首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
We examined the effects of fructo-oligosaccharides (FOS) on IgA and mucin secretion in the rat cecum after different ingestion periods. Rats were fed a control diet or a diet containing FOS for 1, 2, 4, and 8 wk. FOS ingestion greatly increased IgA and mucin concentrations at 1 and 2 wk, but the effects were disappeared or attenuated at 4 and 8 wk. After 1 wk, FOS induced higher lactobacilli and lactate concentrations and lower cecal pH in the cecum, but the alterations were moderated with the prolonged ingestion accompanying with increasing short-chain fatty acid concentrations. At 1 and 2 wk, FOS increased IgA plasma cells and polymeric immunoglobulin receptor expression in the cecal mucosa and strongly depressed fecal mucinase activities related to the lower cecal pH. These findings may explain the FOS-induced early elevation of IgA and mucin. Clearly, FOS effects on IgA and mucin secretion considerably differ depending on the ingestion period.  相似文献   

2.
Ghrelin affects not only growth hormone secretion but also nutrient utilization and metabolic hormone secretion in humans and experimental animals. The effects of ghrelin on plasma metabolic hormone and metabolite levels in domestic herbivores remain unclear despite the fact that the physiological characteristics of nutrient digestion and absorption imply specific responses to ghrelin. Therefore, the effects of ghrelin on plasma glucose, pancreatic hormones and cortisol concentrations were investigated in Holstein dairy cattle in various physiological states. Ghrelin (0.3 nmol/kg) or placebo (2% bovine serum albumin in saline) was intravenously injected in pre-ruminant calves (pre-rumen function), adult non-lactating (functional rumen) and lactating cows (functional rumen and lactation), and plasma glucose, insulin, glucagon and cortisol concentrations were then determined. Ghrelin injection increased plasma glucose concentrations in adult cows, especially in lactating cows. No hyperglycemic response was observed in pre-ruminant calves. A transient rise of insulin and glucagon levels was distinctively found in lactating cows in response to the ghrelin administration. Ghrelin injection decreased the insulin level in pre-ruminant calves. Ghrelin increased cortisol secretion independently of the physiological state. The results of the present study suggest that the effects of ghrelin on plasma glucose and pancreatic hormone levels may reflect differences in the physiological states of dairy cattle.  相似文献   

3.
The hypothesis that dietary proteins or their hydrolysates may regulate intestinal mucin discharge was investigated in the isolated vascularly perfused rat jejunum using an enzyme-linked immunosorbent assay for rat intestinal mucins. On luminal administration, casein hydrolysate [0.05-5% (wt/vol)] stimulated mucin secretion in rat jejunum (maximal response at 417% of controls). Lactalbumin hydrolysate (5%) also evoked mucin discharge. In contrast, casein, and a mixture of amino acids was without effect. Chicken egg albumin and its hydrolysate or meat hydrolysate also did not modify mucin release. Interestingly, casein hydrolysate-induced mucin secretion was abolished by intra-arterial TTX or naloxone (an opioid antagonist). beta-Casomorphin-7, an opioid peptide released from beta-casein on milk ingestion, induced a strong mucin secretion (response at 563% of controls) that was inhibited by naloxone. Intra-arterial beta-casomorphin-7 also markedly increased mucin secretion (410% of controls). In conclusion, two enzymatic milk protein hydrolysates (casein and lactalbumin hydrolysates) and beta-casomorphin-7, specifically, induced mucin release in rat jejunum. The casein hydrolysate-induced mucin secretion is triggered by a neural pathway and mediated by opioid receptor activation.  相似文献   

4.
The effect of volume absorption on bicarbonate absorption was examined in the in vivo perfused rat proximal convoluted tubule. Volume absorption was inhibited by isosmotic replacement of luminal NaCl with raffinose. In tubules perfused with 25 mM bicarbonate, as raffinose was increased from 0 to 55 to 63 mM, volume absorption decreased from 2.18 +/- 0.10 to 0.30 +/- 0.18 to -0.66 +/- 0.30 nl/mm X min, respectively, and bicarbonate absorption decreased from 131 +/- 5 to 106 +/- 8 to 91 +/- 13 pmol/mm X min, respectively. This bicarbonate-water interaction could not be attributed to dilutional changes in luminal or peritubular bulk phase bicarbonate concentrations. Inhibition of active proton secretion by acetazolamide abolished the effect of volume flow on bicarbonate absorption, which implies that the bicarbonate reflection coefficient is close to 1 and eliminates the possibility of solvent drag across the tight junction. When the luminal bicarbonate concentration was varied, the magnitude of the bicarbonate-water interaction increased with increasing luminal bicarbonate concentration. The largest interaction occurred at high luminal bicarbonate concentrations, where the rate of proton secretion has been previously shown to be independent of luminal bicarbonate concentration and pH. The results thus suggest that a peritubular and/or cellular compartment exists that limits bicarbonate diffusion, and where pH changes secondary to bicarbonate-water interactions (solute polarization) alter the rate of active proton secretion.  相似文献   

5.
We examined the effects of ingesting a non-sugar chocolate containing polydextrose and lactitol in place of sucrose and lactose on the concentrations of plasma glucose and serum insulin and triglyceride in humans. A regular chocolate was used as the control. A crossover study was employed, and the subjects each ingested 46 g of the control or non-sugar chocolate in the experiments. Alterations in the blood components were monitored for a period of 150 min after ingestion. The control chocolate elevated the concentrations of plasma glucose and serum insulin, with the peak occurring 30 min after ingestion, but the non-sugar chocolate had a very minor effect. The serum triglyceride concentration gradually increased after ingesting the control chocolate, but was only slightly elevated 150 min after ingesting the non-sugar chocolate. An animal study also showed an attenuated response of serum triglyceride to the administration of a fat emulsion containing polydextrose and lactitol, suggesting that the triglyceride transit through the gut was promoted by these compounds. These results suggest that, compared to regular chocolate, fat absorption in the gut was less after ingesting the non-sugar chocolate, presumably resulting in less effect on body fat deposition.  相似文献   

6.
Glucose-dependent insulinotropic polypeptide (GIP) is an incretin hormone secreted by endocrine K-cells in response to nutrient absorption. In this study we have utilized a specific and enzymatically stable GIP receptor antagonist, (Pro3)GIP, to evaluate the contribution of endogenous GIP to insulin secretion and glucose homeostasis in mice. Daily injection of (Pro3)GIP (25 nmol/kg body weight) for 11 days had no effect on food intake or body weight. Non-fasting plasma glucose concentrations were significantly raised (p<0.05) by day 11, while plasma insulin concentrations were not significantly different from saline treated controls. After 11 days, intraperitoneal glucose tolerance was significantly impaired in the (Pro3)GIP treated mice compared to control (p<0.01). Glucose-mediated insulin secretion was not significantly different between the two groups. Insulin sensitivity of 11-day (Pro3)GIP treated mice was slightly impaired 60 min post injection compared with controls. Following a 15 min refeeding period in 18 h fasted mice, food intake was not significantly different in (Pro3)GIP treated mice and controls. However, (Pro3)GIP treated mice displayed significantly elevated plasma glucose levels 30 and 60 min post feeding (p<0.05, in both cases). Postprandial insulin secretion was not significantly different and no changes in pancreatic insulin content or islet morphology were observed in (Pro3)GIP treated mice. The observed biological effects of (Pro3)GIP were reversed following cessation of treatment for 9 days. These data indicate that ablation of GIP signaling causes a readily reversible glucose intolerance without appreciable change of insulin secretion.  相似文献   

7.
Chronic hyperglycemia inhibits the male gonadal axis. The present analyses test the hypothesis that acute glucose ingestion also suppresses LH and testosterone (T) secretion and blunts the LH-T dose-response function. The design comprised a prospectively randomized crossover comparison of LH and T secretion after glucose vs. water ingestion in a Clinical Translational Research Center. The participants were healthy men (n = 57) aged 19-78 yr with body mass index (BMI) of 20-39 kg/m(2). The main outcome measurements were deconvolution and LH-T dose-response analyses of 10-min data. LH-T responses were regressed on glucose, insulin, leptin, adiponectin, age, BMI, and CT-estimated abdominal visceral fat. During the first 120 min after glucose ingestion, for each unit decrease in LH concentrations, T concentrations decreased by 86 (27-144) ng/dl (r = 0.853, P < 0.001). Based upon deconvolution analysis, glucose compared with water ingestion reduced 1) basal (nonpulsatile; P < 0.001) and total (P < 0.001) T secretion without affecting pulsatile T output and 2) pulsatile (P = 0.043) but not basal LH secretion. By multivariate analysis, pulsatile LH secretion positively predicted basal T secretion after glucose ingestion (r = 0.374, P = 0.0042). In addition, the glucose-induced fall in pulsatile LH secretion was exacerbated by higher fasting insulin concentrations (P = 0.054) and attenuated by higher adiponectin levels (P = 0.0037). There were no detectable changes in the analytically estimated LH-T dose-response curves (P > 0.30). In conclusion, glucose ingestion suppresses pulsatile LH and basal T secretion acutely in healthy men. Suppression is influenced by age, glucose, adiponectin, and insulin concentrations.  相似文献   

8.
The effect of acute changes in insulin concentrations in vivo on the absorption, transport and metabolism of glucose by rat small intestine in vitro was investigated. Within 2 min of the injection of normal anaesthetized rats with anti-insulin serum, lactate production and glucose metabolism were respectively diminished to 28% and 21% of normal and the conversion of glucose into lactate became quantitative. These changes correlated with the inhibition of two mucosal enzymes, namely the insulin-sensitive enzyme pyruvate dehydrogenase, and phosphofructokinase, which was shown by cross-over measurements to be the rate-limiting enzyme of glycolysis in mucosa. The proportion of glucose translocated unchanged from the luminal perfusate to the serosal medium was simultaneously increased from 45% to 80%. All the changes produced by insulin deficiency were completely reversed with 2 min when antiserum was neutralized by injection of insulin in vivo. The absorption and transport of 3-O-methylglucose were unaffected by insulin. It is concluded that glucose metabolism in rat small intestine is subject to short-term regulation by insulin in vivo and that glucose absorption and transport are regulated indirectly in response to changes in metabolism. Moreover, transport and metabolism compensate in such a way as to deliver the maximal 'effective' amount of glucose to the blood, whether as glucose itself or as lactate for hepatic gluconeogenesis.  相似文献   

9.
The mechanism by which glucose and other nutrient secretagogues induce the insulin secretion, is still controversial. Thiamine deficient rats, having a block in the glucose and branched chain amino acid metabolism at pyruvate and branched chain keto acids dehydrogenases respectively, were used to study the effects of insulin secretagogues. The levels of fasting blood glucose and serum insulin were estimated. Also, the serum insulin was assayed after intravenous administration of leucine, arginine and tolbutamide. The fasting blood glucose was increased and the serum insulin was decreased in thiamine deficiency. Leucine and arginine did not enhance insulin secretion in thiamine deficient animals. Tolbutamide induces the insulin secretion minimally in thiamine deficient rats. These results suggest that the nutrient secretagogues require an unimpaired glucose metabolism to induce insulin secretion.  相似文献   

10.
The purpose of this study was to examine the effects of dietary indigestible components on mucin secretion in the respective parts of the gastrointestinal tract through their physico-chemical properties. Rats were fed either a control diet or diets containing 5% polystyrene foam (PSF), 5% fructooligosaccharide (FOS), 5% PSF + 5% FOS, or 10% beet fiber for 10 d. Mucins in the small intestine and feces were greater in the PSF, PSF + FOS, and beet fiber groups than in the control and FOS groups. In the cecum, greater mucins were observed in the FOS, PSF + FOS, and beet fiber groups than in the control and PSF groups. None of the dietary treatment was effective on gastric mucins. Cecal mucins were significantly correlated with the cecal pool sizes of total short-chain fatty acids. The correlation between fecal mucins and fecal numbers was also significant. The results suggest that the effect of the bulk-forming property of the dietary indigestible component on mucin secretion is limited to the duct, while fermentability is effective only in the cecum.  相似文献   

11.
Glucagon like peptide 1 (GLP-1) is an intestinal hormone that plays an important role in glucose metabolism. GLP-1 is released from mucosal L cells following nutrient ingestion and contributes to the incretin effect, with the enhancement of insulin secretion occurring with enteral compared with intravenous glucose administration. The mechanisms linking nutrient absorption and GLP-1 secretion are unknown, and studies addressing this topic, particularly in small animal models, have been hampered by the relatively low concentrations of GLP-1 in the circulation. We hypothesized that GLP-1 levels would be higher in samples of intestinal lymph compared with plasma and could provide a novel system in which to study meal-induced hormone secretion. We addressed this hypothesis in conscious rats with indwelling catheters in the portal vein and distal intestinal lymph duct. These animals had plasma and lymph sampled before and for 240 min after instillation of a liquid meal in the gastrointestinal tract. Lymph contained detectable concentrations of glucose, insulin, and GLP-1 that were reliably measured using our assays. Before and after the Ensure feeding, plasma insulin levels were approximately two times as high in portal plasma as intestinal lymph. In marked contrast, GLP-1 levels were five to six times higher in lymph relative to portal plasma following nutrient administration. This relative difference in GLP-1 levels was even greater when lymph was compared with peripheral plasma and dramatically exceeded the ratio of lymph to plasma peptide tyrosine-tyrosine concentrations. This is the first observation of a gastrointestinal hormone being disproportionately transported in lymph. The remarkable levels of GLP-1 in intestinal lymph demonstrate the potential for lymphatic sampling as a more sensitive means of studying the secretory physiology of this hormone in vivo. In addition, these data raise the possibility that intestinal lymph may serve as a specialized signaling conduit for regulatory peptides secreted by gastrointestinal endocrine cells.  相似文献   

12.
Effects of fat ingestion on high density lipoprotein profiles in human sera   总被引:2,自引:0,他引:2  
Serum concentrations of triacylglycerol, apolipoprotein A-I, apolipoprotein A-II, HDL2, and HDL3 were determined in sera of nine normolipidemic adult males, just before and 3, 5, and 8 hr after ingestion of 250 ml of cream (100 g of triacylglycerol). In all individuals a rapid hypertriglyceridemic response was observed. Triacylglycerol concentrations increased from 624 +/- 124 mg/liter of serum to 1435 +/- 350 mg/liter of serum 3 hr after cream ingestion. In most individuals the hypertriglyceridemic response was followed by a decline in serum triacylglycerol concentration to below basic levels. As a result of cream ingestion, small but statistically highly significant increases in serum cholesterol and apolipoprotein A-I concentrations were observed that persisted till the end of the observation period. In most individuals a small rise in the apolipoprotein A-II concentration in serum was also present. Marked changes were observed in serum HDL as illustrated in the HDL absorption at 280 nm and cholesterol profiles obtained by single-spin rate-zonal density gradient ultracentrifugation of the sera. Due to a prominent increase in phospholipids (up to about 18%) and a smaller increase in protein (up to about 6%), flotation rates and concentrations of HDL2 as well as HDL3 increased. These changes in HDL subclass flotation characteristics and chemical composition are best explained by uptake of surface material from chylomicrons by existing HDL2 and HDL3 particles. The data do not support a previously proposed concept in which HDL3 is converted into HDL2 by uptake of surface remnants formed during catabolism of triglyceride-rich lipoproteins.  相似文献   

13.
Glucose-dependent insulinotropic polypeptide (GIP) is an important incretin produced in the K cells of the intestine and secreted into the circulating blood following ingestion of carbohydrate- and fat-containing meals. GIP contributes to the regulation of postprandial insulin secretion and is essential for normal glucose tolerance. We have established a method of assaying GIP in response to nutrients using the intestinal lymph fistula model. Administration of Ensure, a mixed-nutrient liquid meal, stimulated a significant increase in intestinal lymphatic GIP levels that were approximately threefold those of portal plasma. Following the meal, lymph GIP peaked at 60 min (P < 0.001) and remained elevated for 4 h. Intraduodenal infusions of isocaloric and isovolumetric lipid emulsions or glucose polymer induced lymph GIP concentrations that were four and seven times the basal levels, respectively. The combination of glucose plus lipid caused an even greater increase of lymph GIP than either nutrient alone. In summary, these findings demonstrated that intestinal lymph contains high concentrations of GIP that respond to both enteral carbohydrate and fat absorption. The change in lymphatic GIP concentration is greater than the change observed in the portal blood. These studies allow the detection of GIP levels at which they exert their local physiological actions. The combination of glucose and lipid has a potentiating effect in the stimulation of GIP secretion. We conclude from these studies that the lymph fistula rat is a novel approach to study in vivo GIP secretion in response to nutrient feeding in conscious rats.  相似文献   

14.
The effects of mefenamic acid on the food-induced changes in intestinal carbohydrate metabolism were determined in an attempt to elucidate the mechanism(s) by which inhibition of prostaglandin synthesis enhances the postprandial increases in intestinal blood flow and oxygen consumption. The data show that when the luminal perfusate was was changed from saline to a nutrient/bile solution, there was an increase in carbohydrate utilization, which was offset by absorption of glucose from the lumen. Intravenous administration of mefenamic acid significantly increased both carbohydrate absorption and metabolism when food was placed in the lumen. Changes in carbohydrate absorption and metabolism have been shown to play an important role in determining the magnitude of glucose induced changes in intestinal blood flow and oxygen consumption. Therefore, it is possible that the ability of mefenamic acid to enhance significantly the food-induced increases in blood flow and oxygen consumption may be due in part to its effects on intestinal carbohydrate absorption and utilization.  相似文献   

15.
R H Gallavan  C C Chou 《Prostaglandins》1986,31(6):1069-1076
The effects of mefenamic acid on the food-induced changes in intestinal carbohydrate metabolism were determined in an attempt to elucidate the mechanism(s) by which inhibition of prostaglandin synthesis enhances the postprandial increases in intestinal blood flow and oxygen consumption. The data show that when the luminal perfusate was changed from saline to a nutrient/bile solution, there was an increase in carbohydrate utilization, which was offset by absorption of glucose from the lumen. Intravenous administration of mefenamic acid significantly increased both carbohydrate absorption and metabolism when food was placed in the lumen. Changes in carbohydrate absorption and metabolism have been shown to play and important role in determining the magnitude of glucose induced changes in intestinal blood flow and oxygen consumption. Therefore, it is possible that the ability of mefenamic acid to enhance significantly the food-induced increases in blood flow and oxygen consumption may be due in part to its effects on intestinal carbohydrate absorption and utilization.  相似文献   

16.
Although infrequently, mucin secretion has previously been reported in papillary renal cell carcinoma. We here investigate the presence of mucin in a series of 93 renal papillary adenomas in 58 patients. Acid mucin was present in four cases (4.3% of the tumors; 6.9% of the patients), in which basophilic mucin secretion was evident with hematoxylin-eosin. To the best of our knowledge mucin secretion has not been reported in renal papillary adenoma. We describe two different types of mucin secretion: intracytoplasmic and luminal. The secretion was intracellular in numerous scattered tumor cells in two cases, focal luminal in one case, and mixed intracellular and luminal in another case. Mucin production, despite its low frequency, can be considered as an additional feature of renal papillary adenoma. Mucin production suggests that renal papillary adenoma and papillary renal cell carcinoma are actually not two independent biological processes, but a continuum of one biological process.  相似文献   

17.
Airway mucin secretion studies have focused on goblet cell responses to exogenous agonists almost to the exclusion of baseline mucin secretion (BLMS). In human bronchial epithelial cell cultures (HBECCs), maximal agonist-stimulated secretion exceeds baseline by ~3-fold as measured over hour-long periods, but mucin stores are discharged completely and require 24 h for full restoration. Hence, over 24 h, total baseline exceeds agonist-induced secretion by several-fold. Studies with HBECCs and mouse tracheas showed that BLMS is highly sensitive to mechanical stresses. Harvesting three consecutive 1 h baseline luminal incubations with HBECCs yielded equal rates of BLMS; however, lengthening the middle period to 72 h decreased the respective rate significantly, suggesting a stimulation of BLMS by the gentle washes of HBECC luminal surfaces. BLMS declined exponentially after washing HBECCs (t1/2 = 2.75 h), to rates approaching zero. HBECCs exposed to low perfusion rates exhibited spike-like increases in BLMS when flow was jumped 5-fold: BLMS increased >4 fold, then decreased within 5 min to a stable plateau at 1.5–2-fold over control. Higher flow jumps induced proportionally higher BLMS increases. Inducing mucous hyperplasia in HBECCs increased mucin production, BLMS and agonist-induced secretion. Mouse tracheal BLMS was ~6-fold higher during perfusion, than when flow was stopped. Munc13-2 null mouse tracheas, with their defect of accumulated cellular mucins, exhibited similar BLMS as WT, contrary to predictions of lower values. Graded mucous metaplasia induced in WT and Munc13-2 null tracheas with IL-13, caused proportional increases in BLMS, suggesting that naïve Munc13-2 mouse BLMS is elevated by increased mucin stores. We conclude that BLMS is, [i] a major component of mucin secretion in the lung, [ii] sustained by the mechanical activity of a dynamic lung, [iii] proportional to levels of mucin stores, and [iv] regulated differentially from agonist-induced mucin secretion.  相似文献   

18.
Mucins are high molecular weight glycoproteins produced by goblet cells and secreted on mucosal surfaces. We investigated biochemical and histochemical properties of intestinal mucins of virus- and parasite-free common carp Cyprinus carpio in response to a single peroral application of endotoxin (lipopolysaccharide = LPS). Intracellular mucins were quantified histochemically by their carbohydrate content and characterized by specific, lectin-based methods. In addition, secreted epithelial (intracellular) and luminal (extracellular) mucins were isolated and separated by downward gel filtration. Carbohydrate and protein content were determined photometrically. Subsequently, terminal glycosylation was characterized by a lectin-binding assay. A peroral endotoxin application altered intestinal secretion and composition of intestinal mucin glycoproteins in common carp. A statistically significant decrease in mature luminal mucins was demonstrated, linked to a new biosynthesis of intracellular mucin glycoproteins. Simultaneous changes in the glycosylation pattern of isolated mucins were found. The intestinal mucosal system is purported to provide a removal mechanism for bacterial noxes by increasing secretion of mucins inducing a flushing-out effect, in combination with altered glycosylation patterns that change adhesion properties. Consequently, pseudofaeces of fish, which are a common sign of intestinal parasitical infections, may also be interpreted as an elimination mechanism for strong bacterial noxes.  相似文献   

19.
To determine whether the metabolism of diet-derived triglycerides (TG) is acutely regulated by the consumption of insulinogenic carbohydrates, we measured the effects of glucose ingestion on oral and intravenous fat tolerance, and on serum triglyceride concentrations obtained during duodenal fat perfusion. Postprandial lipemia was diminished by the ingestion of 50 g (148 +/- 121 mg.dl-1 x 7 h-1 vs 192 +/- 124 mg.dl-1 x 7 h-1, P less than 0.05) and 100 g (104 +/- 106 mg.dl-1 x 7 h-1 vs 171 +/- 104 mg.dl-1 x 7 h-1, P less than 0.05) glucose. Peak postprandial TG concentrations occurred later after meals containing glucose and fat than after meals containing fat alone. This effect could be reproduced when an iso-osmotic quantity of urea was substituted for glucose in the test meal. Starch ingestion had no discernible effect on postprandial lipemia. Intravenous fat tolerance was similar before (4.9 +/- 1.2%.min-1) and 2 h (4.4 +/- 1.3%.min-1) and 4 h (4.8 +/- 1.5%.min-1) after 50 g glucose ingestion. During duodenal fat perfusion, glucose ingestion caused a progressive decrease in plasma triglyceride concentrations. These data suggest that glucose ingestion diminishes postprandial lipemia in a dose-dependent manner, but that this effect is not due to increased clearance of triglyceride from the circulation. The hypotriglyceridemic effects of glucose appear to reflect delayed gastric emptying and decreased hepatic secretion of triglyceride.  相似文献   

20.
Insufficient sleep is associated with changes in glucose tolerance, insulin secretion, and insulin action. Despite widespread use of weight-loss diets for metabolic risk reduction, the effects of insufficient sleep on glucose regulation in overweight dieters are not known. To examine the consequences of recurrent sleep restriction on 24-h blood glucose control during diet-induced weight loss, 10 overweight and obese adults (3F/7M; mean (s.d.) age 41 (5) years; BMI 27.4 (2.0) kg/m(2)) completed two 14-day treatments with hypocaloric diet and 8.5- or 5.5-h nighttime sleep opportunity in random order 7 (3) months apart. Oral and intravenous glucose tolerance test (IVGTT) data, fasting lipids and free fatty acids (FFA), 24-h blood glucose, insulin, C-peptide, and counter-regulatory hormone measurements were collected after each treatment. Participants had comparable weight loss (1.0 (0.3) BMI units) during each treatment. Bedtime restriction reduced sleep by 131 (30) min/day. Recurrent sleep curtailment decreased 24-h serum insulin concentrations (i.e., enhanced 24-h insulin economy) without changes in oral glucose tolerance and 24-h glucose control. This was accompanied by a decline in fasting blood glucose, increased fasting FFA, which suppressed normally following glucose ingestion, and lower total and low-density lipoprotein cholesterol concentrations. Sleep-loss-related changes in counter-regulatory hormone secretion during the IVGTT limited the utility of the test in this study. In conclusion, sleep restriction enhanced 24-h insulin economy without compromising glucose homeostasis in overweight individuals placed on a balanced hypocaloric diet. The changes in fasting blood glucose, insulin, lipid and FFA concentrations in sleep-restricted dieters resembled the pattern of human metabolic adaptation to reduced carbohydrate availability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号