首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Membrane fusion within the endomembrane system follows a defined order of events: membrane tethering, mediated by Rabs and tethers, assembly of soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein receptor (SNARE) complexes, and lipid bilayer mixing. Here we present evidence that the vacuolar HOPS tethering complex controls fusion through specific interactions with the vacuolar SNARE complex (consisting of Vam3, Vam7, Vti1, and Nyv1) and the N-terminal domains of Vam7 and Vam3. We show that homotypic fusion and protein sorting (HOPS) binds Vam7 via its subunits Vps16 and Vps18. In addition, we observed that Vps16, Vps18, and the Sec1/Munc18 protein Vps33, which is also part of the HOPS complex, bind to the Q-SNARE complex. In agreement with this observation, HOPS-stimulated fusion was inhibited if HOPS was preincubated with the minimal Q-SNARE complex. Importantly, artificial targeting of Vam7 without its PX domain to membranes rescued vacuole morphology in vivo, but resulted in a cytokinesis defect if the N-terminal domain of Vam3 was also removed. Our data thus support a model of HOPS-controlled membrane fusion by recognizing different elements of the SNARE complex.  相似文献   

2.
The Sec1/Munc18 (SM) family of proteins is thought to impart compartmental specificity to vesicle fusion reactions. Here we report characterization of Vps33p, an SM family member previously thought to act exclusively at the vacuolar membrane with the vacuolar syntaxin Vam3p. Vacuolar morphology of vps33Delta cells resembles that of cells lacking both Vam3p and the endosomal syntaxin Pep12p, suggesting that Vps33p may function with these syntaxins at the vacuole and the endosome. Consistent with this, vps33 mutants secrete the Golgi precursor form of the vacuolar hydrolase CPY into the medium. We also demonstrate that Vps33p acts at other steps, for vps33 mutants show severe defects in endocytosis at the late endosome. At the endosome, Vps33p and other class C members exist as a complex with Vps8p, a protein previously known to act in transport between the late Golgi and the endosome. Vps33p also interacts with Pep12p, a known interactor of the SM protein Vps45p. High copy PEP7/VAC1 suppresses vacuolar morphology defects of vps33 mutants. These findings demonstrate that Vps33p functions at multiple trafficking steps and is not limited to action at the vacuolar membrane. This is the first report demonstrating the involvement of a single syntaxin with two SM proteins at the same organelle.  相似文献   

3.
Vam2p/Vps41p is known to be required for transport vesicles with vacuolar cargo to bud from the Golgi. Like other VAM-encoded proteins, which are needed for homotypic vacuole fusion, we now report that Vam2p and its associated protein Vam6p/Vps39p are needed on each vacuole partner for homotypic fusion. In vitro vacuole fusion occurs in successive steps of priming, docking, and membrane fusion. While priming does not require Vam2p or Vam6p, the functions of these two proteins cannot be fulfilled until priming has occurred, and each is required for the docking reaction which culminates in trans-SNARE pairing. Consistent with their dual function in Golgi vesicle budding and homotypic fusion of vacuoles, approximately half of the Vam2p and Vam6p of the cell are recovered from cell lysates with purified vacuoles.  相似文献   

4.
Soluble N-ethylmaleimide–sensitive factor attachment protein receptor (SNARE) proteins catalyze membrane fusion events in the secretory and endolysosomal systems, and all SNARE-mediated fusion processes require cofactors of the Sec1/Munc18 (SM) family. Vps33 is an SM protein and subunit of the Vps-C complexes HOPS (homotypic fusion and protein sorting) and CORVET (class C core vacuole/endosome tethering), which are central regulators of endocytic traffic. Here we present biochemical studies of interactions between Saccharomyces cerevisiae vacuolar SNAREs and the HOPS holocomplex or Vps33 alone. HOPS binds the N-terminal Habc domain of the Qa-family SNARE Vam3, but Vps33 is not required for this interaction. Instead, Vps33 binds the SNARE domains of Vam3, Vam7, and Nyv1. Vps33 directly binds vacuolar quaternary SNARE complexes, and the affinity of Vps33 for SNARE complexes is greater than for individual SNAREs. Through targeted mutational analyses, we identify missense mutations of Vps33 that produce a novel set of defects, including cargo missorting and the loss of Vps33-HOPS association. Together these data suggest a working model for membrane docking: HOPS associates with N-terminal domains of Vam3 and Vam7 through Vps33-independent interactions, which are followed by binding of Vps33, the HOPS SM protein, to SNARE domains and finally to the quaternary SNARE complex. Our results also strengthen the hypothesis that SNARE complex binding is a core attribute of SM protein function.  相似文献   

5.
The dynamic equilibrium between vesicle fission and fusion at Golgi, endosome, and vacuole/lysosome is critical for the maintenance of organelle identity. It depends, among others, on Rab GTPases and tethering factors, whose function and regulation are still unclear. We now show that transport among Golgi, endosome, and vacuole is controlled by two homologous tethering complexes, the previously identified HOPS complex at the vacuole and a novel endosomal tethering (CORVET) complex, which interacts with the Rab GTPase Vps21. Both complexes share the four class C Vps proteins: Vps11, Vps16, Vps18, and Vps33. The HOPS complex, in addition, contains Vps41/Vam2 and Vam6, whereas the CORVET complex has the Vps41 homolog Vps8 and the (h)Vam6 homolog Vps3. Strikingly, the CORVET and HOPS complexes can interconvert; we identify two additional intermediate complexes, both consisting of the class C core bound to Vam6-Vps8 or Vps3-Vps41. Our data suggest that modular assembled tethering complexes define organelle biogenesis in the endocytic pathway.  相似文献   

6.
Delivery of endocytosed macromolecules to mammalian cell lysosomes occurs by direct fusion of late endosomes with lysosomes, resulting in the formation of hybrid organelles from which lysosomes are reformed. The molecular mechanisms of this fusion are analogous to those of homotypic vacuole fusion in Saccharomyces cerevisiae. We report herein the major roles of the mammalian homolog of yeast Vps18p (mVps18p), a member of the homotypic fusion and vacuole protein sorting complex. When overexpressed, mVps18p caused the clustering of late endosomes/lysosomes and the recruitment of other mammalian homologs of the homotypic fusion and vacuole protein sorting complex, plus Rab7-interacting lysosomal protein. The clusters were surrounded by components of the actin cytoskeleton, including actin, ezrin, and specific unconventional myosins. Overexpression of mVps18p also overcame the effect of wortmannin treatment, which inhibits membrane traffic out of late endocytic organelles and causes their swelling. Reduction of mVps18p by RNA interference caused lysosomes to disperse away from their juxtanuclear location. Thus, mVps18p plays a critical role in endosome/lysosome tethering, fusion, intracellular localization and in the reformation of lysosomes from hybrid organelles.  相似文献   

7.
Membrane fusion requires priming, the disassembly of cis-SNARE complexes by the ATP-driven chaperones Sec18/17p. Yeast vacuole priming releases Vam7p, a soluble SNARE. Vam7p reassociation during docking allows trans-SNARE pairing and fusion. We now report that recombinant Vam7p (rVam7p) enters into complex with other SNAREs in vitro and bypasses the need for Sec17p, Sec18p, and ATP. Thus, the sole essential function of vacuole priming in vitro is the release of Vam7p from cis-SNARE complexes. In 'bypass fusion', without ATP but with added rVam7p, there are sufficient unpaired vacuolar SNAREs Vam3p, Vti1p, and Nyv1p to interact with Vam7p and support fusion. However, active SNARE proteins are not sufficient for bypass fusion. rVam7p does not bypass requirements for Rho GTPases,Vps33p, Vps39p, Vps41p, calmodulin, specific lipids, or Vph1p, a subunit of the V-ATPase. With excess rVam7p, reduced levels of PI(3)P or functional Ypt7p suffice for bypass fusion. High concentrations of rVam7p allow the R-SNARE Ykt6p to substitute for Nyv1p for fusion; this functional redundancy among vacuole SNAREs may explain why nyv1delta strains lack the vacuole fragmentation seen with mutants in other fusion catalysts.  相似文献   

8.
Yeast Vps24p (vacuolar protein sorting) is part of a protein complex suggested to function in sorting/trafficking during endocytosis. We have characterized a mammalian homolog of the yeast protein, mVps24p, and examined its role in epidermal growth factor receptor trafficking. Endogenous mVps24p was distributed in both cytosol and in puncta and partially colocalized with markers for the trans-Golgi network. Adventitious expression of hrs or a mVps4p mutant deficient in ATPase activity caused a redistribution of both mVps24p and the M6PR to the resultant clustered/enlarged early endosomes. Expression of an mVps24p N-terminal fragment, that interacts with phosphatidylinositol 3,5-bisphosphate but not with mVps4p, produces enlarged early endosomes. More importantly, the mVps24p N-terminal fragment resulted in not only enhanced recycling, but also decreased degradation of the EGF receptor. These findings are consistent with a model in which mVps24p has a role in trafficking from the early endosome.  相似文献   

9.
Many multiprotein complexes mediate the fusion of the intracellular membranes. The question how the specificity of the membrane fusion is controlled has not been fully elucidated. Here we report the identification of a mouse homologue Vps16p (mVps16), which exhibits a high homology to the yeast Vps16p, a component of Class C vacuolar protein sorting (Vps) complex implicated in the yeast vacuole membrane fusion. Northern and Western blot analyses reveal that mVps16 is ubiquitously expressed in the mouse peripheral tissues. Biochemical analyses show that mammalian Class C Vps proteins interact with multiple syntaxins and Vps45p, which localizes in the endosomal compartments. The internalization of transferrin (Tf) is not affected by the overexpression of mammalian class C Vps proteins, but the recycling was inhibited. Taken together, this study provides biochemical characteristics of mVps16p in mammalian cells and the potential roles of mammalian Class C Vps proteins in membrane trafficking.  相似文献   

10.
In eukaryotic endomembrane systems, Qabc-SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) on one membrane and R-SNARE on the opposing membrane assemble into a trans-QabcR-SNARE complex to drive membrane fusion. However, it remains ambiguous whether pairing of Qabc- and R-SNAREs mediates membrane fusion specificity. Here, we explored the fusion specificity of reconstituted proteoliposomes bearing purified SNAREs in yeast vacuoles and other organelles. We found that not only vacuolar R-SNARE Nyv1p but also the non-cognate R-SNAREs, endosomal Snc2p, and endoplasmic reticulum-Golgi Sec22p caused efficient fusion with vacuolar Qabc-SNAREs. In contrast, their fusion is blocked completely by replacing vacuolar Qc-SNARE Vam7p with the non-cognate endosomal Tlg1p and Syn8p, although these endosomal Qc-SNAREs fully retained the ability to form cis-SNARE complexes with vacuolar SNAREs in solution and on membranes. Thus, our current study establishes that an appropriate assembly of Qabc-SNAREs is crucial for regulating fusion specificity, whereas R-SNARE itself has little contribution to specificity.  相似文献   

11.
Syntaxins are target‐SNAREs that crucially contribute to determine membrane compartment identity. Three syntaxins, Tlg2p, Pep12p and Vam3p, organize the yeast endovacuolar system. Remarkably, filamentous fungi lack the equivalent of the yeast vacuolar syntaxin Vam3p, making unclear how these organisms regulate vacuole fusion. We show that the nearly essential Aspergillus nidulans syntaxin PepAPep12, present in all endocytic compartments between early endosomes and vacuoles, shares features of Vam3p and Pep12p, and is capable of forming compositional equivalents of all known yeast endovacuolar SNARE bundles including that formed by yeast Vam3p for vacuolar fusion. Our data further indicate that regulation by two Sec1/Munc‐18 proteins, Vps45 in early endosomes and Vps33 in early and late endosomes/vacuoles contributes to the wide domain of PepAPep12 action. The syntaxin TlgBTlg2 localizing to the TGN appears to mediate retrograde traffic connecting post‐Golgi (sorting) endosomes with the TGN. TlgBTlg2 is dispensable for growth but becomes essential if the early Golgi syntaxin SedVSed5 is compromised, showing that the Golgi can function with a single syntaxin, SedVSed5. Remarkably, its pattern of associations with endosomal SNAREs is consistent with SedVSed5 playing roles in retrograde pathway(s) connecting endocytic compartments downstream of the post‐Golgi endosome with the Golgi, besides more conventional intra‐Golgi roles.  相似文献   

12.
Biological membrane fusion employs divalent cations as protein cofactors or as signaling ligands. For example, Mg2+ is a cofactor for the N-ethylmaleimide-sensitive factor (NSF) ATPase, and the Ca2+ signal from neuronal membrane depolarization is required for synaptotagmin activation. Divalent cations also regulate liposome fusion, but the role of such ion interactions with lipid bilayers in Rab- and soluble NSF attachment protein receptor (SNARE)-dependent biological membrane fusion is less clear. Yeast vacuole fusion requires Mg2+ for Sec18p ATPase activity, and vacuole docking triggers an efflux of luminal Ca2+. We now report distinct reaction conditions where divalent or monovalent ions interchangeably regulate Rab- and SNARE-dependent vacuole fusion. In reactions with 5 mm Mg2+, other free divalent ions are not needed. Reactions containing low Mg2+ concentrations are strongly inhibited by the rapid Ca2+ chelator BAPTA. However, addition of the soluble SNARE Vam7p relieves BAPTA inhibition as effectively as Ca2+ or Mg2+, suggesting that Ca2+ does not perform a unique signaling function. When the need for Mg2+, ATP, and Sec18p for fusion is bypassed through the addition of Vam7p, vacuole fusion does not require any appreciable free divalent cations and can even be stimulated by their chelators. The similarity of these findings to those with liposomes, and the higher ion specificity of the regulation of proteins, suggests a working model in which ion interactions with bilayer lipids permit Rab- and SNARE-dependent membrane fusion.  相似文献   

13.
It has been demonstrated that Saccharomyces cerevisiae Vam6p/Vps39p plays a critical role in the tethering steps of vacuolar membrane fusion by facilitating guanine nucleotide exchange on small guanosine triphosphatase (GTPase) Vam4p/Ypt7p. We report here the identification and characterization of a novel protein in Aspergillus nidulans, AvaB, that exhibits similarity to Vam6p/Vps39p and plays a critical role in vacuolar morphogenesis in A. nidulans. AvaB is comprised of 1058 amino acids with amino-terminal citron homology (CNH) and central clathrin homology (CLH) domains, as observed for other Vam6p/Vps39p family proteins. Disruption of avaB in A. nidulans resulted in the fragmentation of vacuoles and reduced growth rate under various growth conditions, implying its importance in maintaining vacuolar morphology and function. Yeast two-hybrid analysis demonstrated the interaction of AvaB with AvaA, a Vam4p/Ypt7p homolog in A. nidulans, as well as the homooligomer formation of AvaB, suggesting that AvaB performs its function through hetero- or homophilic protein-protein interactions.  相似文献   

14.
Sec1p/Munc18 (SM) proteins play a key role in the regulation of soluble N-ethylmaleimide-sensitive fusion (NSF)-attachment protein receptor (SNARE)-mediated intracellular membrane trafficking events in all eukaryotic cells. Understanding the molecular mechanisms by which SM proteins function has not been straight forward as SM proteins bind to their cognate SNARE proteins by at least two distinct mechanisms, suggesting that they provide more than one function. We have previously characterised two binding modes used by the yeast SM protein Vps45p to interact with its SNARE proteins. In one of these modes, the N terminus of the syntaxin Tlg2p inserts into a hydrophobic pocket in the SM protein. We now report that disruption of this high-affinity binding between Vps45p and Tlg2p leads to downregulation of Tlg2p, and propose that this pocket-mode of binding of SM proteins to their cognate syntaxins serves to regulate cellular levels of the syntaxin.  相似文献   

15.
Intracellular membrane fusion requires the regulated assembly of SNARE (soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein receptor) proteins anchored in the apposed membranes. To exert the force required to drive fusion between lipid bilayers, juxtamembrane SNARE motifs zipper into four-helix bundles. Importantly, SNARE function is regulated by additional factors, none more extensively studied than the SM (Sec1/Munc18-like) proteins. SM proteins interact with both individual SNAREs and SNARE complexes, likely chaperoning SNARE complex formation and protecting assembly intermediates from premature disassembly by NSF. Four families of SM proteins have been identified, and representative members of two of these families (Sec1/Munc18 and Sly1) have been structurally characterized. We report here the 2.6 Å resolution crystal structure of an SM protein from the third family, Vps33. Although Vps33 shares with the first two families the same basic three-domain architecture, domain 1 is displaced by 15 Å, accompanied by a 40° rotation. A unique feature of the Vps33 family of SM proteins is that its members function as stable subunits within a multi-subunit tethering complex called HOPS (homotypic fusion and vacuolar protein sorting). Integration into the HOPS complex depends on the interaction between Vps33 and a second HOPS subunit, Vps16. The crystal structure of Vps33 bound to a C-terminal portion of Vps16, also at 2.6 Å resolution, reveals the structural basis for this interaction. Despite the extensive interface between the two HOPS subunits, the conformation of Vps33 is only subtly affected by binding to Vps16.  相似文献   

16.
HOPS proofreads the trans-SNARE complex for yeast vacuole fusion   总被引:2,自引:0,他引:2       下载免费PDF全文
The fusion of yeast vacuoles, like other organelles, requires a Rab-family guanosine triphosphatase (Ypt7p), a Rab effector and Sec1/Munc18 (SM) complex termed HOPS (homotypic fusion and vacuole protein sorting), and soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs). The central 0-layer of the four bundled vacuolar SNAREs requires the wild-type three glutaminyl (Q) and one arginyl (R) residues for optimal fusion. Alterations of this layer dramatically increase the K(m) value for SNAREs to assemble trans-SNARE complexes and to fuse. We now find that added purified HOPS complex strongly suppresses the fusion of vacuoles bearing 0-layer alterations, but it has little effect on the fusion of vacuoles with wild-type SNAREs. HOPS proofreads at two levels, inhibiting the formation of trans-SNARE complexes with altered 0-layers and suppressing the ability of these mismatched 0-layer trans-SNARE complexes to support membrane fusion. HOPS proofreading also extends to other parts of the SNARE complex, because it suppresses the fusion of trans-SNARE complexes formed without the N-terminal Phox homology domain of Vam7p (Q(c)). Unlike some other SM proteins, HOPS proofreading does not require the Vam3p (Q(a)) N-terminal domain. HOPS thus proofreads SNARE domain and N-terminal domain structures and regulates the fusion capacity of trans-SNARE complexes, only allowing full function for wild-type SNARE configurations. This is the most direct evidence to date that HOPS is directly involved in the fusion event.  相似文献   

17.
Sec1/Mun18-like (SM) proteins and soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) play central roles in intracellular membrane fusion. Diverse modes of interaction between SM proteins and SNAREs from the syntaxin family have been described. However, the observation that the N-terminal domains of Sly1 and Vps45, the SM proteins involved in traffic at the endoplasmic reticulum, the Golgi, the trans-Golgi network and the endosomes, bind to similar N-terminal sequences of their cognate syntaxins suggested a unifying theme for SM protein/SNARE interactions in most internal membrane compartments. To further understand this mechanism of SM protein/SNARE coupling, we have elucidated the structure in solution of the isolated N-terminal domain of rat Sly1 (rSly1N) and analyzed its complex with an N-terminal peptide of rat syntaxin 5 by NMR spectroscopy. Comparison with the crystal structure of a complex between Sly1p and Sed5p, their yeast homologues, shows that syntaxin 5 binding requires a striking conformational change involving a two-residue shift in the register of the C-terminal beta-strand of rSly1N. This conformational change is likely to induce a significant alteration in the overall shape of full-length rSly1 and may be critical for its function. Sequence analyses indicate that this conformational change is conserved in the Sly1 family but not in other SM proteins, and that the four families represented by the four SM proteins found in yeast (Sec1p, Sly1p, Vps45p and Vps33p) diverged early in evolution. These results suggest that there are marked distinctions between the mechanisms of action of each of the four families of SM proteins, which may have arisen from different regulatory requirements of traffic in their corresponding membrane compartments.  相似文献   

18.
Fused Toes (FTS) is a member of a small group of inactive variant E2 ubiquitin-conjugating enzyme domain-containing proteins of unknown function. Through proteomic analysis of FTS complexes purified from human embryonic kidney 293T cells, we identified a new multiprotein complex, the FHF complex, containing FTS, members of the microtubule-binding Hook family of coiled-coil proteins (Hook1, Hook2, and Hook3), and a previously uncharacterized 107-kDa protein, FTS and Hook Interacting Protein (FHIP). FTS associated with a conserved C-terminal motif in Hook proteins in the yeast two-hybrid system and in tissue culture cells, and Hook proteins were found to form homo- and heterodimers. The approximately 500-kDa FHF complex contained all three Hook proteins, and small interfering RNA depletion experiments suggest that Hook proteins can interact interchangeably within this complex. Hook proteins as well as FTS interact with members of both the class B and class C components of the homotypic vesicular protein sorting (HOPS) complex. Depletion of FTS by RNA interference affects both the trafficking of epidermal growth factor from early-to-late endosome/lysosomes and the efficiency by which overexpression of the HOPS component Vps18 promotes clustering of lysosomal-associated membrane protein 1-positive endosome/lysosomes. These data suggest that the FTS/Hook/FHIP complex functions to promote vesicle trafficking and/or fusion via the HOPS complex.  相似文献   

19.
In yeast, the Class C Vps protein complex (C-Vps complex), composed of Vps11, Vps16, Vps18, and Vps33, functions in Golgi-to-vacuole protein transport. In this study, we characterized and purified this complex and identified its interaction with the syntaxin homolog Vam3. Vam3 pairs with the SNAP-25 homolog Vam7 and VAMP homolog Vti1 to form SNARE complexes during vesicle docking/fusion with the vacuole. The C-Vps complex does not bind to Vam3-Vti1-Vam7 paired SNARE complexes but instead binds to unpaired Vam3. Antibodies to a component of this complex inhibited in vitro vacuole-to-vacuole fusion. Furthermore, temperature-conditional mutations in the Class C VPS genes destabilized Vam3-Vti1-Vam7 pairing. Therefore, we propose that the C-Vps complex associates with unpaired (activated) Vam3 to mediate the assembly of trans-SNARE complexes during both vesicle docking/fusion and vacuole-to-vacuole fusion.  相似文献   

20.
Ca2+ transients trigger many SNARE-dependent membrane fusion events. The homotypic fusion of yeast vacuoles occurs after a release of lumenal Ca2+. Here, we show that trans-SNARE interactions promote the release of Ca2+ from the vacuole lumen. Ypt7p-GTP, the Sec1p/Munc18-protein Vps33p, and Rho GTPases, all of which function during docking, are required for Ca2+ release. Inhibitors of SNARE function prevent Ca2+ release. Recombinant Vam7p, a soluble Q-SNARE, stimulates Ca2+ release. Vacuoles lacking either of two complementary SNAREs, Vam3p or Nyv1p, fail to release Ca2+ upon tethering. Mixing these two vacuole populations together allows Vam3p and Nyv1p to interact in trans and rescues Ca2+ release. Sec17/18p promote sustained Ca2+ release by recycling SNAREs (and perhaps other limiting factors), but are not required at the release step itself. We conclude that trans-SNARE assembly events during docking promote Ca2+ release from the vacuole lumen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号