首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The rational designing of binding abilities in proteins requires an understanding of the relationship between structure and thermodynamics. However, our knowledge of the molecular origin of high‐affinity binding of ligands to proteins is still limited; such is the case for l ‐lysine–l ‐arginine–l ‐ornithine periplasmic binding protein (LAOBP), a periplasmic binding protein from Salmonella typhimurium that binds to l ‐arginine, l ‐lysine, and l ‐ornithine with nanomolar affinity and to l ‐histidine with micromolar affinity. Structural studies indicate that ligand binding induces a large conformational change in LAOBP. In this work, we studied the thermodynamics of l ‐histidine and l ‐arginine binding to LAOBP by isothermal titration calorimetry. For both ligands, the affinity is enthalpically driven, with a binding ΔCp of ~?300 cal mol?1 K?1, most of which arises from the burial of protein nonpolar surfaces that accompanies the conformational change. Osmotic stress measurements revealed that several water molecules become sequestered upon complex formation. In addition, LAOBP prefers positively charged ligands in their side chain. An energetic analysis shows that the protein acquires a thermodynamically equivalent state with both ligands. The 1000‐fold higher affinity of LAOBP for l ‐arginine as compared with l ‐histidine is mainly of enthalpic origin and can be ascribed to the formation of an extra pair of hydrogen bonds. Periplasmic binding proteins have evolved diverse energetic strategies for ligand recognition. STM4351, another arginine binding protein from Salmonella, shows an entropy‐driven micromolar affinity toward l ‐arginine. In contrast, our data show that LAOBP achieves nanomolar affinity for the same ligand through enthalpy optimization. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
LB5 antibody was selected from a monoclonal antibody (mAb) library directed against human sperm proteins. LB5 mAb detected the corresponding protein SOB3 in the neck region and the flagellum of most live ejaculated sperm while it labelled, in addition, the acrosome of about 10–20% of spermatozoa. The percentage of LB5 acrosome-stained sperm was significantly correlated with the percentages of either spontaneous or A23187-induced acrosome-reacted sperm. While SOB3 could not be detected in the testis, it appeared in spermatozoa from the corpus epididymis segment. LB5 mAb impaired neither sperm motion parameters, acrosomal reaction triggering, nor sperm binding to zona-free hamster oocytes. By contrast, LB5 Fab fragments (200 μg/ml) inhibited sperm binding to human zonae pellicidae by 35.7%. If sperm were induced to acrosome react with A23187 prior to LB5 treatment, the inhibitory effect shifted to 59.9%, while no significant effect was observed following A23187 incubation alone. Western blotting of human sperm and cauda epididymis extracts revealed two bands of 18 and 19 kDa. While no cross-reaction was observed with other tested organs, a similar 18-kDa band was revealed in erythocytes and one of 19 kDa in B-lymphocytes. No cross-reactivity could be evidenced in any animal sperm analyzed. SOB3 was first separated in a 17- to 20-kDa preparative electrophoresis fraction and finally purified by isoelectrofocusing according to its pI of 9.8. These results suggest that SOB3 is localized under the outer acrosomal membrane, that it participates in secondary sperm binding to the zona pellucida, and that it shares homologies with the immune system. Mol. Reprod. Dev. 49:286–297, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

3.
The Lyme disease agent Borrelia burgdorferi, which is transmitted via a tick vector, is dependent on its tick and mammalian hosts for a number of essential nutrients. Like other bacterial diderms, it must transport these biochemicals from the extracellular milieu across two membranes, ultimately to the B. burgdorferi cytoplasm. In the current study, we established that a gene cluster comprising genes bb0215 through bb0218 is cotranscribed and is therefore an operon. Sequence analysis of these proteins suggested that they are the components of an ABC‐type transporter responsible for translocating phosphate anions from the B. burgdorferi periplasm to the cytoplasm. Biophysical experiments established that the putative ligand‐binding protein of this system, BbPstS (BB0215), binds to phosphate in solution. We determined the high‐resolution (1.3 Å) crystal structure of the protein in the absence of phosphate, revealing that the protein's fold is similar to other phosphate‐binding proteins, and residues that are implicated in phosphate binding in other such proteins are conserved in BbPstS. Taken together, the gene products of bb0215‐0218 function as a phosphate transporter for B. burgdorferi.  相似文献   

4.
The HisJ protein from Escherichia coli and related Gram negative bacteria is the periplasmic component of a bacterial ATP‐cassette (ABC) transporter system. Together these proteins form a transmembrane complex that can take up L‐histidine from the environment and translocate it into the cytosol. We have studied the specificity of HisJ for binding L‐His and many related naturally occurring compounds. Our data confirm that L‐His is the preferred ligand, but that 1‐methyl‐L‐His and 3‐methyl‐L‐His can also bind, while the dipeptide carnosine binds weakly and D‐histidine and the histidine degradation products, histamine, urocanic acid and imidazole do not bind. L‐Arg, homo‐L‐Arg, and post‐translationally modified methylated Arg‐analogs also bind with reasonable avidity, with the exception of symmetric dimethylated‐L‐Arg. In contrast, L‐Lys and L‐Orn have considerably weaker interactions with HisJ and methylated and acetylated Lys variants show relatively poor binding. It was also observed that the carboxylate group of these amino acids and their variants was very important for proper recognition of the ligand. Taken together our results are a key step towards designing HisJ as a specific protein‐based reagentless biosensor.  相似文献   

5.
Human odorant‐binding protein, OBPIIa, is expressed by nasal epithelia to facilitate transport of hydrophobic odorant molecules across the aqueous mucus. Here, we report its crystallographic analysis at 2.6 Å resolution. OBPIIa is a monomeric protein that exhibits the classical lipocalin fold with a conserved eight‐stranded β‐barrel harboring a remarkably large hydrophobic pocket. Basic residues within the four loops that shape the entrance to this ligand‐binding site evoke a positive electrostatic potential. Human OBPIIa shows distinct features compared with other mammalian OBPs, including a potentially reactive Cys side chain within its pocket similar to human tear lipocalin. Proteins 2015; 83:1180–1184. © 2015 Wiley Periodicals, Inc.  相似文献   

6.
A new type of solute importer has been identified recently in various bacterial genera and called the tripartite tricarboxylate transporter (TTT). TTTs consist of two cytoplasmic membrane proteins and a periplasmic solute-binding protein. In the whooping cough agent Bordetella pertussis, a TTT system that has been called BctCBA mediates the uptake of citrate, with BctA and BctB being the membrane components and BctC, the periplasmic protein. Here, we describe that the expression of the bctCBA operon is induced by the presence of citrate in the milieu. The signalling cascade involves both BctC and the signal transduction two-component system BctDE, encoded by an operon adjacent to bctCBA. Furthermore, two-hybrid analyses and affinity chromatography experiments indicated that citrate-liganded BctC interacts with the periplasmic domain of the sensor protein, BctE. Thus, BctC is part of the signalling cascade leading to upregulation of the transporter operon in the presence of its solute, a new function for periplasmic binding proteins of TT transporters.  相似文献   

7.
Campbell JD  Sansom MS 《FEBS letters》2005,579(19):4193-4199
Transport by ABC proteins requires a cycle of ATP-driven conformational changes of the nucleotide binding domains (NBDs). We compare three molecular dynamics simulations of dimeric MJ0796: with ATP was present at both NBDs; with ATP at one NBD but ADP at the other; and without any bound ATP. In the simulation with ATP present at both NBDs, the dimeric protein interacts with the nucleotides in a symmetrical manner. However, if ADP is present at one binding site then both NBD-NBD and protein-ATP interactions are enhanced at the opposite site.  相似文献   

8.
9.
Nucleotides are among the most extensively exploited chemical moieties in nature and, as a part of a handful of different protein ligands, nucleotides play key roles in energy transduction, enzymatic catalysis and regulation of protein function. We have previously reported that in many proteins with different folds and functions a distinctive adenine-binding motif is involved in the recognition of the Watson-Crick edge of adenine. Here, we show that many proteins do have clear structural motifs that recognize adenosine (and some other nucleotides and nucleotide analogs) not only through the Watson-Crick edge, but also through the sugar and Hoogsteen edges. Each of the three edges of adenosine has a donor-acceptor-donor (DAD) pattern that is often recognized by proteins via a complementary acceptor-donor-acceptor (ADA) motif, whereby three distinct hydrogen bonds are formed: two conventional N-H...O and N-H...N hydrogen bonds, and one weak C-H...O hydrogen bond. The local conformation of the adenine-binding loop is betabetabeta or betabetaalpha and reflects the mode of nucleotide binding. Additionally, we report 21 proteins from five different folds that simultaneously recognize both the sugar edge and the Watson-Crick edge of adenine. In these proteins a unique beta-loop-beta supersecondary structure grasps an adenine-containing ligand between two identical adenine-binding motifs as part of the betaalphabeta-loop-beta fold.  相似文献   

10.
Molecular recognition features (MoRFs) are intrinsically disordered protein regions that bind to partners via disorder‐to‐order transitions. In one‐to‐many binding, a single MoRF binds to two or more different partners individually. MoRF‐based one‐to‐many protein–protein interaction (PPI) examples were collected from the Protein Data Bank, yielding 23 MoRFs bound to 2–9 partners, with all pairs of same‐MoRF partners having less than 25% sequence identity. Of these, 8 MoRFs were bound to 2–9 partners having completely different folds, whereas 15 MoRFs were bound to 2–5 partners having the same folds but with low sequence identities. For both types of partner variation, backbone and side chain torsion angle rotations were used to bring about the conformational changes needed to enable close fits between a single MoRF and distinct partners. Alternative splicing events (ASEs) and posttranslational modifications (PTMs) were also found to contribute to distinct partner binding. Because ASEs and PTMs both commonly occur in disordered regions, and because both ASEs and PTMs are often tissue‐specific, these data suggest that MoRFs, ASEs, and PTMs may collaborate to alter PPI networks in different cell types. These data enlarge the set of carefully studied MoRFs that use inherent flexibility and that also use ASE‐based and/or PTM‐based surface modifications to enable the same disordered segment to selectively associate with two or more partners. The small number of residues involved in MoRFs and in their modifications by ASEs or PTMs may simplify the evolvability of signaling network diversity.  相似文献   

11.
Previously, we determined the crystal structure of apo‐TpMglB‐2, a d ‐glucose‐binding component of a putative ABC transporter from the syphilis spirochete Treponema pallidum. The protein had an unusual topology for this class of proteins, raising the question of whether the d ‐glucose‐binding mode would be different in TpMglB‐2. Here, we present the crystal structures of a variant of TpMglB‐2 with and without d ‐glucose bound. The structures demonstrate that, despite its aberrant topology, the protein undergoes conformational changes and binds d ‐glucose similarly to other Mgl‐type proteins, likely facilitating d ‐glucose uptake in T. pallidum.  相似文献   

12.
An enzyme-linked immunosorbent assay using bovine fibronectin as the substrate was used to demonstrate that Mannheimia haemolytica A1 binds to fibronectin. This binding to fibronectin was specific as no binding was observed with bovine fibrinogen. The binding to fibronectin was not observed if the M. haemolytica A1 cells were pretreated with trypsin or proteinase K, suggesting that it involved a protein molecule on the cell surface. Interestingly, the fibronectin-binding activity was found to be higher in an acapsular mutant compared with its parent strain. The fibronectin-binding protein was shown to be present in the outer membrane fraction of M. haemolytica A1. A 45 kDa outer membrane protein that binds to fibronectin was identified by Far-Western immunoblot analysis. This protein was purified and subjected to MS matrix-assisted laser desorption ionization time-of-flight analysis. The results identified it to be outer membrane OmpA based on comparison with the M. haemolytica A1 genomic sequence.  相似文献   

13.
Abstract: Experiments were conducted to determine how (−)-cocaine and S (+)-amphetamine binding sites relate to each other and to the catechol substrate site on the striatal dopamine transporter (sDAT). In controls, m -tyramine and S (+)-amphetamine caused release of dopamine from intracellular stores at concentrations ≥12-fold those observed to inhibit inwardly directed sDAT activity for dopamine. In preparations from animals pretreated with reserpine, m -tyramine and S (+)-amphetamine caused release of preloaded dopamine at concentrations similar to those that inhibit inwardly directed sDAT activity. S (+)-Amphetamine and m -tyramine inhibited sDAT activity for dopamine by competing for a common binding site with dopamine and each other, suggesting that phenethylamines are substrate analogues at the plasmalemmal sDAT. (−)-Cocaine inhibited sDAT at a site separate from that for substrate analogues. This site is mutually interactive with the substrate site ( K int = 583 n M ). Mazindol competitively inhibited sDAT at the substrate analogue binding site. The results with (−)-cocaine suggest that the (−)-cocaine binding site on sDAT is distinct from that of hydroxyphenethylamine substrates, reinforcing the notion that an antagonist for (−)-cocaine binding may be developed to block (−)-cocaine binding with minimal effects on dopamine transporter activity. However, a strategy of how to antagonize drugs of abuse acting as substrate analogues is still elusive.  相似文献   

14.
Three-dimensional modeling of the complex between retinoic acid-binding protein (CRABP) and retinoic acid suggests that binding of the ligand is mediated by interaction between the carboxyl group of retinoic acid and two charged amino acids (Arg-111 and Arg-131) whose side chains project into the barrel of the protein. To assess the contribution of these amino acids to protein-ligand interaction, amino acid substitutions were made by oligonucleotide-directed, site-specific mutagenesis. The wild-type and mutant proteins were expressed in E. coli and subsequently purified. Like wild-type CRABP, the mutant proteins are composed mainly of beta-strands as determined by circular dichroism in the presence and absence of ligand, and thus presumably are folded into the same compact barrel structure as the wild-type protein. Mutants in which Arg-111 and Arg-131 are replaced by glutamine bind retinoic acid with significantly lower affinity than the wild-type protein, arguing that these two residues indeed interact with the ligand. The mutant proteins are more resistant to thermal denaturation than wild-type CRABP in the absence of retinoic acid, but they are not as thermostable as the CRABP-retinoic acid complex. These data suggest a model for CRABP-retinoic acid interaction in which the repulsive forces between the positively-charged arginine residues provide conformational flexibility to the native protein for retinoic acid to enter the binding pocket. Elimination of the positively-charged pair of amino acids produces a protein that is more thermostable than wild-type CRABP but less effective at ligand-binding.  相似文献   

15.
The Alzheimer's disease βA4 amyloid precursor protein (APP) has been shown to be involved in a diverse set of biological protein precursor-like proteins (APLP1 and APLP2) belong to a superfamily of proteins that are probably functionally related. In order to characterize the cell adhesion properties of APP the brain specific isoform APP695 was purified and used to assess the binding to herparin, a structural and functional analogue of the glycosaminoglycan heparan sulfate. We show that APP binds in a time dependent and saturable manner to heparin. The salt concentration of 620 mM at which APP elutes from heparin Sepharose is greater than physiological. Tha apparent equilibrium constant for dissociation was determined to be 300 pM for APP binding to heparin Sepharose. A high affinity heparin binding site was identified within a region conversed in rodent and human APP, APLP1 and APLP2. This binding site was located between residues 316-337 of APP695 which is within the carbohydrate domain of APP. We also demonstrate an interaction between this heparin binding site and the zinc(II) binding site which is conserved in all members of the APP superfamily. We show by using an automated surface plasmon resonance biosensor (BIAcore, Pharmacia) that the affinity for heparin is increased two- to four-fold in the presence of micromolar zinc(II). The identification of zinc-enhanced binding of APP to heparin sulfate side chains of proteoglycans offers a molecular link between zinc(II), as a putative environmental toxin for Alzheimer's disease, and aggregation of amyloid βA4 protein.  相似文献   

16.
翁琛  张林雅  赵磊  付余霞  罗晨  李红亮 《昆虫学报》2013,56(10):1110-1116
【目的】研究中华蜜蜂Apis cerana cerana信息素结合蛋白ASP1与蜜蜂信息素及某些植物挥发物分子的结合功能。【方法】构建中蜂ASP1的原核表达载体, 对其进行重组蛋白的诱导表达和分离纯化, 并得到具有生化活性的中蜂ASP1重组蛋白, 最后以1-NPN作为荧光报告探针, 通过荧光竞争结合实验研究中蜂重组ASP1蛋白与蜜蜂信息素及其他气味分子的结合功能。【结果】在22种潜在信息气味物质中, 有7种与中蜂ASP1有较强的结合能力, 能将1-NPN的相对荧光强度降至50%以下。其中发现蜂王信息素两种成分对 羟基苯甲酸甲酯和香草醇的竞争能力最强, 可分别引起1-NPN相对荧光值下降99.31%和95.50%, 解离常数KD分别为13.39和98.44 μmol/L; 而与除蜂王信息素外的其他信息素如幼虫信息素和工蜂信息素等分子均不结合。此外中蜂ASP1对于水杨酸甲酯、 苯乙醛、 3, 4-二甲基苯甲醛4-烯丙基藜芦醚和β-紫罗兰酮等5种植物挥发物质能产生强度不一的结合。【结论】中蜂信息素结合蛋白ASP1对蜂王信息素具有非常强的特异性, 同时也能结合某些植物挥发性气味分子, 暗示中蜂ASP1是一种以蜂王信息素识别为主要功能、 植物挥发物识别为次要功能的多功能信息素结合蛋白。  相似文献   

17.
Morita M  Nakamura S  Shimizu K 《Proteins》2008,73(2):468-479
This article describes a new method for predicting ligand-binding sites of proteins. The method involves calculating the van der Waals interaction energy between a protein and probes placed on the protein surface, and then clustering the probes with attractive interaction to find the energetically most favorable locus. In 80% (28/35) of the test cases, the ligand-binding site was successfully predicted on a ligand-bound protein structure, and in 77% (27/35) was successfully predicted on an unbound structure. Our method was used to successfully predict ligand-binding sites unaffected by induced-fit as long as its scales were not very large, and it contributed to a significant improvement in prediction with unbound state protein structures. This represents a significant advance over conventional methods in detecting ligand-binding sites on uncharacterized proteins. Moreover, our method can predict ligand-binding sites with a narrower locus than those achieved using conventional methods.  相似文献   

18.
张婷  刘乃勇  董双林 《昆虫学报》2012,55(5):499-509
触角结合蛋白(antennal binding proteins, ABPs)是气味结合蛋白(odorant binding proteins, OBPs)的一个亚类, 推测其在昆虫嗅觉中起作用。为了探讨这一问题, 本研究通过转录组数据分析并利用RACE技术, 克隆了甜菜夜蛾Spodoptera exigua触角结合蛋白Ⅱ基因(SexigABP2)的全长cDNA序列(GenBank登录号为HQ234486)。序列分析表明, 该基因开放阅读框长444 bp, 编码148个氨基酸, 具有OBPs典型的6个半胱氨酸位点; 其氨基酸序列和烟芽夜蛾Heliothis virescens的HvirABP2的一致性最高, 达72%。实时定量PCR分析显示, 该基因主要在触角中表达, 在喙、 足、 翅等组织中也有少量表达, 且在雌蛾触角及足中的表达量显著高于雄蛾。进一步对该基因进行原核表达和纯化, 利用荧光竞争结合实验测定了SexigABP2对35种气味物质的结合能力, 发现其对甜菜夜蛾性信息素组分(Z)-9-十四碳烯醇和植物挥发物法尼醇的结合能力较强, 结合常数分别为8.24 μmol/L和8.14 μmol/L。结合能力比较表明, SexigABP2对不饱和长碳链化合物较饱和短碳链化合物具有更强的结合能力; 在不饱和长碳链化合物中, 对醇类物质又较乙酸酯类物质具有更强的结合能力。结果提示SexigABP2可能参与了成虫对不饱和长碳链的植物挥发物的感受。  相似文献   

19.
As a part of the Joint Center for Structural Genomics (JCSG) biological targets, the structures of soluble domains of membrane proteins from Thermotoga maritima were pursued. Here, we report the crystal structure of the soluble domain of TM1634, a putative membrane protein of 128 residues (15.1 kDa) and unknown function. The soluble domain of TM1634 is an alpha-helical dimer that contains a single tetratrico peptide repeat (TPR) motif in each monomer where each motif is similar to that found in Tom20. The overall fold, however, is unique and a DALI search does not identify similar folds beyond the 38-residue TPR motif. Two different putative ligand binding sites, in which PEG200 and Co(2+) were located, were identified using crystallography and NMR, respectively.  相似文献   

20.
Identification and size characterization of surface pockets and occluded cavities are initial steps in protein structure-based ligand design. A new program, CAST, for automatically locating and measuring protein pockets and cavities, is based on precise computational geometry methods, including alpha shape and discrete flow theory. CAST identifies and measures pockets and pocket mouth openings, as well as cavities. The program specifies the atoms lining pockets, pocket openings, and buried cavities; the volume and area of pockets and cavities; and the area and circumference of mouth openings. CAST analysis of over 100 proteins has been carried out; proteins examined include a set of 51 monomeric enzyme-ligand structures, several elastase-inhibitor complexes, the FK506 binding protein, 30 HIV-1 protease-inhibitor complexes, and a number of small and large protein inhibitors. Medium-sized globular proteins typically have 10-20 pockets/cavities. Most often, binding sites are pockets with 1-2 mouth openings; much less frequently they are cavities. Ligand binding pockets vary widely in size, most within the range 10(2)-10(3)A3. Statistical analysis reveals that the number of pockets and cavities is correlated with protein size, but there is no correlation between the size of the protein and the size of binding sites. Most frequently, the largest pocket/cavity is the active site, but there are a number of instructive exceptions. Ligand volume and binding site volume are somewhat correlated when binding site volume is < or =700 A3, but the ligand seldom occupies the entire site. Auxiliary pockets near the active site have been suggested as additional binding surface for designed ligands (Mattos C et al., 1994, Nat Struct Biol 1:55-58). Analysis of elastase-inhibitor complexes suggests that CAST can identify ancillary pockets suitable for recruitment in ligand design strategies. Analysis of the FK506 binding protein, and of compounds developed in SAR by NMR (Shuker SB et al., 1996, Science 274:1531-1534), indicates that CAST pocket computation may provide a priori identification of target proteins for linked-fragment design. CAST analysis of 30 HIV-1 protease-inhibitor complexes shows that the flexible active site pocket can vary over a range of 853-1,566 A3, and that there are two pockets near or adjoining the active site that may be recruited for ligand design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号