipid overlay assay, whereas binding of AnxA2 to these lipids, as well as its binding to liposomes, is inhibited by the Ser25 mutations. Thus, introduction of a modification (mutation or phosphorylation) at Ser25 appears to induce a conformational change leading to increased accessibility of the mRNA- and G-actin-binding sites in domain IV independent of Ca2 + levels, while the Ca2 +-dependent binding of AnxA2 to phospholipids is attenuated.  相似文献   

17.
Diacylglycerol kinases (DGKs) catalyze the phosphorylation of diacylglycerol into phosphatidic acid. To fulfill their role in many signalling processes, DGKs must be located at, or in, membranes. Most mammalian DGKs are cytosolic and are recruited to membranes upon stimulation, except for epsilon type DGKs that are permanently membrane-associated through a hydrophobic segment. Nothing is known about the mechanism(s) involved in the membrane localization of plant DGKs. By fusion to fluorescent proteins, we show that two DGKs from cluster I in Arabidopsis thaliana possess amino-terminal hydrophobic segments that are sufficient to address them to endoplasmic reticulum membranes.  相似文献   

18.
There are ten mammalian diacylglycerol kinases (DGKs) whose primary role is to terminate diacylglycerol (DAG) signaling. However, it is becoming increasingly apparent that DGKs also influence signaling events through their product, phosphatidic acid (PA). They do so in some cases by associating with proteins and then modifying their activity by generating PA. In other cases, DGKs broadly regulate signaling events by virtue of their ability to provide PA for the synthesis of phosphatidylinositols (PtdIns).  相似文献   

19.
20.
The mammalian diacylglycerol kinases (DGK) are a group of enzymes having important roles in regulating many biological processes. Both the product and the substrate of these enzymes, i.e. diacylglycerol and phosphatidic acid, are important lipid signalling molecules. Each DGK isoform appears to have a distinct biological function as a consequence of its location in the cell and/or the proteins with which it associates. This review discusses three of the more extensively studied forms of this enzyme, DGKα, DGK?, and DGKζ. DGKα has an important role in immune function and its activity is modulated by several mechanisms. DGK? has several unique features among which is its specificity for arachionoyl-containing substrates, suggesting its importance in phosphatidylinositol cycling. DGKζ is expressed in many tissues and also has several mechanisms to regulate its functions. It is localized in several subcellular organelles, including the nucleus. The current state of our understanding of the properties and functions of these proteins is reviewed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号