共查询到20条相似文献,搜索用时 15 毫秒
1.
A total of 43 groundwater samples were collected from 9 multimonitoring wells at a petrochemical site, Baoding City, North China, from June 2008 to December 2009 to investigate the biogeochemical processes and/or bacterial conmmunity using both culture-dependent and -independent methods. The results showed that aromatic hydrocarbons and chlorinated hydrocarbons were the major pollutants in the groundwater. Denitrification and iron reduction might be the main biogeochemical processes in the aquifers at this site, which seemed to transform from denitrification-dominated to iron reduction-dominated in some sections. Denaturing gradient gel electrophoresis (DGGE) revealed that the dominant bacterial groups of the groundwater were related to some oil-degrading bacteria, which can grow under denitrifying, iron-reducing and sulfate-reducing anaerobic conditions. In some serious contaminated groundwater niches, there might be sulfur cycles, as sulfur oxidizer was also abundant, which was further confirmed by 16S rRNA gene cloning analysis. The operational taxonomic units (OTUs) that highly related to Pseudomonas sp., Hydrogenophaga sp., Sphingomonas sp., Ferribacterium sp. and Sulfuricurvum Kujiense etc. were predominant in the groundwater contaminated by chlorinated hydrocarbons (CHCs), benzene, toluene, ethylbenzene, and xylenes (BTEX) and/or polycyclic aromatic hydrocarbons (PAHs), respectively. Biodiversity seemed to be undermined by oil contamination, and varied with seasons. The bacterial community in the contaminated groundwater was largely determined by the groundwater geochemistry. 相似文献
2.
Field- and Lab-Based Potentiometric Titrations of Microbial Mats from the Fairmont Hot Spring,Canada
Tyler J. Warchola Shannon L. Flynn Leslie J. Robbins Yuxia Liu Tina Gauger Olga Kovalchuk 《Geomicrobiology journal》2017,34(10):851-863
Potentiometric titrations are an effective tool to constrain the protonation constants and site concentrations for microbial surface ligands. Protonation models developed from these experiments are often coupled with data from metal adsorption experiments to calculate microbial ligand-metal binding constants. Ultimately, the resulting surface complexation models can be used to predict metal immobilization behavior across diverse chemical conditions. However, most protonation and metal-ligand thermodynamic constants have been generated in laboratory experiments that use cultured microbes which may differ in their chemical reactivity from environmental samples. In this study, we investigate the use of in situ field potentiometric titrations of microbial mats at a carbonate hot spring located at Fairmont Hot Springs, British Columbia, with the aim to study microbial reactivities in a natural field system. We found that authigenic carbonate minerals complicated the potentiometric titration process due to a “carbonate spike” introduced by the contribution of inorganic carbonate mineral dissolution and subsequent carbonate speciation changes during the transition from low to high pH. This inhibits the determination of microbial surface ligand variety and concentrations. Our preliminary study also highlights the need for developing novel probes to quantify in situ microbial mat reactivity in future field investigations. 相似文献
3.
目的: 从高温温泉宏基因组中挖掘能够高效催化合成稀有糖的新耐高温D-来苏糖异构酶。方法: 从云南昌宁鸡飞温泉底泥中提取宏基因组DNA并进行高通量测序,经基因注释及序列比对鉴定D-来苏糖异构酶基因,构建大肠杆菌异源表达载体并诱导表达,通过亲和层析纯化重组蛋白并对其性质研究。结果: 从温泉底泥宏基因组测序结果中鉴定得到8个D-来苏糖异构酶基因,选择4个基因进行异源表达,其中JF-LI1和JF-LI4在大肠杆菌中成功表达并检测到酶活性。研究表明,JF-LI1和JF-LI4的最适温度分别为70℃和75℃。JF-LI4具有较宽的作用温度和良好的热稳定性,在30~100℃的温度范围内剩余40%以上的酶活力。JF-LI1和JF-LI4的最适pH分别为7.0和7.5,在中性偏酸性条件下具有较高的活力和较强的稳定性。重组JF-LI1和JF-LI4具有较宽的底物谱,除了对D-来苏糖活性最高外,对L-核糖、L-核酮糖、D-果糖和D-甘露糖均具有活性。重组JF-LI1和JF-LI4对L-核糖的催化效率分别为0.56 L/(mmol·s-1)和0.61 L/(mmol·s-1),是目前已知的D-来苏糖异构酶中最高的。结论: 从高温温泉宏基因组中获得8个新的D-来苏糖异构酶基因,对JF-LI1和JF-LI4进行异源表达和性质研究,具有pH稳定性好、热稳定性强以及底物特异性宽泛的特点,在制药、食品、化妆品等工业领域有重要的应用潜力。 相似文献
4.
An anaerobic phototrophic bacterial community in Lake Mogilnoe, a relict lake on Kil'din Island in the Barents Sea, was studied in June 1999 and September 2001. Irrespective of the season, the upper layer of the anaerobic zone of this lake had a specific species composition of sulfur phototrophic bacteria, which were dominated by the brown-colored green sulfur bacterium Chlorobium phaeovibrioides. The maximum number of sulfur phototrophic bacteria was observed in June 1999 at a depth of 9 m, which corresponded to a concentration of bacteriochlorophyll (Bchl) e equal to 4.6 mg/l. In September 2001, the maximum concentration of this pigment (3.4 mg/l) was found at a depth of 10 m. In both seasons, the concentration of Bchl a did not exceed 3 μg/l. Purple sulfur bacteria were low in number, which can be explained by their poor adaptation to the hydrochemical and optical conditions of the Lake Mogilnoe water. In June 1999, the water contained a considerable number of Pelodictyon phaeum microcolonies and Prosthecochloris phaeoasteroides cell chains, which was not the case in September 2001. A 16S rDNA-based phylogenetic analysis of pure cultures of phototrophic bacteria isolated from the lake water confirmed that the bacterial community is dominated by Chl. phaeovibrioides and showed the presence of three minor species, Thiocystis gelatinosa, Thiocapsa sp., and Thiorhodococcus sp., the last of which is specific to Lake Mogilnoe. 相似文献
5.
Sediment and water samples collected from one acidic and three alkaline high temperature hot springs at the Tengchong terrestrial geothermal field, Southwest China, were examined using mineralogical, geochemical, and molecular biological techniques. The mineralogical and geochemical analyses suggested that these hot springs contained relatively high concentrations of S, Fe and N chemical species. Specifically, the acidic water was rich in Fe2+, SO42? and NH4+, while the alkaline waters were high in NO3?, H2S and S2O3?. Analyses of 16S rRNA gene sequences showed their bacterial communities were dominated by phyla Aquificae, Cyanobacteria, Deinococci-Thermus, Firmicutes, Proteobacteria, and Thermodesulfobacteria, while the archaeal clone libraries were dominated by orders Desulfurococcales, Sulfolobales, and Thermoproteales. Potential S-, N- and Fe-metabolizing prokaryotes were present at a relatively high proportion, but with large differences in the diversity and metabolic functions of each sample. These findings provide implications for uncovering microbial functions in elemental biogeochemical cycles within the Tengchong geothermal environments: i). the distinct differences in abundance and diversity of microbial communities in geothermal sediments were related to different in situ physicochemical conditions; ii). the S-, N- and Fe-related prokaryotes would take advantage of the strong chemical disequilibria in the hot springs; and iii). in return, their metabolic activities could promote the transformation of the S, Fe and N chemical species, thereby forming the basis of biogeochemical cycles in the terrestrial geothermal environments. 相似文献
6.
Two species of heliobacteria along with a purple and green bacterium were tested for their ability to grow phototrophically at irradiances ranging from 0.125 to 50 W m–2. The heliobacteria were incapable of growth below 0.5 W m–2, while both the purple and green bacterium grew at significantly lower irradiances. Specific bacteriochlorophyll contents were higher for the purple and green bacteria than for the heliobacteria at all irradiances tested. Thus in distinct contrast to purple and green bacteria, heliobacteria are high-irradiance phototrophs, and this characteristic may influence their distribution in nature. 相似文献
7.
Desert wadis are widespread in the Arabian Peninsula and play a vital role in the ecology of the region; nevertheless, these ecosystems are among the least studied. Various types of microbial mats are predominant in wadis, but information on their bacterial diversity and spatial distribution is very scarce. We investigated bacterial diversity, pigments and lipid composition of ten mats located at the down-, mid- and upstream of a desert wadi in Oman. Direct microscopy revealed the existence of different unicellular and filamentous cyanobacteria, with the dominance of the heterocystous genera Calothrix and Scytonema. The majority of MiSeq 16S rRNA sequences (44-76%) were affiliated to Cyanobacteria and Proteobacteria. While Alphaproteobacteria was the most dominant proteobacterial class (10 to 48% of total sequences), Gamma- and Deltaproteobacteria were subdominant. Cluster analysis showed that the mats’ bacterial communities at the different locations along the wadi were different and shared less than 60% of their operational taxonomic units (OTUs). Chlorophyll a and scytonemin were the most predominant pigments in all mats. Different saturated, branched and mono- and poly-unsaturated fatty acids were detected in all mats, with C16 and C18 compounds as most dominant. The detected pigments and fatty acids indicate a major role of cyanobacteria in the wadi mats and the adaptation of microorganisms therein to the harsh wadi environment. Detection of diadinoxanthin and fucoxanthin confirmed the presence of diatoms. We conclude that microbial mats are important elements in wadi ecosystems and exist in a great variety of structure and community composition. 相似文献
8.
Community phylogenetic analysis of moderately thermophilic cyanobacterial mats from China, the Philippines and Thailand 总被引:1,自引:0,他引:1
Hongmei J Aitchison JC Lacap DC Peerapornpisal Y Sompong U Pointing SB 《Extremophiles : life under extreme conditions》2005,9(4):325-332
Most community molecular studies of thermophilic cyanobacterial mats to date have focused on Synechococcus occurring at temperatures of ~50–65°C. These reveal that molecular diversity exceeds that indicated by morphology, and that phylogeographic lineages exist. The moderately thermophilic and generally filamentous cyanobacterial mat communities occurring at lower temperatures have not previously been investigated at the community molecular level. Here we report community diversity in mats of 42–53°C recovered from previously unstudied geothermal locations. Separation of 16S rRNA gene-defined genotypes from community DNA was achieved by DGGE. Genotypic diversity was greater than morphotype diversity in all mats sampled, although genotypes generally corresponded to observed morphotypes. Thirty-six sequences were recovered from DGGE bands. Phylogenetic analyses revealed these to form novel thermophilic lineages distinct from their mesophilic counterparts, within Calothrix, Cyanothece, Fischerella, Phormidium, Pleurocapsa, Oscillatoria and Synechococcus. Where filamentous cyanobacterial sequences belonging to the same genus were recovered from the same site, these were generally closely affiliated. Location-specific sequences were observed for some genotypes recovered from geochemically similar yet spatially separated sites, thus providing evidence for phylogeographic lineages that evolve in isolation. Other genotypes were more closely affiliated to geographically remote counterparts from similar habitats suggesting that adaptation to certain niches is also important. 相似文献
9.
广州从化温泉自然保护区植被和植物群落的特征 总被引:5,自引:1,他引:5
对从化温泉自然保护区进行了详细植被和群落学调查。该保护区包括天然和人工群落一类型两大类。其中天然群落一景观类型包括常绿叶林、常绍针叶林、常绿针阔叶混交林以及撩荒地。人工群落--景观类型包括村落、农田、果园以及水库。利用Clement多度启示法调查确定了天然植物中群落的优势和建群种。该保护区群落的优势种为藜蒴Castanopsis fissa、荷木Schima superba、黄樟Cinnamomu 相似文献
10.
Cristina M. Prieto-Barajas Luis D. Alcaraz Eduardo Valencia-Cantero 《Geomicrobiology journal》2018,35(8):704-712
The geothermal system of the Araró region, located in the Trans-Mexican Volcanic Belt of México, hosts various hot springs with unique physicochemical characteristics, including temperatures ranging from 45°C to 78°C. The microbial diversity in these hot springs has been explored only by culture-dependent surveys. In this study, we performed metagenomic Illumina MiSeq, and 16S and 18S rRNA pyrosequencing analysis of the microbial life are residing in the microbial mats of the springs called “Tina–Bonita”. Our results show the presence of 186 operational taxonomic units, 99.7% of which belong to bacteria, 0.27% to eukaryotes, and 0.03% to archaea. The most abundant bacterial divisions are the Proteobacteria, Chloroflexi, and Cyanobacteria, which include 105 genera. The ecological indexes indicate that the microbial mats have moderate microbial diversity. An abundant group of genes that participate in photosynthesis, including photosynthetic electron transport, as well as photosystems I and II, were detected. Another cluster of genes was found that participates in sulfur, nitrogen, and methane metabolism. Finally, this phylogenetic and metagenomic analysis revealed an unexpected taxonomic and genetic diversity, expanding our knowledge of microbial life under specific extreme conditions. 相似文献
11.
三江平原小叶章湿地生态系统硫的生物地球化学循环 总被引:3,自引:0,他引:3
以三江平原小叶章湿地生态系统为研究对象,应用分室模型研究了硫在大气-土壤-植物系统各分室中的分布及循环过程。结果表明,在植物-土壤系统内,土壤是主要的贮存库和流通介质,有97.78%的硫贮存在土壤中,且主要以有机硫的形态存在,2.22%的硫贮存在植物中。在植物亚系统中,根是主要的贮库,79.60%的硫贮存在根中。湿地植物地上部分吸收的总S量为0.75gS/m^2;向地下再转移的总S量为0.24gS/m^2,向枯落物S库转移的总S量为0.51gS/m^2;根吸收的总S量为3.76gS/m^2;根向土壤S库转移的总S量为3.07gS/m^2;现存枯落物中的总S量为0.75gS/m^2;枯落物向土壤S库的转移量最低为0.52gS/m^2·a。输入和输出过程的研究表明,小叶章湿地生态系统在生长季(5-9月份)向大气排放H2S的量为1.42mgS/m^2,从大气吸收COS的量为1.83mgS/m^2;通过大气降水输入到生态系统中的硫为4.85mgS/m^2,其差值为5.26mgS/m^2,这表明硫在小叶章湿地生态系统中处于累积状态,湿地存在潜在的酸化趋势。 相似文献
12.
The efficiency of 9:1 acetone-water, DMSO and boiling 9:1 ethanol-water in extracting chlorophyll and carotenoid pigments from benthic cyanobacterial mats from Antarctica for HPLC (high performance liquid chromatography) analysis was examined. Considerable breakdown of chlorophylla was observed after 5 min extraction in boiling ethanol and 2 h extraction in DMSO. Over 50% of the chlorophylla was degraded to chlorophyllidea and there was substantial loss of carotenoids after a 15 h exposure of ground cells to cold 9:1 acetone-water.Mild sonication of ground mat material in 9:1 acetone-water followed by a 4 h extraction at 4 ° C was found to minimise chlorophylla breakdown and dramatically improved the extraction efficiency of chlorophylla, myxoxanthophyll and -carotene. 相似文献
13.
春季与秋季渤海蓝细菌(聚球蓝细菌属)的分布特点 总被引:4,自引:2,他引:4
利用荧光显微镜技术研究渤海中蓝细菌 (聚球蓝细菌属 Synechococcus)的分布特点。发现春季 (1 999年 4~ 5月 )蓝细菌生物量较低 (0 .86~ 0 .0 1 mg C/m3,平均 =0 .1 3 ) ,秋季 (1 998年 9~ 1 0月 )较高 (1 6.6~ 0 .3 7mg C/m3,平均 =3 .2 7)。秋季蓝细菌生物量的平均值 (3 .2 7)是春季的 (0 .1 3 ) 2 5倍。虽然不同水层蓝细菌的生物量与水温分布相反 ,但水温仍是影响蓝细菌季节变化差异的主要原因。春秋季蓝细菌生物量垂直变化都是 1 0 m层 >表层 >底层。蓝细菌生物量在浮游植物总生物量中所占比例 (CB/PB) ,秋季是 0 .3 99~ 0 .0 0 3 (平均 0 .0 64) ,春季是 0 .0 47~ 0 .0 0 0 (平均 0 .0 0 3 ) ,两季相差达2 1倍 (平均值 )。小型浮游生物是渤海蓝细菌的主要捕食者 ,蓝细菌在渤海微食物环中有重要作用。 相似文献
14.
Abstract Thermophilic bacteria have attracted great attention due to their ability to produce thermostable enzymes. The aim of this study was the isolation and characterization of thermophilic bacteria from Gavmesh Goli hot spring in Sareyn, North West of Iran. Of 10 water samples collected, 36 thermophilic bacteria were obtained. The thermophilic bacteria were tested for their ability to produce hydrolase enzymes. All the isolates were potentially protease producers. Lipase, DNase, and amylase activities were confirmed in 34 (94.4%), 8 (22.2%), and 3 (8.3%) isolates, respectively. Five isolates with higher levels of enzyme activity were selected for further studies. Morphological, biochemical, and molecular analysis by 16S rRNA gene sequencing revealed that four isolates (DH15, DH16, DH20, and DH29) could be identified as Thermomonas hydrothermalis and one (PA10) Bacillus altitudinis. The protease produced by these isolates was optimally active at 50–55?°C, pH 8–8.5, and 0–0.5?M NaCl. In this first time study, we isolated T. hydrothermalis and B. altitudinis from Iranian hot springs and demonstrated the characteristics of T. hydrothermalis protease. Accordingly, due to the valuable potential of these bacteria such as the production of protease with high temperature and pH stability, these isolates can be introduced as promising candidates for industrial applications. 相似文献
15.
Fe(II) in geothermal fluids was among the most important electron and energy sources for extremophiles and early life, and microbial oxidation of Fe(II) in turn contributed to the global Fe deposits such as banded iron formation (BIF). However, information was rare on Fe(II) bio-oxidation and consequent mineral formation in geothermal systems. In the present study, we investigated the anaerobic nitrate-depending Fe(II) oxidation (ANDFO) in the Tibetan hot springs with temperature ranging 52–86°C. ANDFO cultivation was established by inoculating sediments from the studied hot springs. Positive ANDFO reaction was observed in the cultures from three high-temperature hot springs (>80°C). Phylogenetic analysis showed that bacteria in the three obtained ANDFO cultures were mainly affiliated with phyla of Betaproteobacteria, Alphaproteobacteria, and Firmicutes. In the obtained ANDFO cultures, ferrous iron oxidation occurred with nitrate reduction, accompanied with the formation of magnetite and/or siderite, which could be finished within one week. The resulting euhedral magnetite was at the micrometer scale, which was larger in size and showed better crystallinity than its counterparts (usually <1?µm) formed by chemical reactions. Thus, it can be concluded that ANDFO bacteria and denitrifiers played important roles in the magnetite and siderite precipitation in the studied Tibetan hot springs. The coupling between Fe(II) oxidation and nitrate reduction mediated by thermophiles might provide a new mechanism for euhedral magnetite and siderite deposition in BIFs during the Precambrian period. 相似文献
16.
Koblízek M Béjà O Bidigare RR Christensen S Benitez-Nelson B Vetriani C Kolber MK Falkowski PG Kolber ZS 《Archives of microbiology》2003,180(5):327-338
Seven strains of marine aerobic anoxygenic phototrophs belonging to the genus Erythrobacter were isolated. The strains were characterized regarding their physiological and biochemical properties, 16S rDNA and pufM gene sequences, morphological features, substrate preference, as well as pigment and lipid composition. All strains had functional type-2 reaction centers containing bacteriochlorophyll, served by small, light-harvesting complex 1, and were photosynthetically competent. In addition, large pools of carotenoids were found, but only some of the accessory pigments transfer energy to the reaction centers. All of the isolates were facultative photoheterotrophs. They required an organic carbon substrate for growth; however, they are able to supplement a significant fraction of their metabolic requirements with photosynthetically derived energy.Abbreviations BChl Bacteriochlorophyll - Chl Chlorophyll - Erb. Erythrobacter - Erm. Erythromicrobium - FAMEs Fatty acid methyl esters - IRFRR Infrared fast repetition rate - LH1, LH2 Light-harvesting complex 1 and 2, respectively - Por. Porphyrobacter - PUFAs Polyunsaturated fatty acids - Rsb. Roseobacter - RubisCO Ribulose-1,5-bisphosphate carboxylase/oxygenase - µ Growth rate - 470 Functional cross-section of the photosynthetic unit at 470 nm 相似文献
17.
Microbial communities growing in the bed of the alkaline, sulfide hot spring Bol'sherechenskii (the Baikal rift area) were studied over many years (1986-2001). The effluent water temperature ranged from 72 to 74 degrees C, pH was from 9.25 to 9.8, and sulfide content was from 12 to 13.4 mg/ml. Simultaneous effects of several extreme factors restrict the spread of phototrophic microorganisms. Visible microbial fouling appears with a decrease in the temperature to 62 degrees C and in the sulfide content to 5.9 mg/l. Cyanobacteria predominated in all biological zones of the microbial mat. The filamentous cyanobacteria of the genus Phormidium are the major mat-forming organisms, whereas unicellular cyanobacteria and the filamentous green bacterium Chloroflexus aurantiacus are minor components of the phototrophic communities. No cyanobacteria of the species Mastigocladus laminosus, typical of neutral and subacid springs, were identified. Seventeen species of both anoxygenic phototrophic bacteria and cyanobacteria were isolated from the microbial mats, most of which exhibited optimum growth at 20 to 45 degrees C. The anoxygenic phototrophs were neutrophiles with pH optimum at about 7. The cyanobacteria were the most adapted to the alkaline conditions in the spring. Their optimum growth was observed at pH 8.5-9.0. As determined by the in situ radioisotope method, the optimal growth and decomposition rates were observed at 40-32 degrees C, which is 10 to 15 degrees C lower than the same parameter in the sulfide-deficient Octopus Spring (Yellowstone, United States). The maximum chlorophyll a concentration was 555 mg/m2 at 40 degrees C. Total rate of photosynthesis in the mats reached 1.3 g C/m2 per day. The maximum rate of dark fixation of carbon dioxide in the microbial mats was 0.806 g C/m2 per day. The maximum rate of sulfate reduction comprised 0.367 g S/m2 per day at 40 degrees C. The rate of methanogenesis did not exceed 1.188 micrograms C/m2 per day. The role of methanogenesis in the terminal decomposition of the organic matter was insignificant. Methane formation consumed 100 times less organic matter than sulfate reduction. 相似文献
18.
Hydrodynamic forces and sediment discharges determine the sedimentary environment and surface morphology of the intertidal area in the Westerschelde estuary in the S.W. Netherlands. Sandflats (clay content <8%) are found in the central part, mudflats (>8% clay) and especially salt marshes (>15% clay) occur in sheltered places.The semi-terrestrial soil of the intertidal area is a complex environment where hydrosphere, biosphere, lithosphere, and atmosphere interact. Surface morphology and the semi-diurnal tide may significantly modify this interaction pattern. Organic matter and constituents of the clay-size fraction are the most reactive compounds in the soil.The pathway and rate of organic matter decomposition determines the nature of many biogeochemical processes. Sulfur transformations are dominant processes in the sulfidic grey-black coloured horizons underneath the generally thin yellow-brown surface layer. The sulfur geochemistry also affects the sorption-behaviour of metals. Oxygen intrusion by diffusion, burrowing fauna and plant roots cause a local and sometimes temporary oxidation of reduced inorganic compounds. Thus, in the surface layers, and in and around tubes and roots at greater depth in the soil, a dynamic cycling occurs of redox active compounds, which affects the sorption mechanism ofe.g. metals-ions. 相似文献
19.
Tatiana Luzan 《Geomicrobiology journal》2017,34(1):11-26
The fluidized sediment ecosystem off French Guiana is characterized by active physical reworking, diversity of electron acceptors and highly variable redox regime. It is well studied geochemically but little is known about specific microorganisms involved in its biogeochemistry. Based on the biogeochemical profiles and rate kinetics, several possible biotically mediated pathways of the carbon, sulfur and iron cycles were hypothesized. Enrichment studies were set up with a goal to culture microorganisms responsible for these pathways. Stable microbial consortia potentially capable of the following chemolithoautotrophic types were enriched from the environment and characterized: elemental sulfur/thiosulfate disproportionators, thiosulfate-oxidizing ferrihydrite and nitrate reducers, sulfide/ferrous sulfide oxidizers coupled with nitrate and microaerophilic iron oxidizers. Attempts to generate several enrichments (anoxic ammonia oxidation, and sulfide oxidizers with ferric iron or manganese oxide) were not successful. Heterotrophic sulfate and elemental sulfur reduction bacteria are prominent and dominate reductive sulfur transformations. We hypothesize that carbon dioxide fixation coupled with synthesis of organic matter happens mostly via sulfur disproportionation and sulfur species oxidation with iron oxidation playing a minor role. 相似文献
20.
Biogeochemical cycles are essential ecosystem services that continue to degrade as a result of human activities, but are not fully considered in efforts toward sustainable engineering. This article develops a model that integrates the carbon cycle with economic activities in the 2002 U.S. economy. Data about the carbon cycle, including emissions and sequestration flows, is obtained from the greenhouse gas inventory of the U.S. Environmental Protection Agency. Economic activities are captured by the economic input‐output model available from the Bureau of Economic Analysis. The resulting model is more comprehensive in its accounting for the carbon cycle than existing methods for carbon footprint (CF) calculations. Examples of unique flows in this model include the effect of land‐use and land‐cover change on carbon dioxide flow within the U.S. national boundary, carbon sequestration in urban trees, and emissions resulting from liming. This model is used to gain unique insight into the carbon profile of U.S. economic sectors by providing the life cycle emissions and sequestration in each sector. Such insight may be used to support policies, manage supply chains, and be used for more comprehensive CF calculations. 相似文献