共查询到20条相似文献,搜索用时 15 毫秒
1.
西洛他唑对人心房肌细胞瞬间外向钾电流的影响 总被引:2,自引:0,他引:2
目的:观察西洛他唑对人心房肌细胞瞬间外向钾电流(Ito1)的影响,探讨该药抗心律失常作用的机制.方法:二步酶解法分离人单个右心房肌细胞,应用全细胞膜片钳技术记录人心房肌细胞Ito1.结果:在保持电位-50 mV和去极化脉冲为 50 mV条件下,30 μmol/L西洛他唑显著降低Ito1,使Ito1幅值由加药前(8.16±0.70)pA/pF降至(4.84±0.60)pA/pF(P<0.01).西洛他唑在1~50 μmol/L范围内呈浓度依赖性的抑制Ito1,1 μmol/L时即产生作用,50 μmol/L时达最大效应(降低51.09%±3.00%),IC50为(13.18±2.60)μmol/L.此外,该药对Ito1的电压依赖性激活和失活曲线以及恢复曲线均无显著影响.结论:本实验结果表明西洛他唑浓度依赖性地阻滞人心房肌细胞的Ito1. 相似文献
2.
Denis V. Abramochkin Eugenia I. Alekseeva Matti Vornanen 《Comparative biochemistry and physiology. Toxicology & pharmacology : CBP》2013,158(3):181-186
KB-R7943 (2-[2-[4-(4-nitrobenzyloxy)phenyl]ethyl]isothiourea) was developed as a specific inhibitor of the sarcolemmal sodium–calcium exchanger (NCX) with potential experimental and therapeutic use. However, KB-R7943 is shown to be a potent blocker of several ion currents including inward and delayed rectifier K+ currents of cardiomyocytes. To further characterize KB-R7943 as a blocker of the cardiac inward rectifiers we compared KB-R7943 sensitivity of the background inward rectifier (IK1) and the carbacholine-induced inward rectifier (IKACh) currents in mammalian (Rattus norvegicus; rat) and fish (Carassius carassius; crucian carp) cardiac myocytes. The basal IK1 of ventricular myocytes was blocked with apparent IC50-values of 4.6 × 10− 6 M and 3.5 × 10− 6 M for rat and fish, respectively. IKACh was almost an order of magnitude more sensitive to KB-R7943 than IK1 with IC50-values of 6.2 × 10− 7 M for rat and 2.5 × 10− 7 M for fish. The fish cardiac NCX current was half-maximally blocked at the concentration of 1.9–3 × 10− 6 M in both forward and reversed mode of operation. Thus, the sensitivity of three cardiac currents to KB-R7943 block increases in the order IK1 ~ INCX < IKACh. Therefore, the ability of KB-R7943 to block inward rectifier potassium currents, in particular IKACh, should be taken into account when interpreting the data with this inhibitor from in vivo and in vitro experiments in both mammalian and fish models. 相似文献
3.
4.
本文利用全细胞膜片钳技术研究了SO2 代谢衍生物———NaHSO3 和Na2 SO3 (二者分子比为 1∶3)对大鼠海马CA1区神经元瞬间外向钾电流 (IA)和延迟整流钾电流 (IK)的影响。结果表明 ,SO2 代谢衍生物可显著增大IA 和IK,且呈剂量依赖性关系 ,使IA 和IK 增大 5 0 %的剂量分别为 2 6 19μmol/L和 14 5 0 μmol/L。此外还与电压呈依赖性关系 ,但不具有频率依赖性。结果还表明 ,10 μmol/LSO2 代谢衍生物不影响IA 的激活过程 ,而对IK 的激活过程有非常显著的影响 ,给药前后IK 的半数激活电压分别为 17 6 4± 7 31mV和 13 43± 2 0 0mV (n=10 ,P <0 0 1) ,但不改变其斜率因子。另外 ,10 μmol/LSO2 代谢衍生物还非常显著地影响IA 的失活过程 ,给药前后其半数失活电压分别为 - 6 5 93± 1 97mV和 - 5 9 2 2± 3 83mV (n =10 ,P <0 0 1) ,但不改变其斜率因子。由此推断 ,SO2 代谢衍生物增大大鼠海马CA1区神经元的IA 和IK,促进IK 的激活过程 ,并抑制IA 的失活过程 ,可导致胞内K 通过K 通道的外流增加 ,胞内K 浓度降低 ,造成中枢神经元功能紊乱 ,诱导神经细胞凋亡。这意味着SO2 代谢衍生物对中枢神经系统具有损伤作用 ,从而提示大气SO2 污染可能与一些中枢神经系统疾病的发生以及衰老有关 [动物学报 49(1) :73 相似文献
5.
H. Satoh 《Amino acids》1995,9(3):235-246
Summary Effects of taurine on the delayed rectifier K+ channel in isolated 10-day-old embryonic chick ventricular cardiomyocytes were examined at different intracellular Ca2+ concentrations ([Ca]i), using whole-cell voltage and current clamp techniques. Experiments were performed at room temperature (22°C). Test pulses were applied between -20 to +90m V from a holding potential of -40mV. When [Ca]i was pCa 7, addition of 10 and 20 mM taurine to the bath solution reduced the delayed rectifier K+ current (IK) at +90mV by 17.4 ± 2.8% (n = 5, P < 0.01) and 25.5 ± 2.6% (n = 5, P < 0.001), respectively. In contrast, when [Ca]i was pCa 10, IK at +90 mV was enhanced by 19.1 ± 3.1% (n = 7, P < 0.01) at 10mM taurine, and by 29.3 ± 2.4% (n = 7, P < 0.001) at 20mM taurine. The voltage of half-maximum activation (V1/2) was shifted in a hyperpolarizing direction; at pCa 7, the value was +0.2 ± 2.2mV (n = 5) in control and -10.6 ± 1.8mV (n = 5) in 20mM taurine. At pCa 10, the V1/2 value was +18.5 ± 4.6mV (n = 5) in control and +6.6 ± 5.2mV (n = 5) in taurine (20mM). Taurine decreased the action potential duration (APD) at pCa 10, but at pCa 7 did not affect it. In addition, taurine enhanced the transient outward current in a concentration-dependent manner. These results indicate that taurine modulates the delayed rectifier K+ channel, an effect dependent on [Ca]i and capable of regulating APD. 相似文献
6.
Zhao Rongrui Wang Wenze Wu Bowei Hoebeke Johan Hjalmarson Åke Fu Michael L. X. 《Molecular and cellular biochemistry》1996,163(1):185-193
The effects of anti-peptide antibodies against the second extracellular loop of human M2 muscarinic receptor on transmembrane potentials and currents in guinea pig single ventricular cells were analyzed using whole-cell patch clamp technique. These effects were compared with those of the muscarinic receptor agonists carbachol and acetylcholine. The antibodies shortened the action potential duration in a dose-dependent manner. By using a ramp or step rectangular pulse protocol, it was found that the antibodies increased the outward K+ current and decreased the inward basal I Ca significantly. The reversal potential of both carbachol-and antibody-induced extra currents were close to –80 mV, being in proximity to the calculated Ek of –90 mV. A -adrenergic receptor agonist, isoprenaline, prolonged the action potential and increased the overshoot which could be inhibited by both antibody and carbachol. Isoprenaline increased inward Ica and outward Ik simultaneously. Both antibody and carbachol could significantly reduce the isoprenaline-stimulated ICa but not the isoprenaline-stimulated Ik. The antibody- or carbachol-induced outward K+ current and the depressant effects of antibody and carbachol on isoprenaline-stimulated Ica were partially antagonized by atropine. These results suggest that the anti-M2 muscarinic receptor antibodies display a stimulatory activity similar to muscarinic receptor agonist on the receptor-mediated electrophysiological events. 相似文献
7.
8.
目的:观察银杏酮酯(GBE50)对模拟缺血豚鼠心室肌细胞延迟整流钾电流(IK)的影响,探讨GBE50抗心肌缺血的机制。方法:采用标准膜片钳全细胞记录方法观察GBE50对正常及模拟缺血豚鼠心室肌细胞IK的影响。结果:在细胞外液中分别加入25,50,100mg/L GBE50灌流,仅100mg/L GBE50对正常心室肌细胞IK有影响(P0.05),使IK电流密度减小,I-V曲线下移;模拟缺血液灌流20minIK减小,I-V曲线下移,在模拟缺血液中分别加入25,50,100mg/L GBE50后,仅25mg/L无效,50,100mg/LGBE50灌流20min后IK稍减小,I-V曲线稍有下移,与缺血前相比无显著性差异(P0.05)。结论:100mg/LGBE50可减少正常豚鼠心室肌细胞IK;在模拟缺血条件下豚鼠心室肌细胞IK受到明显的抑制,GBE50可明显逆转缺血所致IK的抑制效应,这可能是GBE50产生心肌保护作用的重要机制之一。 相似文献
9.
Selective modulation of L-type calcium current by magnesium lithospermate B in guinea-pig ventricular myocytes 总被引:3,自引:0,他引:3
Magnesium lithospermate B (MLB) is the main water-soluble principle of Salviae Miltiorrhizae Radix (also called as 'Danshen' in the traditional Chinese medicine) for the treatment of cardiovascular diseases. MLB was found to possess a variety of pharmacological actions. However, it is unclear whether and how MLB affects the cardiac ion channels. In the present study, the effects of MLB on the voltage-activated ionic currents were investigated in single ventricular myocytes of adult guinea pigs. MLB reversibly inhibited L-type Ca(2+) current (I(Ca,L)). The inhibition was use-dependent and voltage-dependent (the IC(50) value of MLB was 30 microM and 393 microM, respectively, at the holding potential of -50 mV and -100 mV). In the presence of 100 microM MLB, both the activation and steady-state inactivation curves of I(Ca,L) were markedly shifted to hyperpolarizing membrane potentials, whereas the time course of recovery of I(Ca,L) from inactivation was not altered. MLB up to 300 microM had no significant effect on the fast-inactivating Na(+) current (I(Na)), delayed rectifier K(+) current (I(K)) and inward rectifier K(+) current (I(K1)). The results suggest that the voltage-dependent Ca(2+) antagonistic effect of MLB work in concert with its antioxidant action for attenuating heart ischemic injury. 相似文献
10.
11.
During resorption of mineralized tissues, osteoclasts are exposed to marked changes in the concentration of extracellular Ca2+ and H+. We examined the effects of these cations on two types of K+ currents previously described in these cells. Whole-cell patch clamp recordings of membrane currents were made from osteoclasts freshly isolated from neonatal rats. In control saline (1 mm Ca2+, pH 7.4), the voltage-gated, outwardly rectifying K+ current activates at approximately 45 mV and the conductance is half-maximally activated at –29 mV (V
0.5). Increasing [Ca2+]out rapidly and reversibly shifted the current-voltage (I–V) relation to more positive potentials. Current at –29 mV decreased to 28 and 9% of control current at 5 and 10 mm [Ca2+]out, respectively. This effect of elevating [Ca2+]out was due to a positive shift of the K+ channel voltage activation range. Zn2+ or Ni2+ (5 to 500 m) also shifted the I–V relation to more positive potentials and had additional effects consistent with blockade of the K+ channel. Based on the extent to which these divalent cations affected the voltage activation range of the outwardly rectifying K+ current, the potency sequence was Zn2+ > Ni2+ > Ca2+. Lowering or raising extracellular pH also caused shifts of the voltage activation range to more positive or negative potentials, respectively. In contrast to their effects on the outwardly rectifying K+ current, changes in the concentration of extracellular H+ or Ca2+ did not shift the voltage activation range of the inwardly rectifying K+ current. These findings are consistent with Ca2+ and other cations affecting voltage-dependent gating of the osteoclast outwardly rectifying K+ channel through changes in surface charge.This work was supported by The Arthritis Society and the Medical Research Council of Canada. S.M.S. is supported by a Scientist Award and S.J.D. by a Development Grant from the Medical Research Council. 相似文献
12.
We show that the voltage-gated K+ and Ca2+ currents of rat osteoblastic cells are strongly modulated by arachidonic acid (AA), and that these modulations are very sensitive to the AA concentration. At 2 or 3 μm, AA reduces the amplitude and accelerates the inactivation of the K+ current activated by depolarization; at higher concentrations (≥5 μm), AA still blocks this K+ current, but also induces a very large noninactivating K+ current. At 2 or 3 μm, AA enhances the T-type Ca2+ current, close to its threshold of activation, whereas at 10 μm, it blocks that current. AA (1–10 μm) also blocks the dihydropyridine-sensitive L-type Ca2+ current. Thus, the effect of AA on Ca2+ entry through voltage-gated Ca2+ channels can change qualitatively with the AA concentration: at 2 or 3 μm, AA will favor Ca2+ entry through T channels, both by lowering the voltage-gated K+ conductance and by increasing the T current, whereas at 10 μm, AA will prevent Ca2+ entry through voltage-gated Ca2+ channels, both by inducing a K+ conductance and by blocking Ca2+ channels. 相似文献
13.
银杏苦内酯B对缺血豚鼠心室肌动作电位、L-型钙电流和延迟整流钾电流的作用 总被引:8,自引:0,他引:8
目的:研究银杏苦内酯B对正常和缺血心室肌细胞动作电位(action potential,AP),L-型钙电流(L-type calcium current,ICa-L)、延迟整流钾电流(Delayed Rectifier Currennt,IK)的影响.方法:用常规细胞内微电极方法记录豚鼠心室肌细胞动作电位,用全细胞膜片钳技术记录游离心室肌细胞离子流.结果:①在生理条件下,银杏苦内酯B可缩短心室肌细胞动作电位时程 (action potential duration,APD),但对AP其他参数无影响,银杏苦内酯B可增大IK,呈浓度依赖性,但对ICa-L无显著作用;②在缺血条件下,APD50、APD90明显缩短,RP、APA减小,Vmax减慢,而银杏苦内酯B则可延缓和减轻缺血所引起上述参数的变化;3.在缺血条件下,IK和ICa-L均受到抑制,但加入银杏苦内酯B后可逆转缺血所造成这两种离子流的减小.结论:银杏苦内酯B可对抗心肌缺血所引起的心肌电生理的变化,提示银杏苦内酯B可预防心律失常的发生. 相似文献
14.
Son YK Park WS Ko JH Han J Kim N Earm YE 《Biochemical and biophysical research communications》2005,337(4):1145-1152
We studied the effect of adenosine on the Ba(2+)-sensitive K(IR) channels in the smooth muscle cells isolated from the small-diameter (<100microm) coronary arteries of rabbit. Adenosine increased K(IR) currents in concentration-dependent manner (EC(50)=9.4+/-1.4microM, maximum increase of 153%). The adenosine-induced stimulation of K(IR) current was blocked by adenylyl cyclase inhibitor, SQ22536 and was mimicked by adenylyl cyclase activator, forskolin. The adenosine-induced increase of current was blocked by cyclic AMP-dependent protein kinase (PKA) inhibitors, KT 5720 and Rp-8-CPT-cAMPs. The adenosine-induced increase of K(IR) currents was blocked by an A(3)-selective antagonist MRS1334, while the antagonists of other subtypes (DPCPX for A(1), ZM241385 for A(2A), and alloxazine for A(2B)) were all ineffective. Furthermore, an A(3)-selective agonist, 2-Cl-IB-MECA induced increase of K(IR) currents. We also examined the effect of adenosine on coronary blood flow (CBF) rate by using the Langendorff-perfused heart. In the presence of glibenclamide to exclude the effects of ATP-sensitive K(+) (K(ATP)) channels, CBF was increased by adenosine (10microM), which was blocked by the addition of Ba(2+) (50microM). Above results suggest that adenosine increases K(IR) current via A(3) subtype through the activation of PKA in rabbit small-diameter coronary arterial smooth muscle cells. 相似文献
15.
The rapid delayed rectifier K(+) current, I(Kr), plays a key role in repolarisation of cardiac ventricular action potentials (APs). In recent years, a novel clinical condition denoted the short QT syndrome (SQTS) has been identified and, very recently, gain in function mutations in the gene encoding the pore-forming sub-unit of the I(Kr) channel have been proposed to underlie SQTS in some patients. Here, computer simulations were used to investigate the effects of the selective loss of voltage-dependent inactivation of I(Kr) upon ventricular APs and on the QT interval of the electrocardiogram. I(Kr) and inactivation-deficient I(Kr) were incorporated into Luo-Rudy ventricular AP models. Inactivation-deficient I(Kr) produced AP shortening that was heterogeneous between endocardial, mid-myocardial, and epicardial ventricular cell models, irrespective of whether heterogeneity between these sub-regions was incorporated of slow delayed rectifier K(+) current (I(Ks)) alone, or of I(Ks) together with that of transient outward K(+) current. The selective loss of rectification of I(Kr) did not augment transmural dispersion of AP repolarisation, as AP shortening was greater in mid-myocardial than in endo- or epicardial cell models. Simulated conduction through a 1 D transmural ventricular strand was altered by incorporation of inactivation-deficient I(Kr) and the reconstructed QT interval was shortened. Collectively, these results substantiate the notion that selective loss of I(Kr) inactivation produces a gain in I(Kr) function that causes QT interval shortening. 相似文献
16.
蛋白激酶A和蛋白激酶C对豚鼠心肌细胞延迟整流钾电流的作用 总被引:1,自引:0,他引:1
目的 :研究蛋白激酶A和蛋白激酶C对豚鼠心室肌细胞延迟整流钾电流 (Ik)的影响。方法 :采用电极内液浓度差扩散法进行细胞内给药 ,利用全细胞膜片箝技术测定单细胞Ik。结果 :cAMP15 0 μmol/L使Ik及Ik ,tail(pA/pF)从 13.7± 2 .1和 6 .1± 0 .3增至 18.5± 3.3和 6 .4± 2 .1(P <0 .0 1,n =6 ) ;8 CPT cAMP15 0 μmol/L使电流 (pA/pF)从 11.4± 1.8及 5 .3± 0 .6增至 17.9± 4 .0和 6 .2± 1.3,PKA的选择性抑制剂 6 2 2 1.0 μmol/L的可逆转二者的作用。cAMP使Ik的激活曲线左移 ,半激活电压 (V1/ 2 )从 2 3.3mV移至 18.7mV ,激活曲线斜率 (k)在用药前后变化较小。 10 μmol/LPMA可以分别使Ik和Ik ,tial(pA/pF)从 12 .9± 1.8和 5 .0± 1.7升至 2 3.7± 2 .8和 7.5±1.1。PMA使I V曲线幅值增加 ,并随去极化电压的升高其作用加强 ,同时PMA使通道的激活曲线k从 15 .3mV升到 2 5 .6mV ,但对V1/ 2 基本无影响。结论 :蛋白激酶A和蛋白激酶C均可增加豚鼠心肌细胞Ik,但二者作用特点有所不同 相似文献
17.
Effects of nanomolar concentration dihydroouabain on calcium current and intracellular calcium in guinea pig ventricular myocytes 总被引:2,自引:0,他引:2
The effects of nanomolar concentration of dihydroouabain (DHO) on L-type calcium current (ICa-L), TTX-sensitive calcium current (ICa(TTX)), and intracellular calcium concentration ([Ca2+]i) were investigated in guinea pig ventricular myocytes. The whole-cell patch-clamp technique was used to record ICa-L and ICa(TTX); [Ca2+]i was detected and recorded with the confocal microscopy. The nanomolar concentration of DHO increased the ICa-L, ICa(TTX), and [Ca2+]i, which could be partially inhibited by nisoldipine or TTX, but still appeared in the absence of extracellular K+ and Na+. These data suggest that DHO could increase [Ca2+]i in non-beating myocytes via stimulating the ICa-L and ICa(TTX), or perhaps triggering directly a release of intracellular calcium. 相似文献
18.
间歇性低氧对大鼠心室肌细胞短暂外向电流的影响 总被引:3,自引:0,他引:3
利用全细胞膜片箝方法研究间歇性低氧后左、右心室肌细胞短暂外向电流(Ito)的变化,以探讨间歇性低氧增强心肌电稳定性的离子机制。大鼠间歇性暴露于低氧环境28d(H28,6h/d)后,右心室肌细胞的Ito密度较常氧对照组明显增加(1618±461比632±135pA/pF,P<005),而左心室肌细胞Ito密度与对照组无明显差异。间歇性低氧暴露42d(H42)动物,其左、右心室肌细胞Ito密度与对照组无明显差异。Ito激活、失活和恢复动力学变化主要表现为H42组左、右心室肌细胞的稳态失活曲线明显向负电压方向移位。左心室细胞的半数失活电压(-389±23)mV与对照组(-328±59)mV比较,具有显著性差异(P<001);右心室细胞的半数失活电压(-419±45)mV与对照组(-335±35)mV比较,具有显著性差异(P<0001)。据此可推断,Ito密度的改变可反映心室在低氧早期阶段的不同动力学反应。失活动力学改变参与间歇性低氧心脏保护机制 相似文献
19.
Properties of voltage-gated potassium currents of microglia differentiated with granulocyte/macrophage colony-stimulating factor 总被引:3,自引:0,他引:3
Voltage-gated whole-cell currents were recorded from cultured microglial cells which had been developed in the presence of the macrophage/microglial growth factor granulocyte/macrophage colony-stimulating factor. Outward K+ currents (I
K) were most prominent in these cells. I
Kcould be activated at potentials more positive than –40 mV. Half-maximal activation of I
Kwas achieved at –13.8 mV and half-maximal inactivation of I
Kwas determined at –33.8 mV. The recovery of I
Kfrom inactivation was described by a time constant of 7.9 sec. For a tenfold change in extracellular K+ concentration the reversal potential of I
Kshifted by 54 mV.Extracellularly applied 10 mm tetraethylammonium chloride reduced I
K by about 50%, while 5 mm 4-aminopyridine almost completely abolished I
K. Several divalent cations (Ba2+, Cd2+, Co2+, Zn2+) reduced current amplitudes and shifted the activation curve of I
Kto more positive values. Charybdotoxin (IC50 = 1.14 nm) and noxiustoxin (IC50=0.89 nm) blocked I
Kin a concentration-dependent manner, whereas dendrotoxin and mast cell degranulating peptide had no effect on the current amplitudes. 相似文献
20.
Spermine block of the strong inward rectifier potassium channel Kir2.1: dual roles of surface charge screening and pore block 下载免费PDF全文
Inward rectification in strong inward rectifiers such as Kir2.1 is attributed to voltage-dependent block by intracellular polyamines and Mg(2+). Block by the polyamine spermine has a complex voltage dependence with shallow and steep components and complex concentration dependence. To understand the mechanism, we measured macroscopic Kir2.1 currents in excised inside-out giant patches from Xenopus oocytes expressing Kir2.1, and single channel currents in the inside-out patches from COS7 cells transfected with Kir2.1. We found that as spermine concentration or voltage increased, the shallow voltage-dependent component of spermine block at more negative voltages was caused by progressive reduction in the single channel current amplitude, without a decrease in open probability. We attributed this effect to spermine screening negative surface charges involving E224 and E299 near the inner vestibule of the channel, thereby reducing K ion permeation rate. This idea was further supported by experiments in which increasing ionic strength also decreased Kir2.1 single channel amplitude, and by mutagenesis experiments showing that this component of spermine block decreased when E224 and E299, but not D172, were neutralized. The steep voltage-dependent component of block at more depolarized voltages was attributed to spermine migrating deeper into the pore and causing fast open channel block. A quantitative model incorporating both features showed excellent agreement with the steady-state and kinetic data. In addition, this model accounts for previously described substate behavior induced by a variety of Kir2.1 channel blockers. 相似文献