首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Multiple roles of the cytoskeleton in autophagy   总被引:1,自引:0,他引:1  
Autophagy is involved in a wide range of physiological processes including cellular remodeling during development, immuno‐protection against heterologous invaders and elimination of aberrant or obsolete cellular structures. This conserved degradation pathway also plays a key role in maintaining intracellular nutritional homeostasis and during starvation, for example, it is involved in the recycling of unnecessary cellular components to compensate for the limitation of nutrients. Autophagy is characterized by specific membrane rearrangements that culminate with the formation of large cytosolic double‐membrane vesicles called autophagosomes. Autophagosomes sequester cytoplasmic material that is destined for degradation. Once completed, these vesicles dock and fuse with endosomes and/or lysosomes to deliver their contents into the hydrolytically active lumen of the latter organelle where, together with their cargoes, they are broken down into their basic components. Specific structures destined for degradation via autophagy are in many cases selectively targeted and sequestered into autophagosomes. A number of factors required for autophagy have been identified, but numerous questions about the molecular mechanism of this pathway remain unanswered. For instance, it is unclear how membranes are recruited and assembled into autophagosomes. In addition, once completed, these vesicles are transported to cellular locations where endosomes and lysosomes are concentrated. The mechanism employed for this directed movement is not well understood. The cellular cytoskeleton is a large, highly dynamic cellular scaffold that has a crucial role in multiple processes, several of which involve membrane rearrangements and vesicle‐mediated events. Relatively little is known about the roles of the cytoskeleton network in autophagy. Nevertheless, some recent studies have revealed the importance of cytoskeletal elements such as actin microfilaments and microtubules in specific aspects of autophagy. In this review, we will highlight the results of this work and discuss their implications, providing possible working models. In particular, we will first describe the findings obtained with the yeast Saccharomyces cerevisiae, for long the leading organism for the study of autophagy, and, successively, those attained in mammalian cells, to emphasize possible differences between eukaryotic organisms.  相似文献   

2.
Many aspects of the reproductive anatomy and physiology of tettigoniids have been studied extensively. These include the large, externally visible spermatophores and the bundles of sperm, known as spermatodesms. However, spermatodoses, spermatophore-like structures found within the spermatheca, seem to have been almost completely overlooked: their structure has not been described since 1913 and they have subsequently received only passing mention in the literature. Each time the female mates, a separate spermatodose is formed. Here I use photographs, from light-microscopy, of whole and sectioned spermatodoses to describe the external and internal structure of spermatodoses of nine different genera within the subfamily Tettigoniinae. The structure of the spermatodoses is very similar for the different genera. Each spermatodose is pear- or onion-shaped and consists of a thin outer layer, enclosing a thick, gelatinous inner layer. A large sperm mass occupies the bulbous end of the spermatodose, while a thin sperm-tube leads from the sperm mass, along the center of the elongated neck of the spermatodose, and appears to exit at the pointed-tip of the spermatodose. Feather-like bundles of sperm (spermatodesms) were clearly visible within the sperm mass and also appeared to be present within the sperm-tube. The wall of the sperm tube appeared to be composed of material similar to that of the outer layer of the spermatodose. Within the spermatheca, spermatodoses appeared to be stratified in that only one of them ever occupied the position nearest to the spermathecal duct. The possible function of spermatodoses is discussed: it is proposed that they have evolved as a result of sexual conflict and function to protect the sperm from being destroyed by the female while they are in storage.  相似文献   

3.
Over the past 40 years evidence from many sources has indicated that the mammalian acrosome reaction occurs within or near the cumulus oophorus. Recently, however, workers investigating in vitro fertilization in the mouse have concluded that in this system the acrosome reaction takes place on the surface of the zona pellucida. We have investigated the interaction of rat spermatozoa and the zona pellucida by using the scanning electron microscope (SEM) and two monoclonal antibodies which are directed to antigens of the rat sperm acrosome. When in vitro inseminated eggs from which the cumulus has been removed are viewed with the SEM some sperm heads on the surface of the zona pellucida appear unaltered whereas others appear to be undergoing changes. In vivo, all displayed altered head morphology. Using immunogold labeling we found that the two antibodies employed, 2C4 and 5B1, were directed to acrosomal content and vesiculating acrosomal membranes. Immunofluoresence staining of zonae pellucidae in in vitro fertilization studies revealed numerous small positive regions. These were presumably acrosomal content and membranes which had been left on the zona surface by spermatozoa which had been associated with the zona surface. Our results suggest that the rat acrosome interacts with the zona pellucida. During this interaction some acrosomal content and membranes detach from the spermatozoon and remain on the surface of the zona pellucida.  相似文献   

4.
The acrosome complex plays an indispensable role in the normal function of mature spermatozoa. However, the dynamic process of acrosome complex formation in insect remains poorly understood. Gampsocleis gratiosa Brunner von Wattenwyl possesses the typical characteristic of insect sperms, which is tractable in terms of size, and therefore was selected for the acrosome formation study in this report. The results show that acrosome formation can be divided into six phases: round, rotating, rhombic, cylindrical, transforming and mature phase, based on the morphological dynamics of acrosome complex and nucleus. In addition, the cytoskeleton plays a critical role in the process of acrosome formation. The results from this study indicate that: (1) glycoprotein is the major component of the acrosome proper; (2) the microfilament is one element of the acrosome complex, and may mediate the morphologic change of the acrosome complex; (3) the microtubules might also shape the nucleus and acrosome complex during the acrosome formation.  相似文献   

5.
Orthopteran song terminology is briefly reviewed taking into account new proposals concerning the term ‘chirp’ by Broughton (1976). The song of Platycleis intermedia is analysed in detail. Synchronous or unison singing between conspecifics of this species is maintained, despite ambient temperature differences, by the individual at the lower temperature instantaneously extending its echeme interval. The normal songs of P.afinis, P.falx, P.sabulosa and P.albopunctata are described and compared with each other and with the song of P.intermedia. The songs of all five species are similar at the syllable level but different at the echeme level. It appears to be these similarities and differences that are responsible for song modification on the part of P.intermedia when it hears the song of one of the other four species.  相似文献   

6.
Stress resilience behaviours in plants are defensive mechanisms that develop under adverse environmental conditions to promote growth, development and yield. Over the past decades, improving stress resilience, especially in crop species, has been a focus of intense research for global food security and economic growth. Plants have evolved specific mechanisms to sense external stress and transmit information to the cell interior and generate appropriate responses. Plant cytoskeleton, comprising microtubules and actin filaments, takes a center stage in stress-induced signalling pathways, either as a direct target or as a signal transducer. In the past few years, it has become apparent that the function of the plant cytoskeleton and other associated proteins are not merely limited to elementary processes of cell growth and proliferation, but they also function in stress response and resilience. This review summarizes recent advances in the role of plant cytoskeleton and associated proteins in abiotic stress management. We provide a thorough overview of the mechanisms that plant cells employ to withstand different abiotic stimuli such as hypersalinity, dehydration, high temperature and cold, among others. We also discuss the crucial role of the plant cytoskeleton in organellar positioning under the influence of high light intensity.  相似文献   

7.
8.
The involvement of a kallikrein−kinin system in the motility of mammalian spermatozoa has been suggested by several investigators. We found that incorporation of kallikrein (0.1–1.0) unit/ml) in the sperm incubation medium did not enhance the motility of hamster spermatozoa that were already active. However, this enzyme significantly increased the incidence of the acrosome reaction. Trypsin (1.8–18 units/ml) and chymotrypsin (0.34–3.4 units/ml) also increased the incidence of the acrosome reaction, and accelerated its onset. Kinins (bradykinin and kallidin) added to the medium in a wide concentration range (1 ng/ml to 1 mg/ml) had no marked effects on either the motility or the acrosome reaction. A kallikrein−kinin system is apparently not of primary importance at least for the acrosome reaction. The enhancement of the acrosome reaction by exogenous proteinases may be due in part to accelerated removal or alteration of the sperm surface coat (glycoprotein) by the enzyme peior to the acrosome reaction. Exogenous proteinases may also act synergistically with endogenous (acrosomal) proteinases (and other enzymes) in altering membrane proteins and dispersing the acrosome matrix during the course of teh acrosome reaction.  相似文献   

9.
Summary The structure of the stridulation was investigated by re-playing tape-recordings at very slow speed. The findings were corrobrated by sonograms and mingograms.The central part of the song is the ripple, a fast succession of syllables around which isolated syllables (clicks) are distributed according to species and circumstances. The rate of syllables in the ripple is a linear function of temperature.A quantitative expression for the stridulatory activity is the actual number of syllables per time unit, including pauses. By changes in the combination of elements, at leastO. agile is able to increase the output of syllables four to six times.This work was made possible by a grant from the Carlsberg Foundation to whom my most sincere thanks are due. —As I do not have advanced equipment for sound analysis, I am very much indebted to Dr. Bondesen and cand. sci. Poul Hansen, Bioakustisk Laboratorium, Naturhistorisk Museum, Aarhus, Denmark, and Mr. W.B. Broughton and Dr. M. Samways, Animal Acoustic Unit, City of London Polytechnic, London, for analysing part of the material by sonograms and mingograms. The very valuable help of Dr. Th.J. Walker, University of Florida, Gainesville, Florida, in identifying the species is gratefully acknowledged. For friendly discussions and linguistic corrections my best thanks are due to H.T. Evans and F.D.S. Evans.  相似文献   

10.
This study describes the morphology of the sperm cell of Maja brachydactyla, with emphasis on localizing actin and tubulin. The spermatozoon of M. brachydactyla is similar in appearance and organization to other brachyuran spermatozoa. The spermatozoon is a globular cell composed of a central acrosome, which is surrounded by a thin layer of cytoplasm and a cup‐shaped nucleus with four radiating lateral arms. The acrosome is a subspheroidal vesicle composed of three concentric zones surrounded by a capsule. The acrosome is apically covered by an operculum. The perforatorium penetrates the center of the acrosome and has granular material partially composed of actin. The cytoplasm contains one centriole in the subacrosomal region. A cytoplasmic ring encircles the acrosome in the subapical region of the cell and contains the structures‐organelles complex (SO‐complex), which is composed of a membrane system, mitochondria with few cristae, and microtubules. In the nucleus, slightly condensed chromatin extends along the lateral arms, in which no microtubules have been observed. Chromatin fibers aggregate in certain areas and are often associated with the SO‐complex. During the acrosomal reaction, the acrosome could provide support for the penetration of the sperm nucleus, the SO‐complex could serve as an anchor point for chromatin, and the lateral arms could play an important role triggering the acrosomal reaction, while slightly decondensed chromatin may be necessary for the deformation of the nucleus. J. Morphol., 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

11.
The majority of the spermatozoa precapacitated in Ca2+-free medium underwent the acrosome raction rapidly when they were transferred to Ca2+-containing medium. The presence of Na+ and Ca2+ in the medium was essential for the acrosome reaction. The vast majority of spermatozoa failed to undergo the reaction in Ca2+ medium lacking monovalent ions, although they remained motile. At the concentration of 140 mM, Na+, K+, Rb+, and Cs+ all supported the reaction at the maximum level, but at 50 mM the latter three ions were not as effective as Na+. Li+ was least effective in supporting the reaction. Virtually no acrosome reactions took place when precapacitated spermatozoa were first exposed to Na+ medium (no Ca2+) and then to Ca2+ medium (no Na+). On the other hand, a considerably higher proportion of spermatozoa acrosome reacted when they were exposed to these media in the reverse order. The most efficient acrosome reactions took place when the medium contained both a monovalent ion (Na+) and Ca2+ simultaneously. Possible mechanisms by which monovalent and divalent cations participate in the acrosome reaction are discussed.  相似文献   

12.
张小霞  常岩林  冯晓丽  石福明 《昆虫学报》2011,54(10):1118-1126
为阐明优雅蝈螽Gampsocleis gratiosa Brunner von Wattenwyl雄性附腺的结构与功能的关系, 本文利用透射电镜(transmission electron microscope, TEM)技术研究了优雅蝈螽雄性附腺的超微结构, 利用微分干涉相差显微镜(differential interference contrast microscope, DIC)技术并结合雄性附腺匀浆提取物与精子束在体外的短暂培养, 研究了优雅蝈螽雄性附腺对精子束的作用。结果表明: 优雅蝈螽雄性附腺3类腺管组织结构相似, 腺管管壁为单层上皮细胞, 缺少内表皮, 说明其来源于中胚层。上皮细胞富含粗面内质网、 线粒体、 高尔基体, 具有分泌细胞的特点。腺管管腔中分泌物有4种形态, 即电子透明的物质、 电子致密的颗粒物质、 细纤维状物质以及绒球状物质。上皮细胞的分泌方式主要有2种, 即顶质分泌和局部分泌。乳白短腺管的匀浆提取物参与了帽状精子束解聚的过程, 乳白长腺管和透明腺管的匀浆提取物有维持精子束活性的作用。本研究结果为进一步阐明螽斯雄性附腺的生理功能奠定了基础。  相似文献   

13.
Human ejaculated spermatozoa were washed through a Percoll gradient, preincubated for 10 hr in a defined medium containing serum albumin, and then induced to undergo rapid acrosome reactions by addition of human follicular fluid or a Sephadex G-75 column fraction of the fluid. Induction by follicular fluid did not occur when the spermatozoa were preincubated for only 0 or 5 hr. The reactions were detected by indirect immunofluorescence using a monoclonal antibody directed against the human sperm acrosomal region. The percentage of acrosomal loss counted by transmission electron microscopy agreed with that counted by immunofluorescence. The apparent molecular weight of the Sephadex G-75 fraction containing the peak of acrosome reaction-inducing activity was 45,000 ± 4,200 (SD). The occurrence of physiological acrosome reactions was supported by: assessing motility (no significant loss of motility occurred during the treatment period when sperm were preincubated with bovine serum albumin), transmission electron microscopy (the ultrastructural criteria for the acrosome reaction were met), and zona-free hamster oocyte binding and penetration (spermatozoa pretreated with the active fraction of follicular fluid, then washed and incubated with oocytes, showed significantly greater binding to and penetration of oocytes). The stimulation of the acrosome reaction by follicular fluid is apparently not due to blood serum contamination; treatment of preincubated spermatozoa with sera from the follicular fluid donors had no effect on the spermatozoa. The nature of the active component(s) in that fraction is currently being investigated.  相似文献   

14.
The modern classification of small heat shock proteins (sHsp) is presented and peculiarities of their primary structure and the mechanism of formation of oligomeric complexes are described. Data on phosphorylation of sHsp by different protein kinases are presented and the effect of phosphorylation on oligomeric state and chaperone activity of sHsp is discussed. Intracellular location of sHsp under normal and stress conditions is described and it is emphasized that under certain condition sHsp interact with different elements of cytoskeleton. The literature concerning the effect of sHsp on polymerization of actin in vitro is analyzed. An attempt is made to compare effects of sHsp on polymerization of actin in vitro with the results obtained on living cells under normal conditions and after heat shock or hormone action. The literature concerning possible effects of sHsp on cell motility is also analyzed.  相似文献   

15.
The intracellular polymerization of cytoskeletal proteins into their supramolecular assemblies raises many questions regarding the regulatory patterns that control this process. Binding experiments using the ELISA solid phase system, together with protein assembly assays and electron microscopical studies provided clues on the protein-protein associations in the polymerization of tubulin and actin networks. In vitro reconstitution experiments of these cytoskeletal filaments using purified tau, tubulin, and actin proteins were carried out. Tau protein association with tubulin immobilized in a solid phase support system was inhibited by actin monomer, and a higher inhibition was attained in the presence of preassembled actin filaments. Conversely, tubulin and assembled microtubules strongly inhibited tau interaction with actin in the solid phase system. Actin filaments decreased the extent of in vitro tau-induced tubulin assembly. Studies on the morphological aspects of microtubules and actin filaments coexisting in vitro, revealed the association between both cytoskeletal filaments, and in some cases, the presence of fine filamentous structures bridging these polymers. Immunogold studies showed the association of tau along polymerized microtubules and actin filaments, even though a preferential localization of labeled tau with microtubules was revealed. The studies provide further evidence for the involvement of tau protein in modulating the interactions of microtubules and actin polymers in the organization of the cytsokeletal network.  相似文献   

16.
A system has been developed for inducing a calcium-dependent acrosome reaction in ram spermatozoa in vitro using the calcium ionophore A23187. The resultant reaction is accompanied by release of the acrosomal enzymes hyaluronidase and acrosin, but there is no release of the cytoplasmic enzyme glucose 6-phosphate isomerase. In any given cell, the visible acrosome reaction apparently takes place rapidly, but there is a variable delay before the reaction occurs. Under optimum conditions, about 90% of treated spermatozoa show an acrosome reaction within one hour. Preincubation of the spermatozoa with the proteinase inhibitors p-amino-benzamidine or p-nitrophenylguanidinobenzoate allows two stages of the reaction to be distinguished ultrastructurally, a membrane fusion stage followed by a dispersal of the acrosomal matrix. In the presence of the inhibitors, the first stage is delayed but is completed within 1 hour, whereas the second remains largely incomplete. In the presence of calcium, ionophore concentrations which induce an acrosome reaction abolish sperm motility rapidly and completely. However, by adding serum albumin shortly after addition of ionophore, motility can be preserved while the acrosome reaction occurs as usual; the motility pattern observed under these conditions is of the “whip-lash” or “activated” type. Although the motile ionophore-treated spermatozoa were unsuccessful at penetrating normal mature sheep oocytes in vitro, they were able to penetrate zona-free oocytes, after which swelling and decondensation of the sperm head took place.  相似文献   

17.
The effect of the calmodulin antagonist W-7 on the capacitation and the acrosome reaction of guinea pig spermatozoa was examined. The characteristic features of the acrosome reaction induced by W-7 were the dependence on the composition and pH of the medium and on the presence of sodium bicarbonate. The most effective concentration of W-7 for inducing the acrosome reaction was approximately 5 μM, which is far less than the Kd for calmodulin. Moreover, W-7 enhanced the ability of spermatozoa to acquire capacitation in a Ca2+-free medium. The spermatozoa induced to undergo the acrosome reaction by W-7 were capable of penetrating the zona-free hamster eggs. W-5, which has a lower affinity for calmodulin than W-7, also induced the acrosome reaction in the same manner as W-7. These results suggest that the naphthalenesulfonamide derivatives W-7 and W-5 can induce the acrosome reaction in guinea pig spermatozoa via capacitation in a pH-dependent, Ca2+-calmodulin-independent manner.  相似文献   

18.
The effects of seven surfactants on spermatozoa of the sea urchin, Hemicentrotus pulcherrimus, were studied. All these surfactants induced the acrosome reaction and inhibited the fertilizing capacity of spermatozoa. There was a statistically significant correlation between the concentrations that induce the acrosome reaction and inhibit fertilization. The critical micelle concentrations (CMC) of surfactants in sea water were almost even and these values, which are inherent physical properties of surfactants, did not provide a direct measure of their inhibitory effect of fertilization. Among seven surfactants, p-menthanyl-phenol polyoxyethylene (8.8) ether (TS-88) with a characteristic hydrophobes was the most potent both in the induction of acrosome reaction and in the inhibition of fertilization. Various ethylene oxide adducts to p-menthanyl-phenol were also tested for the purpose of comparison. It is suggested that the effects of surfactants on sea urchin spermatozoa at low concentrations reflect their activity associated with the hydrophobic group inherent in each surfactant.  相似文献   

19.
Based on examination of the morphological characters and comparative analysis of the male calling acoustic signals, distribution of the subspecies Platycleis albopunctata transiens Zeuner, 1941 in the south of European Russia (Crimea and North Caucasus) and in Uzbekistan is proved.  相似文献   

20.
Cadmium is a well-known environmental pollutant with distinctly toxic effects on plants. It can displace certain essential metals from a wealth of metalloproteins, and thus disturb many normal physiological processes and cause severe developmental aberrant. The harmful effects of cadmium stress include, but are not limited to: reactive oxygen species overproduction, higher lipid hydroperoxide contents, and chloroplast structure change, which may lead to cell death. Plants have developed diverse mechanisms to alleviate environmental cadmium stress, e.g., cadmium pump and transporting cadmium into the leaf vacuoles. This mini-review focuses on the current research into understanding the cellular mechanisms of cadmium toxicity on cytoskeleton, vesicular trafficking and cell wall formation in plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号