共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Klaas J. Hellingwerf Pieter W. Postma Jan Tommassen Hans V. Westerhoff 《FEMS microbiology reviews》1995,16(4):309-321
Abstract: The molecular basis of many forms of signal transfer in living organisms is provided via the transient phosphorylation of regulatory proteins by transfer of phosphoryl groups between these proteins. The dominant form of signal transduction in prokaryotic microorganisms proceeds via so-called two-component regulatory systems. These systems constitute phosphoryl transfer pathways, consisting of two or more components. Most of these pathways are linear, but some converge and some are divergent. The molecular properties of some of the well-characterised representatives of two-component systems comply with the requirements to be put upon the elements of a neural network: they function as logical operators and show the phenomenon of autoamplification. Because there are many phosphoryl transfer pathways in parallel and because there also appears to be cross-talk between these pathways, the total of all two-component regulatory systems in a single prokaryotic cell may show the typical characteristics fo a 'phospho-neural network'. This may wel lead to signal amplification, associative responses and memory effects, characteristics which are typical for neural networks. One of the main challenges in molecular microbial physiology is to determine the extent of the connectivity of the constituting elements of this presumed 'phospho-neural network', and to outline the extent of intelligence-like behaviour this network can generate. Escherichia coli is the organism of choice for this characterization. 相似文献
5.
6.
A. G. Sabelnikov I. V. Gordienko B. N. Ilyashenko 《Molecular & general genetics : MGG》1984,193(3):538-542
Summary With the help of devised multicycle consecutive transformation (MCT) it is shown that Ca2+-dependent competence can be repeatedly induced in the same population of Escherichia coli cells. The same fraction of cells is induced to competence and transformed during MCT. In contrast to the results on classical transformation with mixed DNA preparations, no double transformants are observed in MCT. The competent cells and transformants are found to be more fragile than nontransformed cells. The latter are represented presumably by the cells that have not absorbed exogenous plasmid DNA. The results suggest that there is strong interference between plasmid DNAs during MCT, and that the presence of exogenous DNA makes the cells more sensitive to the apparently harmful procedure of repeated competence induction. 相似文献
7.
The defect of T4rII replication in Escherichia coli K-12 (lambda) can be phenotypically reversed by various supplements to the growth medium. Arginine, lysine, spermidine, and a number of diamines allowed varying levels of rII replication. The best reversion was obtained with 0.4 m sucrose in 0.002 to 0.005 m Ca(++). Monovalent cations severely inhibited reversion. A cell surface site of polyamine action is consistent with the fact that spermidine inhibits phage ghost-induced cell lysis and with the finding that sufficient polyamine is available within the cells to allow normal patterns of neutralization of phage deoxyribonucleic acid, as detected by the polyamine content of progeny phage. In the absence of effective supplements, rII-infected cells swelled and lost refractility. The data indicate that a leaky cell envelop is involved. No difference in mucopeptides of uninfected K-12 (lambda) and K-12 was detected and, because the mucopeptide in r(+) infected cells was found to be at least partially hydrolyzed midway through the lytic cycle, it did not appear that the rII defect concerned mucopeptide synthesis. The pattern of cell phospholipid synthesis changes after phage infection, but no difference was detected between r(+) and rII with regard to biosynthesis of phosphatidylethanolamine and phosphatidylglycerol. 相似文献
8.
Martin Gustavsson Madhu Nair Muraleedharan Gen Larsson 《Applied and environmental microbiology》2014,80(7):2293-2298
Chiral amines are important for the chemical and pharmaceutical industries, and there is rapidly growing interest to use transaminases for their synthesis. Since the cost of the enzyme is an important factor for process economy, the use of whole-cell biocatalysts is attractive, since expensive purification and immobilization steps can be avoided. Display of the protein on the cell surface provides a possible way to reduce the mass transfer limitations of such biocatalysts. However, transaminases need to dimerize in order to become active, and furthermore, they require the cofactor pyridoxal phosphate; consequently, successful transaminase surface expression has not been reported thus far. In this work, we produced an Arthrobacter citreus ω-transaminase in Escherichia coli using a surface display vector based on the autotransporter adhesin involved in diffuse adherence (AIDA-I), which has previously been used for display of dimeric proteins. The correct localization of the transaminase in the E. coli outer membrane and its orientation toward the cell exterior were verified. Furthermore, transaminase activity was detected exclusively in the outer membrane protein fraction, showing that successful dimerization had occurred. The transaminase was found to be present in both full-length and proteolytically degraded forms. The removal of this proteolysis is considered to be the main obstacle to achieving sufficient whole-cell transaminase activity. 相似文献
9.
10.
Marina Bellani Veronica Shlain Clara Nudel Carmen Sanchez-Rivas 《Biotechnology letters》1997,19(1):1-5
Tn1000 (or ) insertions in a pBR322-recombinant plasmid carrying the threonine operon (pBE) were obtained either spontaneously during chemostat cultivation (pBE-2) or selected during transconjugation (pBE-3 and pBE-4). The different insertion derivatives were tested for their stability in different host genetic backgrounds (in relation to threonine auxotrophy and recA function), various media composition (liquid or solid, rich or minimal) and growth temperatures (30°C, 37°C and 42°C). All the derivatives carrying the sequence, albeit increasing their size from 9.7 to 15.6 Kb, significantly enhanced segregational and structural plasmid stability in every condition tested. 相似文献
11.
PCR扩增大肠杆菌参与脂肪酸合成的7个主要酶基因:fabD、fabG、fabH、fabA、fabZ、fabB和fabI,并构建相应的表达载体,在大肠杆菌BL21(DE3)中分别诱导表达酶蛋白,并使用Ni-NTA琼脂糖纯化到7种酶蛋白.体外添加所需酶蛋白和辅因子,在不使用[2-^14C]丙二酸单酰CoA的条件下,成功地实现了脂肪酸合成反应的重建,另外还建立了数个鉴定有关酶蛋白功能的标准反应,并用其鉴定了丙酮丁醇梭菌FabZ的功能. 相似文献
12.
Katsuhiko S. Murakami 《The Journal of biological chemistry》2013,288(13):9126-9134
Escherichia coli RNA polymerase (RNAP) is the most studied bacterial RNAP and has been used as the model RNAP for screening and evaluating potential RNAP-targeting antibiotics. However, the x-ray crystal structure of E. coli RNAP has been limited to individual domains. Here, I report the x-ray structure of the E. coli RNAP σ70 holoenzyme, which shows σ region 1.1 (σ1.1) and the α subunit C-terminal domain for the first time in the context of an intact RNAP. σ1.1 is positioned at the RNAP DNA-binding channel and completely blocks DNA entry to the RNAP active site. The structure reveals that σ1.1 contains a basic patch on its surface, which may play an important role in DNA interaction to facilitate open promoter complex formation. The α subunit C-terminal domain is positioned next to σ domain 4 with a fully stretched linker between the N- and C-terminal domains. E. coli RNAP crystals can be prepared from a convenient overexpression system, allowing further structural studies of bacterial RNAP mutants, including functionally deficient and antibiotic-resistant RNAPs. 相似文献
13.
14.
1. Repression by glucose of β-galactosidase synthesis is spontaneously reversible in all strains of Escherichia coli examined long before the glucose has all been consumed. The extent of recovery and the time necessary for reversal differ among various strains. Other inducible enzymes show similar effects. 2. This transient effect of glucose repression is observed in constitutive (i−) and permease-less (y−) cells as well as in the corresponding i+ and y+ strains. 3. Repression is exerted by several rapidly metabolizable substrates (galactose, ribose and ribonucleosides) but not by non-metabolized or poorly metabolized compounds (2-deoxyglucose, 2-deoxyribose, phenyl thio-β-galactoside and 2-deoxyribonucleosides). 4. The transient repression with glucose is observed in inducible cells supplied with a powerful inducer of β-galactosidase synthesis (e.g. isopropyl thio-β-galactoside) but not with a weak inducer (lactose); in the latter instance glucose repression is permanent. Diauxic growth on glucose plus lactose can be abolished by including isopropyl thio-β-galactoside in the medium. 5. In some strains phosphate starvation increases catabolite repression; in others it relieves it. Adenine starvation in an adenine-requiring mutant also relieves catabolite repression by glycerol but not that by glucose. Restoration of phosphate or adenine to cells starved of these nutrients causes a pronounced temporary repression. Alkaline-phosphatase synthesis is not affected by the availability of adenine. 6. During periods of transient repression of induced enzyme synthesis the differential rate of RNA synthesis, measured by labelled uracil incorporation in 2min. pulses, shows a temporary rise. 7. The differential rate of uracil incorporation into RNA falls during exponential growth of batch cultures of E. coli. This is equally true for uracil-requiring and non-requiring strains. The fall in the rate of incorporation has been shown to be due to a real fall in the rate of RNA synthesis. The significance of the changes in the rate of RNA synthesis is discussed. 8. A partial model of catabolite repression is presented with suggestions for determining the chemical identification of the catabolite co-repressor itself. 相似文献
15.
16.
The role of the regulator-gene product (repressor) in catabolite repression of β-galactosidase synthesis in Escherichia coli 下载免费PDF全文
1. The specific role of the lac repressor (i-gene product) in transient catabolite repression evoked by the introduction of glucose into the medium has been investigated in Escherichia coli by using mutants of the i-gene. 2. A temperature-sensitive mutant (i(TL)) is normally inducible and demonstrates transient repression when grown at 32 degrees . At 42 degrees it is about 20% constitutive and transient catabolite repression is abolished. 3. A strain carrying an amber suppressor-sensitive mutation in the i-gene is phenotypically constitutive and also fails to show transient catabolite repression. 4. Insertion of Flaci(+) into this strain restores both inducibility and transient repression. 5. It is concluded that the i-gene product interacts with the catabolite co-repressor in such a way that its affinity for the operator is increased. 相似文献
17.
18.
19.