首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We have developed a rapid method of generating and simultaneously mapping interrepeat polymerase chain reaction products using DNA from interspecific backcross animals derived from mating C57BL/6J and Mus spretus mice. This method is based on the high degree of B1, B2, and L1 dispersed repeat position polymorphism found between these two species of mouse. We have mapped 13 new loci to 9 different chromosomes and have found no evidence of clustering among these loci. The advantages of this approach are that no prior knowledge of sequence is required, a single PCR reaction generates many markers which can be mapped simultaneously, and only 50 ng of each backcross DNA (a finite resource) is required. We anticipate that many more markers remain to be characterized in this valuable new source of polymorphism.  相似文献   

2.
During our study of the DDK syndrome, we observed sex ratio distortion in favor of males among the offspring of F(1) backcrosses between the C57BL/6 and DDK strains. We also observed significant and reproducible transmission ratio distortion in favor of the inheritance of DDK alleles at loci on chromosome X among female offspring but not among male offspring in (C57BL/6 x DDK)F(1) x C57BL/6 and (C57BL/6-Pgk1(a) x DDK)F(1) x C57BL/6 backcrosses. The observed transmission ratio distortion is maximum at DXMit210 in the central region of chromosome X and decreases progressively at proximal and distal loci, in a manner consistent with the predictions of a single distorted locus model. DXMit210 is closely linked to two distortion-controlling loci (Dcsx1 and Dcsx2) described previously in interspecific backcrosses. Our analysis suggests that the female-offspring-specific transmission ratio distortion we observe is likely to be the result of the death of embryos of particular genotypic combinations. In addition, we confirm the previous suggestion that the transmission ratio distortion observed on chromosome X in interspecific backcrosses is also the result of loss of embryos.  相似文献   

3.
An interspecific backcross linkage map of mouse chromosome 8   总被引:5,自引:0,他引:5  
We have established a 67-cM molecular genetic linkage map of mouse chromosome 8 by interspecific backcross analysis. Genes that were mapped in this study include Act-6, Aprt, Aprt-ps1, Emv-2, Es-N, Hp, Insr, Mt-1, Plat, Psx-8, Ucp, and Zfp-4. New regions of homology were established between mouse chromosome 8 and human chromosomes 8 and 19. A conserved linkage group was identified between mouse chromosome 8 and human chromosome 16. The map will be useful for establishing linkage of other markers to mouse chromosome 8.  相似文献   

4.
An endogenous meiotic driver in the dengue and yellow fever vector mosquito Aedes aegypti can cause highly male-biased sex ratio distortion in crosses from suitable genetic backgrounds. We previously selected a strain that carries a strong meiotic drive gene (D) linked with the male-determining allele (M) on chromosome 1 in A. aegypti. Here, we performed segregation analysis of the M(D) locus among backcross (BC(1)) progeny from a driver male and drive-sensitive females. Assessment of sex ratios among BC(2) progeny showed ~5.2% recombination between the M(D) locus and the sex determination locus. Multipoint linkage mapping across this region revealed consistent marker orders and recombination frequencies with the existing reference linkage map and placed the M(D) locus within a 6.5-cm interval defined by the LF159 locus and microsatellite marker 446GAA, which should facilitate future positional cloning efforts.  相似文献   

5.
We present a linkage map of intracisternal A-particle (IAP) proviral loci. The IAP family consists of 2000 endogenous proviral elements that are widely dispersed in the mouse genome. The map was constructed by using an interspecific backcross and markers defined by oligonucleotide probes specific for subclasses of expressed IAP elements. In genomic DNA from C57BL/6J mouse, these probes each detected from 12 to 44 HindIII restriction fragments that represent junctions between proviral and 5-flanking DNA. The fragments have characteristic strain distribution patterns (SDPs) that are particularly polymorphic in the DNAs of C57BL/6J and Mus spretus mice used for the backcross. IAP loci were placed on the map by comparison of their distribution patterns with those of known genetic markers in the backcross. The map includes 51 IAP loci that have not been previously mapped and 23 IAP proviruses that had been previously mapped in recombinant inbred (RI) strains. Comparable map positions were obtained with the IAP markers in the interspecific backcross and the RI strains. The mapped IAP loci were widely dispersed on the X Chromosome (Chr) and all of the autosomes except Chrs 9 and 19, providing useful genetic markers for linkage studies.  相似文献   

6.
In species with single-locus, chromosome-based mechanisms of sex determination, the laws of segregation predict an equal ratio of females to males at birth. Here, we show that departures from this Mendelian expectation are commonplace in the 8-way recombinant inbred Collaborative Cross (CC) mouse population. More than one-third of CC strains exhibit significant sex ratio distortion (SRD) at wean, with twice as many male-biased than female-biased strains. We show that these pervasive sex biases persist across multiple breeding environments, are stable over time, and are not mediated by random maternal effects. SRD exhibits a heritable component, but QTL mapping analyses fail to nominate any large effect loci. These findings, combined with the reported absence of sex ratio biases in the CC founder strains, suggest that SRD manifests from multilocus combinations of alleles only uncovered in recombined CC genomes. We explore several potential complex genetic mechanisms for SRD, including allelic interactions leading to sex-biased lethality, genetic sex reversal, chromosome drive mediated by sex-linked selfish elements, and incompatibilities between specific maternal and paternal genotypes. We show that no one mechanism offers a singular explanation for this population-wide SRD. Instead, our data present preliminary evidence for the action of distinct mechanisms of SRD at play in different strains. Taken together, our work exposes the pervasiveness of SRD in the CC population and nominates the CC as a powerful resource for investigating diverse genetic causes of biased sex chromosome transmission.  相似文献   

7.
Aneuploidy results from nondisjunction of chromosomes in meiosis and is the leading cause of developmental disabilities and mental retardation in humans. Therefore, understanding aspects of chromosome segregation in a genetic model is of value. Mice heterozygous for a (2.8) Robertsonian translocation were intercrossed with chromosomally normal mice and Chromosome 2 was genotyped for number and parental origin in 836 individuals at 8.5 dpc. The frequency of nondisjunction of this Robertsonian chromosome is 1.58%. Trisomy of Chromosome 2 with two maternally derived chromosomes is the most developmentally successful aneuploid karyotype at 8.5 dpc. Trisomy of Chromosome 2 with two paternally derived chromosomes is developmentally delayed and less frequent than the converse. Individuals with maternal or paternal uniparental disomy of Chromosome 2 were not detected at 8.5 dpc. Nondisjunction events were distributed randomly across litters, i.e., no evidence for clustering was found. Transmission ratio distortion is frequently observed in Robertsonian chromosomes and a bias against the transmission of the (2.8) Chromosome was detected. Interestingly, this was observed for female and male transmitting parents.  相似文献   

8.
We established two mouse interspecific backcross DNA panels, one containing 94 N2 animals from the cross (C57BL/6J × Mus spretus)F1 × C57BL/6J, and another from 94 N2 animals from the reciprocal backcross (C57BL/6J × SPRET/Ei)F1 × SPRET/Ei. We prepared large quantities of DNA from most tissues of each animal to create a community resource of interspecific backcross DNA for use by laboratories interested in mapping loci in the mouse. Initial characterization of the genetic maps of both panels has been completed. We used MIT SSLP markers, proviral loci, and several other sequence-defined genes to anchor our maps to other published maps. The BSB panel map (from the backcross to C57BL/6J) contains 215 loci and is anchored by 45 SSLP and 32 gene sequence loci. The BSS panel map (from the backcross to SPRET/Ei) contains 451 loci and is anchored by 49 SSLP loci, 43 proviral loci, and 60 gene sequence loci. To obtain a high density of markers, we used motif-primed PCR to fingerprint the panel DNAs. We constructed two maps, each representing one of the two panels. All new loci can be located with a high degree of certainty on the maps at current marker density. Segregation patterns in these data reveal several examples of transmission ratio distortion and permit analysis of the distribution of crossovers on individual chromosomes.  相似文献   

9.
D J Norman  C Fletcher  N Heintz 《Genomics》1991,9(1):147-153
The lurcher (Lc) mutant mouse strain exhibits postnatal degeneration of cerebellar Purkinje cells. We have typed progeny from an intersubspecific, phenotypic backcross at seven loci to develop a genetic linkage map which spans approximately 35 cM surrounding and including the Lc locus on mouse chromosome 6. [(Mus musculus castaneus x B6CBA-Aw-J/A-Lc)F1 x B6CBA-Aw-J/A]N2 progeny were scored visually for the lurcher phenotype and molecularly, through restriction fragment length polymorphism analysis, for six cloned markers. Two candidate genes, Npy and Pcp-1, which map to mouse chromosome 6 and which are expressed in the cerebellum, are demonstrated to be distinct from Lc. Three genes are shown to be closely linked to the Lc locus, and the map order cen-Cpa-Npy-Cbl-1-Lc-Igk, Fabpl-Pcp-1 is determined. The molecular genetic linkage map presented here represents progress toward isolating a clone of the Lc gene.  相似文献   

10.
S Xie  J Chen  B Walsh 《Heredity》2014,112(2):165-171
The mapping of sterile genes is an essential issue, which should be solved for the investigation of sterility mechanism in wide hybridization of plants. However, the methods formerly developed cannot address the problem of mapping sterile loci with epistasis. In this study, we developed a new method to map sterile genes with epistasis in wide hybridizations of plants using a backcross design. The maximum likelihood method was used to estimate the parameters of recombination fractions and effects of sterile genes, and the convergent results of these parameters were obtained using the expectation maximization (EM) algorithm. The application and efficiency of this method were tested and demonstrated by a set of simulated data and real data analysis. Results from the simulation experiments showed that the method works well for simultaneously estimating the positions and effects of sterile genes, as well as the epistasis between sterile genes. A real data set of a backcross (BC) population from an interspecific hybrid between cultivated rice, Oryza sativa, and its wild African relative, Oryza longistaminata, was analyzed using the new method. Five sterile genes were detected on the chromosomes of 1, 3, 6, 8 and 10, and significant epistatic effects were found among the four pairs of sterile genes.  相似文献   

11.
We report the chromosomal localization in both mouse and human of a novel G-protein-coupled receptor, GPR48, which resembles glycoprotein hormone receptors, that may be implicated in Wilms tumor deletion syndromes such as WAGR. This receptor forms a novel sub-family of glycoprotein hormone-like GPCRs. We have mapped this receptor to human chromosome 11p14-->p13 by several approaches, including radiation hybrid and interspecific backcross mapping, and show that GPR48 is close to BDNF. This data differs from the recently published mapping of LGR4 (5q34-->q35.1) (Hsu et al., 1998). Additionally, we show that Gpr48 and Bdnf are tightly linked on mouse chromosome 2, in a region with conserved synteny to human 11p14-->p13.  相似文献   

12.
Transmission ratio distortion (TRD) is defined as the observed deviation from the expected Mendelian inheritance of alleles from heterozygous parents. This phenomenon is attributed to various biological mechanisms acting on germ cells, embryos or fetuses, or even in early postnatal life. Current statistical approaches typically use two independent parametrizations assuming that TRD relies on allele- or genotype-related mechanisms, although they have never been tested and compared. This study compared allele- and genotype-related TRD models on simulated datasets with 1000 genotyped offspring and real data from 168 sire–dam–offspring beef cattle trios. The analysis of simulated datasets favored the true model of analysis in most cases (>93%), and a low percentage of missidentification occurred under (almost) null dominance (genotype-related model) or similar and moderate-to-low sire- and dam-specific TRD parameters (allele-related model). Moreover, the correlation between simulated and predicted distortion parameters was high (>0.97) under the true model. The comparison of allele- and genotype-related TRD models is an appealing tool to infer the biological source of TRD (i.e. haploid vs. diploid cells) when screening the whole genome. The analysis of beef cattle data corroborated a TRD region previously reported in chromosome 4, although discarding allele-related mechanisms and favoring the genotype-related model as the more reliable one. The results of this study highlight the relevance of implementing and comparing different parametrizations to capture all kinds of TRD, and to compare them using appropriate statistical methods.  相似文献   

13.
14.
We have generated a 30-cM molecular genetic linkage map of the proximal half of mouse chromosome 14 by interspecific backcross analysis. Loci that were mapped in this study include Bmp-1, Ctla-1, Hap, hr, Plau, Psp-2, Rib-1, and Tcra. A region of homology between mouse chromosome 14 and human chromosome 10 was identified by the localization of Plau to chromosome 14. This interspecific backcross map will be valuable for establishing linkage relationships of additional loci to mouse chromosome 14.  相似文献   

15.
Previously, an interspecific cross between Fusarium circinatum and Fusarium subglutinans was used to generate a genetic linkage map. A ca. 55 % of genotyped markers displayed transmission ratio distortion (TRD) that demonstrated a genome-wide distribution. The working hypothesis for this study was that TRD would be non-randomly distributed throughout the genetic linkage map. This would indicate the presence of distorting loci. Using a genome-wide threshold of α = 0.01, 79 markers displaying TRD were distributed on all 12 linkage groups (LGs). Eleven putative transmission ratio distortion loci (TRDLs), spanning eight LGs, were identified in regions containing three or more adjacent markers displaying distortion. No epistatic interactions were observed between these TRDLs. Thus, it is uncertain whether the genome-wide TRD was due to linkage between markers and genomic regions causing distortion. The parental origins of markers followed a non-random distribution throughout the linkage map, with LGs containing stretches of markers originating from only one parent. Thus, due to the nature of the interspecific cross, the current hypothesis to explain these observations is that the observed genome-wide segregation was caused by the high level of genomic divergence between the parental isolates. Therefore, homologous chromosomes do not align properly during meiosis, resulting in aberrant transmission of markers. This also explains previous observations of the preferential transmission of F. subglutinans alleles to the F1 progeny.  相似文献   

16.
Transmission ratio distortion (TRD) is the departure from the expected genotypic frequencies under Mendelian inheritance. This departure can be due to multiple physiological mechanisms during gametogenesis, fertilization, fetal and embryonic development, and early neonatal life. Although a few TRD loci have been reported in mouse, inheritance patterns have never been evaluated for TRD. In this article, we developed a Bayesian binomial model accounting for additive and dominant deviation TRD mechanisms. Moreover, this model was used to perform genome-wide scans for TRD quantitative trait loci (QTL) on six F2 mouse crosses involving between 296 and 541 mice and between 72 and 1854 genetic markers. Statistical significance of each model was checked at each genetic marker with Bayes factors. Genome scans revealed overdominance TRD QTL located in mouse chromosomes 1, 2, 12, 13, and 14 and additive TRD QTL in mouse chromosomes 2, 3, and 15, although these results did not replicate across mouse crosses. This research contributes new statistical tools for the analysis of specific genetic patterns involved in TRD in F2 populations, our results suggesting a relevant incidence of TRD phenomena in mouse with important implications for both statistical analyses and biological research.  相似文献   

17.
18.
Genetic control of foliar oil composition was investigated amongst half-sib progeny of an interspecific eucalypt hybrid. The oil was found to be largely composed of the monoterpenes, limonene, α−pinene, γ−terpinene, 1,8 cineole and p-cymene. Due to difficulties in the interpretation of the compositional data based on raw proportions, further analysis was conducted using log-ratio variables. A high degree of intercorrelation amongst log-ratios was thought to be a consequence of commonality in the biosynthetic origins of the monoterpenes. Quantitative trait locus (QTL) analysis of log-ratio variables indicated that a significant (68–81%) proportion of the variation in four out of the ten possible log-ratios were controlled by a single genomic region of the maternal Eucalyptus grandis parent. The impact of this genomic region upon oil composition was thought to be a consequence of a gene, or genes, controlling the production of limonene, as limonene was the predominant oil constituent in many hybrid individuals and was common to all log-ratios associated with the identified genomic region. Received: 20 November 1998 / Accepted: 16 June 1999  相似文献   

19.
20.
Lyon MF  Schimenti JC  Evans EP 《Genetics》2000,155(2):793-801
Previously a deletion in mouse chromosome 17, T(22H), was shown to behave like a t allele of the t complex distorter gene Tcd1, and this was attributed to deletion of this locus. Seven further deletions are studied here, with the aim of narrowing the critical region in which Tcd1 must lie. One deletion, T(30H), together with three others, T(31H), T(33H), and T(36H), which extended more proximally, caused male sterility when heterozygous with a complete t haplotype and also enhanced transmission ratio of the partial t haplotype t(6), and this was attributed to deletion of the Tcd1 locus. The deletions T(29H), T(32H), and T(34H) that extended less proximally than T(30H) permitted male fertility when opposite a complete t haplotype. These results enabled narrowing of the critical interval for Tcd1 to between the markers D17Mit164 and D17Leh48. In addition, T(29H) and T(32H) enhanced the transmission ratio of t(6), but significantly less so than T(30H). T(34H) had no effect on transmission ratio. These results could be explained by a new distorter located between the breakpoints of T(29H) and T(34H) (between T and D17Leh66E). It is suggested that the original distorter Tcd1 in fact consists of two loci: Tcd1a, lying between D17Mit164 and D17Leh48, and Tcd1b, lying between T and D17Leh66E.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号