首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The rise in bacterial resistance to antibiotics demonstrates the medical need for new antibacterial agents. One approach to this problem is to identify new antibacterials that act through validated drug targets such as bacterial DNA gyrase. DNA gyrase uses the energy of ATP hydrolysis to introduce negative supercoils into plasmid and chromosomal DNA and is essential for DNA replication. Inhibition of the ATPase activity of DNA gyrase is the mechanism by which coumarin-class antibiotics such as novobiocin inhibit bacterial growth. Although ATPase inhibitors exhibit potent antibacterial activity against gram-positive pathogens, no gyrase ATPase activity from a gram-positive organism is described in the literature. To address this, we developed and optimized an enzyme-coupled phosphate assay and used this assay to characterize the ATPase kinetics of Streptococcus pneumoniae gyrase. The S. pneumoniae enzyme exhibits cooperativity with ATP and requires organic potassium salts. We also studied inhibition of the enzyme by novobiocin. Apparent inhibition constants for novobiocin increased linearly with ATP concentration, indicative of an ATP-competitive mechanism. Similar binding affinities were measured by isothermal titration calorimetry. These results reveal unique features of the S. pneumoniae DNA gyrase ATPase and demonstrate the utility of the assay for screening and kinetic characterization of ATPase inhibitors.  相似文献   

3.
S-adenosyl-(L)-homocysteine (SAH) riboswitches are regulatory elements found in bacterial mRNAs that up-regulate genes involved in the S-adenosyl-(L)-methionine (SAM) regeneration cycle. To understand the structural basis of SAH-dependent regulation by RNA, we have solved the structure of its metabolite-binding domain in complex with SAH. This structure reveals an unusual pseudoknot topology that creates a shallow groove on the surface of the RNA that binds SAH primarily through interactions with the adenine ring and methionine main chain atoms and discriminates against SAM through a steric mechanism. Chemical probing and calorimetric analysis indicate that the unliganded RNA can access bound-like conformations that are significantly stabilized by SAH to direct folding of the downstream regulatory switch. Strikingly, we find that metabolites bearing an adenine ring, including ATP, bind this aptamer with sufficiently high affinity such that normal intracellular concentrations of these compounds may influence regulation of the riboswitch.  相似文献   

4.
During initiation of messenger RNA translation in bacteria, the GTPase initiation factor (IF) 2 plays major roles in the assembly of the preinitiation 30S complex and its docking to the 50S ribosomal subunit leading to the 70S initiation complex, ready to form the first peptide bond in a nascent protein. Rapid and accurate initiation of bacterial protein synthesis is driven by conformational changes in IF2, induced by GDP-GTP exchange and GTP hydrolysis. We have used isothermal titration calorimetry and linear extrapolation to characterize the thermodynamics of the binding of GDP and GTP to free IF2 in the temperature interval 4-37 °C. IF2 binds with about 20-fold and 2-fold higher affinity for GDP than for GTP at 4 and 37 °C, respectively. The binding of IF2 to both GTP and GDP is characterized by a large heat capacity change (− 868 ± 25 and − 577 ± 23 cal mol− 1 K− 1, respectively), associated with compensatory changes in binding entropy and enthalpy. From our data, we propose that GTP binding to IF2 leads to protection of hydrophobic amino acid residues from solvent by the locking of switch I and switch II loops to the γ-phosphate of GTP, as in the case of elongation factor G. From the large heat capacity change (also upon GDP binding) not seen in the case of elongation factor G, we propose the existence of yet another type of conformational change in IF2, which is induced by GDP and GTP alike. Also, this transition is likely to protect hydrophobic groups from solvent, and its functional relevance is discussed.  相似文献   

5.
A pentasaccharide mimic of a fragment of the capsular polysaccharide of Streptococcus pneumoniae type 15C beta-D-Galp-(1-->4)-beta-D-Glcp-(1-->6)-[alpha-D-Galp-(1-->2)-beta-D-Galp-(1-->4)]-beta-D-GlcpNAc-(1-->OCH2CH2N3) (1) was synthesized in a regio- and stereoselective manner. The 2-azidoethyl-spacered pentasaccharide mimic 1 can be used to construct a neoglycoconjugate antigen.  相似文献   

6.
The crystal structure of the binary complex of trimeric purine nucleoside phosphorylase (PNP) from calf spleen with the acyclic nucleoside phosphonate inhibitor 2,6-diamino-(S)-9-[2-(phosphonomethoxy)propyl]purine ((S)-PMPDAP) is determined at 2.3A resolution in space group P2(1)2(1)2(1). Crystallization in this space group, which is observed for the first time with a calf spleen PNP crystal structure, is obtained in the presence of calcium atoms. In contrast to the previously described cubic space group P2(1)3, two independent trimers are observed in the asymmetric unit, hence possible differences between monomers forming the biologically active trimer could be detected, if present. Such differences would be expected due to third-of-the-sites binding documented for transition-state events and inhibitors. However, no differences are noted, and binding stoichiometry of three inhibitor molecules per enzyme trimer is observed in the crystal structure, and in the parallel solution studies using isothermal titration calorimetry and spectrofluorimetric titrations. Presence of phosphate was shown to modify binding stoichiometry of hypoxanthine. Therefore, the enzyme was also crystallized in space group P2(1)2(1)2(1) in the presence of (S)-PMPDAP and phosphate, and the resulting structure of the binary PNP/(S)-PMPDAP complex was refined at 2.05A resolution. No qualitative differences between complexes obtained with and without the presence of phosphate were detected, except for the hydrogen bond contact of Arg84 and a phosphonate group, which is observed only in the former complex in three out of six independent monomers. Possible hydrogen bonds observed in the enzyme complexed with (S)-PMPDAP, in particular a putative hydrogen bonding contact N(1)-H cdots, three dots, centered Glu201, indicate that the inhibitor binds in a tautomeric or ionic form in which position N(1) acts as a hydrogen bond donor. This points to a crucial role of this hydrogen bond in defining specificity of trimeric PNPs and is in line with the proposed mechanism of catalysis in which this contact helps to stabilize the negative charge that accumulates on O(6) of the purine base in the transition state. In the present crystal structure the loop between Thr60 and Ala65 was found in a different conformation than that observed in crystal structures of trimeric PNPs up to now. Due to this change a new wide entrance is opened into the active site pocket, which is otherwise buried in the interior of the protein. Hence, our present crystal structure provides no obvious indication for obligatory binding of one of the substrates before binding of a second one; it is rather consistent with random binding of substrates. All these results provide new data for clarifying the mechanism of catalysis and give reasons for the non-Michaelis kinetics of trimeric PNPs.  相似文献   

7.
The chemo-enzymatic synthesis is described of tetrasaccharide beta-D-Galp-(1-->4)-beta-D-Glcp-(1-->6)-[beta-D-Galp-(1-->4)]-beta-D-GlcpNAc-(1-->O(CH(2))(6)NH(2) (1) and octasaccharide beta-D-Galp-(1-->4)-beta-D-Glcp-(1-->6)-[beta-D-Galp-(1-->4)]-beta-D-GlcpNAc-(1-->3)-beta-D-Galp-(1-->4)-beta-D-Glcp-(1-->6)-[beta-D-Galp-(1-->4)]-beta-D-GlcpNAc-(1-->O(CH(2))(6)NH(2) (2), representing one and two tetrasaccharide repeating units of Streptococcus pneumoniae serotype 14 capsular polysaccharide. In a chemical approach, the intermediate linear trisaccharide 3 and hexasaccharide 4 were synthesized. Galactose residues were beta-(1-->4)-connected to the internal N-acetyl-beta-D-glucosamine residues by using bovine milk beta-1,4-galactosyltransferase. Both title oligosaccharides will be conjugated to carrier proteins to be tested as potential vaccines in animal models.  相似文献   

8.
The chemo-enzymatic synthesis is described of beta-D-Glcp-(1-->6)-[beta-D-Galp-(1-->4)]-beta-D-GlcpNAc-(1-->3)-beta-D-Galp-(1-->O(CH(2))(6)NH(2) (1), beta-D-Glcp-(1-->6)-[beta-D-Galp-(1-->4)]-beta-D-GlcpNAc-(1-->3)-beta-D-Galp-(1-->4)-beta-D-Glcp-(1-->O(CH(2))(6)NH(2) (2), beta-D-Galp-(1-->4)-beta-D-GlcpNAc-(1-->3)-beta-D-Galp-(1-->4)-beta-D-Glcp-(1-->O(CH(2))(6)NH(2) (3), and beta-D-Galp-(1-->4)-beta-D-GlcpNAc-(1-->3)-beta-D-Galp-(1-->4)-beta-D-Glcp-(1-->6)-[beta-D-Galp-(1-->4)]-beta-D-GlcpNAc-(1-->O(CH(2))(6)NH(2) (4), representing fragments of the repeating unit of the Streptococcus pneumoniae serotype 14 capsular polysaccharide. Linear intermediate oligosaccharides 5-8 were synthesized via chemical synthesis, followed by enzymatic galactosylation using bovine milk beta-1,4-galactosyltransferase as a catalyst. The title oligosaccharides form suitable compounds for conjugation with carrier proteins, to be tested as potential vaccines in animal models.  相似文献   

9.
To infect and replicate, bacteriophage P22 injects its 43 kbp genome across the cell wall of Salmonella enterica serovar Typhimurium. The attachment of phage P22 to the host cell as well as the injection of the viral DNA into the host is mediated by the virion's tail complex. This 2.8 MDa molecular machine is formed by five proteins, which include the portal protein gp1, the adhesion tailspike protein gp9, and three tail accessory factors: gp4, gp10, gp26. We have isolated the tail accessory factor gp4 and characterized its structure and binding interactions with portal protein. Interestingly, gp4 exists in solution as a monomer, which displays an exceedingly low structural stability (Tm 34 degrees C). Unfolded gp4 is prone to aggregation within a narrow range of temperatures both in vitro and in Salmonella extracts. In the virion the thermal unfolding of gp4 is prevented by the interaction with the dodecameric portal protein, which stabilizes the structure of gp4 and suppresses unfolded gp4 from irreversibly aggregating in the Salmonella milieu. The structural stabilization of gp4 is accompanied by the concomitant oligomerization of the protein to form a ring of 12 subunits bound to the lower end of the portal ring. The interaction of gp4 with portal protein is complex and likely involves the distinct binding of two non-equivalent sets of six gp4 proteins. Binding of the first set of six gp4 equivalents to dodecameric portal protein yields a gp(1)12:gp(4)6 assembly intermediate, which is stably populated at 30 degrees C and can be resolved by native gel electrophoresis. The final product of the assembly reaction is a bi-dodecameric gp(1)12:gp(4)12 complex, which appears hollow by electron microscopy, suggesting that gp4 does not physically plug the DNA entry/exit channel, but acts as a structural adaptor for the other tail accessory factors: gp10 and gp26.  相似文献   

10.
Streptococcus pneumoniae is a major pathogen of community-acquired pneumonia and one of its major virulence factors is pneumolysin, which functions as a cholesterol-dependent cytolytic pore-forming toxin. In this study, we identified the ply-like gene spd0729 in a BLAST search. Unexpectedly, hemolytic and cytotoxic assays showed no significant differences between a Δspd0729 mutant strain and the wild-type strain, whereas the mutant strain exhibited weaker anti-phagocytic activity in human peripheral blood. In addition, real-time RT-PCR analysis revealed that four capsular biosynthesis genes in the mutant strain had expressions 7- to 432-fold greater than those of the wild type, while an enzyme-linked immunoassay showed a mean 3-fold greater amount of total capsular polysaccharide in the mutant strain. These results suggest that Spd0729 is not a cytolysin, though it plays crucial roles in anti-phagocytosis and regulation of capsule expression. Thus, we named Spd0729 as a negative regulator of capsular polysaccharide synthesis (Nrc).  相似文献   

11.
PII-like proteins, such as GlnK, found in a wide variety of organisms from prokaryotes to plants constitute a family of cytoplasmic signaling proteins that play a central regulatory role in the assimilation of nitrogen for biosyntheses. They specifically bind and are modulated by effector molecules such as adenosine triphosphate, adenosine diphosphate and 2-oxoglutarate. Their highly conserved, trimeric structure suggests that cooperativity in effector binding might be the basis for the ability to integrate and respond to a wide range of concentrations, but to date no direct quantification of this cooperative behavior has been presented. The hyperthermophilic archaeon Archaeoglobus fulgidus contains three GlnK proteins, functionally associated with ammonium transport proteins (Amt). We have characterized GlnK2 and its interaction with effectors by high-resolution X-ray crystallography and isothermal titration calorimetry. Binding of adenosine nucleotides resulted in distinct, cooperative behavior for ATP and ADP. While 2-oxoglutarate has been shown to interact with other GlnK proteins, GlnK2 was completely insensitive to this key indicator of a low level of intracellular nitrogen. These findings point to different regulation and modulation patterns and add to our understanding of the flexibility and versatility of the GlnK family of signaling proteins.  相似文献   

12.
13.
酶分子在长期进化过程中形成一系列氨基酸残基组成的活性架构,参与底物的识别、结合与催化过程,而活性架构中相应氨基酸残基是如何影响酶分子结合底物的能力,进而影响酶分子的催化效率,一直是酶分子理性改造研究的热点.利用亲和电泳技术,可以快速展示内切纤维素酶Tr Cel12A和木聚糖酶Tl Xyn A活性架构中不同突变体的催化活性及其迁移率的变化,进而通过在不同底物浓度凝胶中蛋白质相对迁移率变化程度的定量回归分析,发现由氨基酸单点突变导致蛋白质迁移率的相对变化,可以定量表征酶分子突变前后结合底物能力的变化.亲和电泳测定的有效阻滞常数Kb值与等温滴定量热法和荧光光谱法测定的相关参数比较具有明显相关性.由于亲和电泳技术在测定酶分子与底物的结合能力时具有简便、快速、灵敏的特点,因而可作为常规生化实验室常规普筛技术来检测突变文库中系列突变体导致结合力的变化.  相似文献   

14.
The binding and inhibition strength of a series of benzimidazo[1,2-c][1,2,3]thiadiazole-7-sulphonamides were determined for recombinant human carbonic anhydrase isoforms I, II, and IX. The inhibition strength was determined by a stop-flow method to measure carbon dioxide hydration. Inhibitor-enzyme binding was determined by two biophysical techniques – isothermal titration calorimetry and thermal shift assay. The co-crystal structure was determined by X-ray crystallography. Comparing the results obtained using three different inhibition and binding methods increased the accuracy of compound affinity ranking and the ability to determine compound inhibitory specificity towards a particular carbonic anhydrase isoform. In most cases, all three methods yielded the same results despite using very different approaches to measure the binding and inhibition reactions. Some of the compounds studied are submicromolar inhibitors of the isoform IX, a prominent cancer target.  相似文献   

15.
Recent studies have demonstrated that bacteria possess an essential protein translocation system similar to mammalian signal recognition particle (SRP). Here we have identified the Ffh, a homologue of the mammalian SRP54 subunit from S. pneumoniae. Ffh is a 58-kDa protein with three distinct domains: an N-terminal hydrophilic domain (N-domain), a G-domain containing GTP/GDP binding motifs, and a C-terminal methionine-rich domain (M-domain). The full-length Ffh and a truncated protein containing N and G domains (Ffh-NG) were overexpressed in E. coli and purified to homogeneity. The full-length Ffh has an intrinsic GTPase activity with k(cat) of 0.144 min(-1), and the K(m) for GTP is 10.9 microM. It is able to bind to 4.5S RNA specifically as demonstrated by gel retardation assay. The truncated Ffh-NG has approximately the same intrinsic GTPase activity to the full-length Ffh, but is unable to bind to 4.5S RNA, indicating that the NG domain is sufficient for supporting intrinsic GTP hydrolysis, and that the M domain is required for RNA binding. The interaction of S. pneumoniae Ffh with its receptor, FtsY, resulted in a 20-fold stimulation in GTP hydrolysis. The stimulation was further demonstrated to be independent of the 4.5S RNA. In addition, a similar GTPase stimulation is also observed between Ffh-NG and FtsY, suggesting that the NG domain is sufficient and the M domain is not required for GTPase stimulation between Ffh and FtsY.  相似文献   

16.
Currently there is pressing need to develop novel therapeutic agents for the treatment of infections by the human respiratory pathogens Pseudomonas aeruginosa and Streptococcus pneumoniae. The neuraminidases of these pathogens are important for host colonization in animal models of infection and are attractive targets for drug discovery. To aid in the development of inhibitors against these neuraminidases, we have determined the crystal structures of the P. aeruginosa enzyme NanPs and S. pneumoniae enzyme NanA at 1.6 and 1.7 Å resolution, respectively. In situ proteolysis with trypsin was essential for the crystallization of our recombinant NanA. The active site regions of the two enzymes are strikingly different. NanA contains a deep pocket that is similar to that in canonical neuraminidases, while the NanPs active site is much more open. The comparative studies suggest that NanPs may not be a classical neuraminidase, and may have distinct natural substrates and physiological functions. This work represents an important step in the development of drugs to prevent respiratory tract colonization by these two pathogens.  相似文献   

17.
Cyclic diguanylate (c-di-GMP) is a global regulator that modulates pathogen virulence and biofilm formation in bacteria. Although a bioinformatic study revealed that PilZ domain proteins are the long-sought c-di-GMP binding proteins, the mechanism by which c-di-GMP regulates them is uncertain. Pseudomonas putida PP4397 is one such protein that contains YcgR-N and PilZ domains and the apo-PP4397 structure was solved earlier by the Joint Center for Structural Genomics. We determined the crystal structure of holo-PP4397 and found that two intercalated c-di-GMPs fit into the junction of its YcgR-N and PilZ domains. Moreover, c-di-GMP binding induces PP4397 to undergo a dimer-to-monomer transition. Interestingly, another PilZ domain protein, VCA0042, binds to a single molecule of c-di-GMP, and both its apo and holo forms are dimeric. Mutational studies and the additional crystal structure of holo-VCA0042 (L135R) showed that the Arg122 residue of PP4397 is crucial for the recognition of two molecules of c-di-GMP. Thus, PilZ domain proteins exhibit different c-di-GMP binding stoichiometry and quaternary structure, and these differences are expected to play a role in generating diverse forms of c-di-GMP-mediated regulation.  相似文献   

18.
A series of well-defined oligosaccharide fragments of the capsular polysaccharide of Streptococcus pneumoniae type 3 has been generated. Partial-acid hydrolysis of the capsular polysaccharide, followed by fractionation of the oligosaccharide mixture by Sepharose Q ion-exchange chromatography yielded fragments containing one to seven [-->3)-beta-D-GlcpA-(1-->4)-beta-D-Glcp-(1-->] repeating units. The isolated fragments were analysed for purity by high-pH anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD) using an IonPac AS11 column, and their structures were verified by 1H NMR spectroscopy and nano-electrospray mass spectrometry. The oligosaccharides can be used to produce neoglycoprotein vaccines with a defined carbohydrate part.  相似文献   

19.
Streptococcus pneumoniae colonizes the highly diverse polymicrobial community of the nasopharynx where it must compete with resident organisms. We have shown that bacterially produced antimicrobial peptides (bacteriocins) dictate the outcome of these competitive interactions. All fully-sequenced pneumococcal strains harbor a bacteriocin-like peptide (blp) locus. The blp locus encodes for a range of diverse bacteriocins and all of the highly conserved components needed for their regulation, processing, and secretion. The diversity of the bacteriocins found in the bacteriocin immunity region (BIR) of the locus is a major contributor of pneumococcal competition. Along with the bacteriocins, immunity genes are found in the BIR and are needed to protect the producer cell from the effects of its own bacteriocin. The overlay assay is a quick method for examining a large number of strains for competitive interactions mediated by bacteriocins. The overlay assay also allows for the characterization of bacteriocin-specific immunity, and detection of secreted quorum sensing peptides. The assay is performed by pre-inoculating an agar plate with a strain to be tested for bacteriocin production followed by application of a soft agar overlay containing a strain to be tested for bacteriocin sensitivity. A zone of clearance surrounding the stab indicates that the overlay strain is sensitive to the bacteriocins produced by the pre-inoculated strain. If no zone of clearance is observed, either the overlay strain is immune to the bacteriocins being produced or the pre-inoculated strain does not produce bacteriocins. To determine if the blp locus is functional in a given strain, the overlay assay can be adapted to evaluate for peptide pheromone secretion by the pre-inoculated strain. In this case, a series of four lacZ-reporter strains with different pheromone specificity are used in the overlay.  相似文献   

20.
Antibodies that recognize DNA (anti-DNA) are part of the autoimmune response underlying systemic lupus erythematosus. To better understand molecular recognition by anti-DNA antibodies, crystallographic studies have been performed using an anti-ssDNA antigen-binding fragment (Fab) known as DNA-1. The previously determined structure of a DNA-1/dT5 complex revealed that thymine bases insert into a narrow groove, and that ligand recognition primarily involves the bases of DNA. We now report the 1.75-A resolution structure of DNA-1 complexed with the biological buffer HEPES (4-(2-Hydroxyethyl)piperazine-1-ethanesulfonic acid). All three light chain complementarity-determining regions (CDRs) and HCDR3 contribute to binding. The HEPES sulfonate hydrogen bonds to His L91, Asn L50, and to the backbone of Tyr H100 and Tyr H100A. The Tyr side-chains of L32, L92, H100, and H100A form nonpolar contacts with the HEPES ethylene and piperazine groups. Comparison to the DNA-1/dT5 structure reveals that the dual recognition of dT5 and HEPES requires a 13-A movement of HCDR3. This dramatic structural change converts the combining site from a narrow groove, appropriate for the edge-on insertion of thymine bases, to one sufficiently wide to accommodate the HEPES sulfonate and piperazine. Isothermal titration calorimetry verified the association of HEPES with DNA-1 under conditions similar those used for crystallization (2 M ammonium sulfate). Interestingly, the presence of 2 M ammonium sulfate increases the affinities of DNA-1 for both HEPES and dT5, suggesting that non-polar Fab-ligand interactions are important for molecular recognition in highly ionic solvent conditions. The structural and thermodynamic data suggest a molecular mimicry mechanism based on structural plasticity and hydrophobic interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号