首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mesenchymal stem cells (MSCs) have received significant attention in recent years due to their large potential for cell therapy. Indeed, they secrete a wide variety of immunomodulatory factors of interest for the treatment of immune-related disorders and inflammatory diseases. MSCs can be extracted from multiple tissues of the human body. However, several factors may restrict their use for clinical applications: the requirement of invasive procedures for their isolation, their limited numbers, and their heterogeneity according to the tissue of origin or donor. In addition, MSCs often present early signs of replicative senescence limiting their expansion in vitro, and their therapeutic capacity in vivo. Due to the clinical potential of MSCs, a considerable number of methods to differentiate induced pluripotent stem cells (iPSCs) into MSCs have emerged. iPSCs represent a new reliable, unlimited source to generate MSCs (MSCs derived from iPSC, iMSCs) from homogeneous and well-characterized cell lines, which would relieve many of the above mentioned technical and biological limitations. Additionally, the use of iPSCs prevents some of the ethical concerns surrounding the use of human embryonic stem cells. In this review, we analyze the main current protocols used to differentiate human iPSCs into MSCs, which we classify into five different categories: MSC Switch, Embryoid Body Formation, Specific Differentiation, Pathway Inhibitor, and Platelet Lysate. We also evaluate common and method-specific culture components and provide a list of positive and negative markers for MSC characterization. Further guidance on material requirements to produce iMSCs with these methods and on the phenotypic features of the iMSCs obtained is added. The information may help researchers identify protocol options to design and/or refine standardized procedures for large-scale production of iMSCs fitting clinical demands.  相似文献   

2.
Microglia are the primary resident immune cells in the retina. They regulate neuronal survival and synaptic pruning making them essential for normal development. Following injury, they mediate adaptive responses and under pathological conditions they can trigger neurodegeneration exacerbating the effect of a disease. Retinal organoids derived from human induced pluripotent stem cells (hiPSCs) are increasingly being used for a range of applications, including disease modelling, development of new therapies and in the study of retinogenesis. Despite many similarities to the retinas developed in vivo, they lack some key physiological features, including immune cells. We engineered an hiPSC co-culture system containing retinal organoids and microglia-like (iMG) cells and tested their retinal invasion capacity and function. We incorporated iMG into retinal organoids at 13 weeks and tested their effect on function and development at 15 and 22 weeks of differentiation. Our key findings showed that iMG cells were able to respond to endotoxin challenge in monocultures and when co-cultured with the organoids. We show that retinal organoids developed normally and retained their ability to generate spiking activity in response to light. Thus, this new co-culture immunocompetent in vitro retinal model provides a platform with greater relevance to the in vivo human retina.  相似文献   

3.
4.
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS), with focal T lymphocytic infiltration and damage of myelin and axons. The underlying mechanism of pathogenesis remains unclear and there are currently no effective treatments. The development of neural stem cell (NSC) transplantation provides a promising strategy to treat neurodegenerative disease. However, the limited availability of NSCs prevents their application in neural disease therapy. In this study, we generated NSCs from induced pluripotent stem cells (iPSCs) and transplanted these cells into mice with experimental autoimmune encephalomyelitis (EAE), a model of MS. The results showed that transplantation of iPSC-derived NSCs dramatically reduced T cell infiltration and ameliorated white matter damage in the treated EAE mice. Correspondingly, the disease symptom score was greatly decreased, and motor ability was dramatically rescued in the iPSC-NSC-treated EAE mice, indicating the effectiveness of using iPSC-NSCs to treat MS. Our study provides pre-clinical evidence to support the feasibility of treating MS by transplantation of iPSC-derived NSCs.  相似文献   

5.
视网膜色素上皮(RPE)对视觉功能的维持起着至关重要的作用。视网膜变性是全球不可治愈性致盲疾病的重要原因,它由视网膜色素上皮功能失常所引起。因此,视网膜色素上皮移植是视网膜变性患者恢复视力的一种最有前景的手段之一。随着干细胞技术的快速发展,从多能干细胞(PSC)到有功能的视网膜色素上皮细胞的体外分化诱导技术已经成熟,其中包括胚胎干细胞(ESCs)和诱导多能干细胞(iPSCs)等。此外,从患者特异性iPSCs分化而来的RPE更能用于阐明发病机理并有针对性地个体治疗。更值得一提的是,经诱导得到RPE的移植不论在动物模型中,还是在临床试验里都已经得到了可喜的治疗效果。本文回顾PSC来源RPE干预治疗视网膜变性的最新研究进展。  相似文献   

6.
7.
Vascular injury and destruction of endothelial cells (ECs) are the early events in scleroderma (SSc) patients. This study aims to investigate the therapeutic potential of human-induced pluripotent stem cell-derived ECs (hiPSC-ECs) to treat SSc. We have assessed the functional differentiation of hiPSC-ECs and compared them with human embryonic stem cell-derived ECs (hESC-ECs) by a variety of in vitro experimental approaches. Additionally, we evaluated the therapeutic potential of hiPSC-ECs in a bleomycin-induced SSc mouse model. Our results demonstrated that hiPSC-ECs and hESC-ECs showed similar maximum expressions of FLK1 (early EC marker) at day five during differentiation. After sorting and culturing, the FLK1-positive cells exhibited spindle and subsequent endothelial cobblestone morphology in EGM2 medium. The hESC-ECs and hiPSC-ECs also expressed late EC markers CD31 (68% and 75%), CD144 (50% and 61%), CD146 (46% and 61%), and DiI-labeled acetylated low-density lipoprotein (DiI-ac-LDL) uptake (55% and 63%), respectively. They additionally formed capillary-like structures on Matrigel. Analyses of the transplantation of sorted CD31-positive hiPSC-ECs into the bleomycin-induced SSc mouse model demonstrated that these cells participate in recovery of the damaged vessels. There was a reduction in collagen content; the number of total and degranulated mast cells returned to their normal state, and bleomycin-induced wounds as well as skin fibrosis improved four weeks after transplantation of hiPSC-ECs. Our findings have shown that the differentiation process from hESCs and hiPSCs to vascular cell components is similar. Additionally, this is the first study to determine the therapeutic potential of vascular cells from hiPSCs in the treatment of an SSc model. In the future, with further validation, these may be used as an appropriate source for the treatment of SSc patients.  相似文献   

8.
Induced pluripotent stem cells (iPSCs) have the ability to differentiate into cardiomyocytes (CMs). They are not only widely used in cardiac pharmacology screening, human heart disease modeling, and cell transplantation-based treatments, but also the most promising source of CMs for experimental and clinical applications. However, their use is largely restricted by the immature phenotype of structure and function, which is similar to embryonic or fetal CMs and has certain differences from adult CMs. In order to overcome this critical issue, many studies have explored and revealed new strategies to induce the maturity of iPSC-CMs. Therefore, this article aims to review recent induction methods of mature iPSC-CMs, related mechanisms, and limitations.  相似文献   

9.
10.
Tissue culture of immortal cell strains from diseased patients is an invaluable resource for medical research but is largely limited to tumor cell lines or transformed derivatives of native tissues. Here we describe the generation of induced pluripotent stem (iPS) cells from patients with a variety of genetic diseases with either Mendelian or complex inheritance; these diseases include adenosine deaminase deficiency-related severe combined immunodeficiency (ADA-SCID), Shwachman-Bodian-Diamond syndrome (SBDS), Gaucher disease (GD) type III, Duchenne (DMD) and Becker muscular dystrophy (BMD), Parkinson disease (PD), Huntington disease (HD), juvenile-onset, type 1 diabetes mellitus (JDM), Down syndrome (DS)/trisomy 21, and the carrier state of Lesch-Nyhan syndrome. Such disease-specific stem cells offer an unprecedented opportunity to recapitulate both normal and pathologic human tissue formation in vitro, thereby enabling disease investigation and drug development.  相似文献   

11.
Causative mutations and variants associated with cardiac diseases have been found in genes encoding cardiac ion channels, accessory proteins, cytoskeletal components, junctional proteins, and signaling molecules. In most cases the functional evaluation of the genetic alterationhas been carried out by expressing the mutated proteins in in-vitro heterologous systems. While these studies have provided a wealth of functional details that have greatly enhanced the understanding of the pathological mechanisms, it has always been clear that heterologous expression of the mutant protein bears the intrinsic limitation of the lack of a proper intracellular environment and the lack of pathological remodeling. The results obtained from the application of the next generation sequencing technique to patients suffering from cardiac diseases have identified several loci, mostly in non-coding DNA regions, which still await functional analysis. The isolation and culture of human embryonic stem cells has initially provided a constant source of cells from which cardiomyocytes(CMs) can be obtained by differentiation. Furthermore, the possibility to reprogram cellular fate to a pluripotent state, has opened this process to the study of genetic diseases. Thus induced pluripotent stem cells(i PSCs) represent a completely new cellular model that overcomes the limitations of heterologous studies. Importantly, due to the possibility to keep spontaneously beating CMs in culture for several months, during which they show a certain degree of maturation/aging, this approach will also provide a system in which to address the effect of long-term expression of the mutated proteins or any other DNA mutation, in terms of electrophysiological remodeling. Moreover, since i PSC preserve the entire patients’ genetic context, the system will help the physicians in identifying the most appropriate pharmacological intervention to correct the functional alteration. This article summarizes the current knowledge of cardiac genetic diseases modelled with i PSC.  相似文献   

12.
The recent discovery that it is possible to directly reprogramme somatic cells to an embryonic stem (ES) cell-like pluripotent state, by retroviral transduction of just four genes (Oct3/4, Sox2, c-Myc and Klf4), represents a major breakthrough in stem cell research. The reprogrammed cells, known as induced pluripotent stem (iPS) cells, possess many of the properties of ES cells, and represent one of the most promising sources of patient-specific cells for use in regenerative medicine. While the ultimate goal is the use of iPS cells in the treatment of human disease, much of the research to date has been carried out with murine cells, and improved mouse iPS cells have been shown to contribute to live chimeric mice that are germ-line competent. Very recently, it has been reported that iPS cells can be generated by three factors without c-Myc, and these cells give rise to chimeric mice with a reduced risk of tumour development.  相似文献   

13.
Cardiomyopathy is a pathological condition characterized by cardiac pump failure due to myocardial dysfunction and the major cause of advanced heart failure requiring heart transplantation. Although optimized medical therapies have been developed for heart failure during the last few decades, some patients with cardiomyopathy exhibit advanced heart failure and are refractory to medical therapies. Desmosome, which is a dynamic cell-to-cell junctional component, maintains the structural integrity ...  相似文献   

14.
体细胞诱导为多能干细胞的最新进展   总被引:3,自引:0,他引:3  
周一叶  曾凡一 《生命科学》2008,20(3):425-430
2007年11-12月,Cell、Science和Nature发表一系列体外诱导人类体细胞转变为多能干细胞的论文。来自日本和美国的研究小组利用慢病毒载体分别将Oct-4、Sox2、C-Myc、Klf4和Oct-4、Sox2、Nanog、Lin28两套基因转入人成纤维细胞,均获得类似ES细胞的克隆。小鼠诱导性多能干细胞已初步用于镰刀细胞性贫血的基因治疗。短短一年半,诱导性多能干细胞的研究和关注度呈现了爆炸式成长;体细胞重编程、去分化、多能干细胞来源等一系列热点问题再次成为大众瞩目的中心。  相似文献   

15.
16.
Impressive progress has been made since the turn of the century in the field of stem cells. Different types of stem cells have now been isolated from different types of tissues. Pluripotent stem cells are the most promising cell source for organ regeneration. One such cell type is the germline cell-derived pluripotent cell, which is derived from adult spermatogonial stem cells. The germline cell-derived pluripotent stem cells have been obtained from both human and mouse and, importantly, are adult stem cells with embryonic stem cell-like properties that do not require specific manipulations for pluripotency acquisition, hence bypassing problems related to induced pluripotent stem cells and embryonic stem cells. The germline cell-derived pluripotent stem cells have been induced to differentiate into cells deriving from the three germ layers and shown to be functional in vitro. This review will discuss the plasticity of the germline cell-derived pluripotent stem cells and their potential applications in human organ regeneration, with special emphasis on liver regeneration. Potential problems related to their use are also highlighted.  相似文献   

17.
Reprogramming fibroblasts into induced pluripotent stem cells with Bmi1   总被引:1,自引:0,他引:1  
Moon JH  Heo JS  Kim JS  Jun EK  Lee JH  Kim A  Kim J  Whang KY  Kang YK  Yeo S  Lim HJ  Han DW  Kim DW  Oh S  Yoon BS  Schöler HR  You S 《Cell research》2011,21(9):1305-1315
  相似文献   

18.
19.
陈秋雷  陈彤  姜桦 《生物学杂志》2011,28(4):65-68,56
诱导性多潜能干细胞(induced pluripotent stem cells,iPSCs)可以通过在分化的成纤维细胞中导入特定的转录因子获得。IPS细胞与胚胎干细胞(embryonic stem cell,ESCs)在形态,增殖能力,基因表达谱和畸胎瘤形成上没有区别,因此在研究疾病机制,药物筛选和毒理学上有重要的应用价值。一旦解决了安全性和效率问题,iPS细胞将在再生医学上有重要的应用价值。主要从提高转化效率、制备无遗传修饰的iPS细胞和疾病特异性的iPS细胞这3个近来在iPS领域飞速进展的方向做一综述。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号