首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The courses of the reaction catalyzed by guinea hen egg-white lysozyme (GHL), in which Asn113 and Arg114 at subsites E and F in hen egg-white lysozyme (HEL) are replaced by Lys and His, respectively, was studied with the substrate N-acetylglucosamine pentamer, (GlcNAc)5. Although GHL was found to retain the main-chain folding similar to HEL as judged from CD spectroscopy, the courses of GHL showed increased production of (GlcNAc)4 and reduced production of (GlcNAc)2 when compared with HEL. To identify critical residue(s) involved in the alteration in the courses of GHL, two mutant enzymes as to subsites E and F in HEL, N113K and R114H, were prepared by site-directed mutagenesis. Kinetic analysis of these mutants revealed that the mutation of Asn113 to Lys had little effect on the courses of HEL, while the Arg114 to His mutation completely reproduced the courses of GHL, demonstrating that His114 in GHL is the key residue responsible for the characteristic courses of GHL. Computer simulation of the reaction courses of the R114H mutant revealed that this substitution decreased not only the binding free energies for subsites E and F, but also the rate constant of transglycosylation. The Arg residue at position 114 may play an important role in the transglycosylation activity of HEL.  相似文献   

2.
The role of binding subsite A, located at the terminal of the six binding subsites of hen egg-white lysozyme, in substrate binding and catalytic reactions was investigated by kinetic studies using a chemical modification method. Computer simulation showed that, although subsite A participates in the binding of the substrate, a decrease in the affinity of subsite A to the sugar residue does not cause a lowering of the rate of substrate consumption but changes the mode of the reaction by changing the distribution of the products formed. The binding free energies of subsites for Asp-101-modified lysozymes were estimated by data-fitting from the experimental time-courses. The contribution of Asp-101 in hen egg-white lysozyme to the substrate binding at subsite A was estimated to correspond to a binding free energy of about -3 kJ/mol, 30% of the total binding free energy of subsite A. Modification of Asp-101 affected not only the binding free energy of subsite A but also that of subsite C.  相似文献   

3.
The pH dependence of the binding of dye, Beibrich Scarlet, to hen egg-white lysozyme[EC 3.2.1.17] was studied at ionic strength 0.3 and 25 degrees by following circular dichroic (CD)bands originating from the bound dye. This binding involved one of the catalytic groups, Glu 35. The effect of the binding of N-acetylglucosamine (GlcNAc), its dimer or trimer on the binding of this dye was also studied at pH 7.5 by measuring changes in the CD bands of the dye bound to lysozyme. It was shown that there are two sites for simultaneous binding of these saccharides in the lysozyme molecule. The stronger binding of the saccharide was noncompetitive and the weaker binding was competitive with dye binding. The binding constants for the stronger binding site (the upper portion of lysozyme cleft) were in good agreement with those previously determined by following changes in the tryptophyl CD bands of lysozyme. The binding constants to the weaker site were about 1.1 x 10(-4), 5 x 10(2), and 5M(-1) for the trimer, dimer, and monomer of GlcNAc, respectively. Assuming that the trimer, dimer, and monomer occupy subsites D, E, and F; E and F; and E, respectively, the unitary free energies of saccharide binding were estimated to be about --1.9, --3.3, and --2.7 kcal/mole for D, E, and F, respectively.  相似文献   

4.
5.
6.
Sulfenylation of tryptophan-62 in hen egg-white lysozyme   总被引:1,自引:0,他引:1  
  相似文献   

7.
In situ high-temperature, high-pressure Raman experiments on 3 mM (pH 5) aqueous solutions of hen egg-white (HEW) lysozyme show a decrease in the relative height of the 505 cm–1 band associated with S-S stretching vibrations at 72°C (1 bar). The peak height changes are accompanied by significant band broadening, and the integrated band intensity does not change within experimental error. The effect of increased pressure at 72°C was to hinder broadening of the 505 cm–1 band. HEW lysozyme (2.4 mM,pH 5) was also heated at 76°C, 80°C, and 95°C for different periods of time, and aliquots were quenched to room temperature for Raman and enzymatic activity measurements. After 9 hr at 76°C, the protein exhibits enzyme activity less than 50% of the initial value, and approximately 50% reduction in activity is achieved after 3 hr at 80°C or 1 hr at 95°C. The Raman results suggest that different irreversibly denatured conformations are attained during prolonged exposures at these different temperatures. It is apparent from these studies that the S-S stretch intensity is decreased irreversibly.  相似文献   

8.
This work examines the inhibitory effect of TCEP on the in vitro fibrillation of hen lysozyme at pH 2. We demonstrate that the inhibition of hen lysozyme fibrillation by TCEP follows a dose-dependent manner. Our data show that the addition of TCEP prevents α-to-β transition and promoted unfolding of lysozyme. Moreover, our findings suggested that the TCEP-induced attenuated fibrillation is associated with disulfide disruption and structural unfolding of HEWL.  相似文献   

9.
10.
11.
12.
The "rules" governing protein structure and stability are still poorly understood. Important clues have come from proteins that operate under extreme conditions, because these clarify the physical constraints on proteins. One obvious extreme is pressure, but so far little is known of the behavior of proteins under pressure, largely for technical reasons. We have therefore developed new methodology for calculating structure change in solution with pressure, using NMR chemical shift changes, and we report the change in structure of lysozyme on going from 30 bar to 2000 bar, this being the first solution structure of a globular protein under pressure. The alpha-helical domain is compressed by approximately 1%, due to tighter packing between helices. The interdomain region is also compressed. By contrast, the beta-sheet domain displays very little overall compression, but undergoes more structural distortion than the alpha-domain. The largest volume changes tend to occur close to hydrated cavities. Because isothermal compressibility is related to volume fluctuation, this suggests that buried water molecules play an important role in conformational fluctuation at normal pressures, and are implicated as the nucleation sites for structural changes leading to pressure denaturation or channel opening.  相似文献   

13.
The crystal structure of tetragonal hen egg-white lysozyme at a hydrostatic pressure of 1000 atmospheres has been determined by X-ray diffraction to a nominal resolution of 2 A. The crystals, originally grown in 0.83 M-NaCl, had to be transferred to 1.4 M-NaCl to prevent crystal cracking at 300 to 400 atm. The a and b axes of the unit cell contracted by 0.6%, whilst the c axis increased by 0.1%. The unit cell volume contracted by 1.1%. Both the 1 atm and the 1000 atm structures were refined by restrained least-squares to yield final R factors of 14.9% in each case. Since the data were collected by an accurate difference protocol, the change in structure is considered to be more accurate than the absolute structure. The probable accuracy of the atomic shifts is shown to be +/- 0.06 A. The estimated volume decrease of the whole molecule corresponded to an isothermal compressibility of 4.7 X 10(-3) kbar-1. The contraction was non-uniformly distributed. Domain 2 (residues 40 to 88) was essentially incompressible, whilst domain 1 (residues 1 to 39, 89 to 129) had a compressibility of 5.7 X 10(-3) kbar-1. The interdomain region was also compressible. The average B factor decreased about 1 A2 at 1000 atm, but there was a wide range of decreases and increases in individual values. The pressure-induced deformation was analyzed with difference distance matrices. The beta-sheet (residues 42 to 60) and helix 2 (residues 24 to 36) were deformed the least under pressure. The other helices were more deformed and one loop region (residues 61 to 87) actually appeared to expand. The main-chain atoms of the beta-sheet and helix 2 were used to perform a least-squares superposition of the 1 atm and 1000 atm models. The root-mean-square pressure-induced shift for all atoms was 0.2 A, with a few atoms moving more than 1 A. There was no evidence for co-ordinated movement about the hinge axis defined by alpha carbon atoms 38 and 97. The 1 atm and 1000 atm refined structures included 151 and 163 ordered water molecules, respectively. The changes in these ordered water molecules and the mean compressibility of all of the solvent in the crystal will be described elsewhere.  相似文献   

14.
15.
Human lysozyme and hen egg-white lysozyme have antibacterial, antiviral, and antifungal properties with numerous potential commercial applications. Currently, hen egg-white lysozyme dominates low cost applications but the recent high-level expression of human lysozyme in rice could provide an economical source of lysozyme. This work compares human lysozyme and hen egg-white lysozyme adsorption to the cation exchange resin, SP-Sepharose FF, and the effect of rice extract components on lysozyme purification. With one exception, the dynamic binding capacities of human lysozyme were lower than those of hen egg-white at pH 4.5, 6, and 7.5 with ionic strengths ranging from 0 to 100 mM (5-20 mS). Ionic strength and pH had a similar effect on the adsorption capacities, but human lysozyme was more sensitive to these two factors than hen egg-white lysozyme. In the presence of rice extract, the dynamic binding capacities of human and hen egg-white lysozymes were reduced by 20-30% and by 32-39% at pH 6. Hen egg-white lysozyme was used as a benchmark to compare the effectiveness of human lysozyme purification from transgenic rice extract. Process simulation and cost analyses for human lysozyme purification from rice and hen egg-white lysozyme purification from egg-white resulted in similar unit production costs at 1 ton per year scale.  相似文献   

16.
17.
Lytic activity of hen egg-white lysozyme towards bacterial cells of Micrococcus lysodeikticus was pH-dependent inhibited by several aminoglycosidic antibiotics, the structure of which is related to the saccharidic substrates of the enzyme.Inhibition extent suggests the role of the positive charges of this type of antibiotics on the mechanism of lysozyme activity inhibition.  相似文献   

18.
The structural and functional properties of lysozymes genetically deamidated at positions 103 (N103D) and 106 (N106D) were studied by a protein engineering technique. The wild-type and mutant lysozymes were expressed in Saccharomyces cerevisiae and purified from the cultivation medium in two steps by cation-exchange chromatography on CM-Toyopearl. The lytic activity of deamidated lysozymes was almost the same as that of wild lysozyme, although the optimal pH of activity was slightly shifted to lower pH by the deamidation. The Gibbs free energy changes of unfolding (delta G) at 20 degrees C for N103D and N106D were almost the same as that of wild-type. On the other hand, the structural flexibility of lysozymes, estimated by protease digestion, was significantly increased by the deamidation. The surface functional properties of deamidated lysozymes were considerably enhanced, compared to those of wild-type lysozyme. These results suggest that structural flexibility is an important governing factor in surface functional properties of proteins, regardless of their structural stability.  相似文献   

19.
20.
Sasahara K  Demura M  Nitta K 《Proteins》2002,49(4):472-482
The equilibrium and kinetic folding of hen egg-white lysozyme was studied by means of circular dichroism spectra in the far- and near-ultraviolet (UV) regions at 25 degrees C under the acidic pH conditions. In equilibrium condition at pH 2.2, hen lysozyme shows a single cooperative transition in the GdnCl-induced unfolding experiment. However, in the GdnCl-induced unfolding process at lower pH 0.9, a distinct intermediate state with molten globule characteristics was observed. The time-dependent unfolding and refolding of the protein were induced by concentration jumps of the denaturant and measured by using stopped-flow circular dichroism at pH 2.2. Immediately after the dilution of denaturant, the kinetics of refolding shows evidence of a major unresolved far-UV CD change during the dead time (<10 ms) of the stopped-flow experiment (burst phase). The observed refolding and unfolding curves were both fitted well to a single-exponential function, and the rate constants obtained in the far- and near-UV regions coincided with each other. The dependence on denaturant concentration of amplitudes of burst phase and both rate constants was modeled quantitatively by a sequential three-state mechanism, U<-->I<-->N, in which the burst-phase intermediate (I) in rapid equilibrium with the unfolded state (U) precedes the rate-determining formation of the native state (N). The role of folding intermediate state of hen lysozyme was discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号