首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
This study describes the morphology of the sperm cell of Maja brachydactyla, with emphasis on localizing actin and tubulin. The spermatozoon of M. brachydactyla is similar in appearance and organization to other brachyuran spermatozoa. The spermatozoon is a globular cell composed of a central acrosome, which is surrounded by a thin layer of cytoplasm and a cup‐shaped nucleus with four radiating lateral arms. The acrosome is a subspheroidal vesicle composed of three concentric zones surrounded by a capsule. The acrosome is apically covered by an operculum. The perforatorium penetrates the center of the acrosome and has granular material partially composed of actin. The cytoplasm contains one centriole in the subacrosomal region. A cytoplasmic ring encircles the acrosome in the subapical region of the cell and contains the structures‐organelles complex (SO‐complex), which is composed of a membrane system, mitochondria with few cristae, and microtubules. In the nucleus, slightly condensed chromatin extends along the lateral arms, in which no microtubules have been observed. Chromatin fibers aggregate in certain areas and are often associated with the SO‐complex. During the acrosomal reaction, the acrosome could provide support for the penetration of the sperm nucleus, the SO‐complex could serve as an anchor point for chromatin, and the lateral arms could play an important role triggering the acrosomal reaction, while slightly decondensed chromatin may be necessary for the deformation of the nucleus. J. Morphol., 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

2.
Dynamics of alterations of focal adhesions (FA) induced by a microtubule-depolymerizing drug, colcemid, was examined in several types of fibroblastic cells. Evolution of individual FA in cultured cells was monitored by interference-reflection microscopy (IRM); at the end of the monitoring period (3 hours) the cells were fixed and immunofluorescence microscopy of the same FA was performed with an antibody against vinculin. Control and colcemid-treated cells remained non-motile and did not show lamellipodial activity at the edges. During the incubation, formation of new FA or disappearance of pre-existing FA did not occur in either colcemid-treated or control cultures. However, FA in colcemid-treated cells significantly increased in size in the course of a 3 hour incubation. The growth of FA was centripetal and sometimes was accompanied by the fusion of several adjacent FA.

Immunofluorescence examination showed that colcemid-induced growth of FA was accompanied by accumulation of several proteins specific for these structures including vinculin, talin, paxillin and pp125FAK kinase. Immunoblotting with anti-vinculin antibody showed that incubation with colcemid considerably increased the amount of vinculin associated with the ventral membranes due to its partial redistribution from a soluble pool into the growing adhesions. A substantial increase in tyrosine phosphorylation of pp125FAK was also observed in colcemid-treated cells. In cells plated on elastic silicone rubber films, colcemid induced formation of wrinkles in the films and these wrinkles relaxed after treatment with cytochalasin D. These results confirm that microtubule depolymerization increases traction transmitted to the substratum by the actin cortex and shows that an increase in cortical tension accompanies maturation of FA.

Taken together, these data show that short-term incubation with colcemid does not affect the formation of initial FA. In contrast, microtubule depolymerization considerably stimulates the maturation FA, manifested by their centripetal growth. Maturation is proposed to be mediated by increased cortical tension, which is caused by microtubule depolymerization.  相似文献   

3.
Gap junctions represent a ubiquitous and integral part of multicellular organisms, providing the only conduit for direct exchange of nutrients, messengers and ions between neighboring cells. However, at the molecular level we have limited knowledge of their endogenous permeants and selectivity features. By probing the accessibility of systematically substituted cysteine residues to thiol blockers (a technique called SCAM), we have identified the pore-lining residues of a gap junction channel composed of Cx32. Analysis of 45 sites in perfused Xenopus oocyte pairs defined M3 as the major pore-lining helix, with M2 (open state) or M1 (closed state) also contributing to the wider cytoplasmic opening of the channel. Additional mapping of a close association between M3 and M4 allowed the helices of the low resolution map (Unger et al., 1999. Science. 283:1176-1180) to be tentatively assigned to the connexin transmembrane domains. Contrary to previous conceptions of the gap junction channel, the residues lining the pore are largely hydrophobic. This indicates that the selective permeabilities of this unique channel class may result from novel mechanisms, including complex van der Waals interactions of permeants with the pore wall, rather than mechanisms involving fixed charges or chelation chemistry as reported for other ion channels.  相似文献   

4.
It is commonly believed that growth cone turning during pathfinding is initiated by reorganization of actin filaments in response to guidance cues, which then affects microtubule structure to complete the turning process. However, a major unanswered question is how changes in actin cytoskeleton are induced by guidance cues and how these changes are then translated into microtubule rearrangement. Here, we report that local and specific disruption of actin bundles from the growth cone peripheral domain induced repulsive growth cone turning. Meanwhile, dynamic microtubules within the peripheral domain were oriented into areas where actin bundles remained and were lost from areas where actin bundles disappeared. This resulted in directional microtubule extension leading to axon bending and growth cone turning. In addition, this local actin bundle loss coincided with localized growth cone collapse, as well as asymmetrical lamellipodial protrusion. Our results provide direct evidence, for the first time, that regional actin bundle reorganization can steer the growth cone by coordinating actin reorganization with microtubule dynamics. This suggests that actin bundles can be potential targets of signaling pathways downstream of guidance cues, providing a mechanism for coupling changes in leading edge actin with microtubules at the central domain during turning.  相似文献   

5.
    
The intracellular polymerization of cytoskeletal proteins into their supramolecular assemblies raises many questions regarding the regulatory patterns that control this process. Binding experiments using the ELISA solid phase system, together with protein assembly assays and electron microscopical studies provided clues on the protein-protein associations in the polymerization of tubulin and actin networks. In vitro reconstitution experiments of these cytoskeletal filaments using purified tau, tubulin, and actin proteins were carried out. Tau protein association with tubulin immobilized in a solid phase support system was inhibited by actin monomer, and a higher inhibition was attained in the presence of preassembled actin filaments. Conversely, tubulin and assembled microtubules strongly inhibited tau interaction with actin in the solid phase system. Actin filaments decreased the extent of in vitro tau-induced tubulin assembly. Studies on the morphological aspects of microtubules and actin filaments coexisting in vitro, revealed the association between both cytoskeletal filaments, and in some cases, the presence of fine filamentous structures bridging these polymers. Immunogold studies showed the association of tau along polymerized microtubules and actin filaments, even though a preferential localization of labeled tau with microtubules was revealed. The studies provide further evidence for the involvement of tau protein in modulating the interactions of microtubules and actin polymers in the organization of the cytsokeletal network.  相似文献   

6.
7.
    
Cell migration, a fundamental process in development, wound healing, and immune function, is a common topic in undergraduate cell biology courses. We developed laboratory exercises with an inquiry-based learning (IBL) approach in which cell migration could be examined with the scratch assay, adapted from the primary literature. A narrow scratch was created in a confluent monolayer of cells growing on the bottom of a cell culture dish. Migration into the resultant cell-free zone from both sides of the scratch was measured after one day using the scale bar function of a digital camera. The Chinese hamster ovary cell line was used, but any adherent cell type could be examined. Students used the scratch assay to formulate hypotheses and design experiments in which variables affecting cell migration could be investigated. For example, the effect of cytoskeletal disruption was evaluated by adding the microtubule- and microfilament-disrupting drugs, colcemid and phallacidin, respectively, to the growth medium when the scratch was made. Optimal drug concentration parameters were determined for students to reference. Low drug concentrations inhibited cell migration, while higher concentrations killed the cells. This study demonstrated that the scratch assay is an accessible IBL method for studying cell migration.  相似文献   

8.
  总被引:1,自引:0,他引:1  
Autophagy is involved in a wide range of physiological processes including cellular remodeling during development, immuno‐protection against heterologous invaders and elimination of aberrant or obsolete cellular structures. This conserved degradation pathway also plays a key role in maintaining intracellular nutritional homeostasis and during starvation, for example, it is involved in the recycling of unnecessary cellular components to compensate for the limitation of nutrients. Autophagy is characterized by specific membrane rearrangements that culminate with the formation of large cytosolic double‐membrane vesicles called autophagosomes. Autophagosomes sequester cytoplasmic material that is destined for degradation. Once completed, these vesicles dock and fuse with endosomes and/or lysosomes to deliver their contents into the hydrolytically active lumen of the latter organelle where, together with their cargoes, they are broken down into their basic components. Specific structures destined for degradation via autophagy are in many cases selectively targeted and sequestered into autophagosomes. A number of factors required for autophagy have been identified, but numerous questions about the molecular mechanism of this pathway remain unanswered. For instance, it is unclear how membranes are recruited and assembled into autophagosomes. In addition, once completed, these vesicles are transported to cellular locations where endosomes and lysosomes are concentrated. The mechanism employed for this directed movement is not well understood. The cellular cytoskeleton is a large, highly dynamic cellular scaffold that has a crucial role in multiple processes, several of which involve membrane rearrangements and vesicle‐mediated events. Relatively little is known about the roles of the cytoskeleton network in autophagy. Nevertheless, some recent studies have revealed the importance of cytoskeletal elements such as actin microfilaments and microtubules in specific aspects of autophagy. In this review, we will highlight the results of this work and discuss their implications, providing possible working models. In particular, we will first describe the findings obtained with the yeast Saccharomyces cerevisiae, for long the leading organism for the study of autophagy, and, successively, those attained in mammalian cells, to emphasize possible differences between eukaryotic organisms.  相似文献   

9.
    
Stress resilience behaviours in plants are defensive mechanisms that develop under adverse environmental conditions to promote growth, development and yield. Over the past decades, improving stress resilience, especially in crop species, has been a focus of intense research for global food security and economic growth. Plants have evolved specific mechanisms to sense external stress and transmit information to the cell interior and generate appropriate responses. Plant cytoskeleton, comprising microtubules and actin filaments, takes a center stage in stress-induced signalling pathways, either as a direct target or as a signal transducer. In the past few years, it has become apparent that the function of the plant cytoskeleton and other associated proteins are not merely limited to elementary processes of cell growth and proliferation, but they also function in stress response and resilience. This review summarizes recent advances in the role of plant cytoskeleton and associated proteins in abiotic stress management. We provide a thorough overview of the mechanisms that plant cells employ to withstand different abiotic stimuli such as hypersalinity, dehydration, high temperature and cold, among others. We also discuss the crucial role of the plant cytoskeleton in organellar positioning under the influence of high light intensity.  相似文献   

10.
The neuronal cytoskeleton not only provides the structural backbone of neurons, but also plays a fundamental role in maintaining neuronal functions. Dysregulation of neuronal architecture is evident in both injury and diseases of the central nervous system. These changes often result in the disruption of protein trafficking, loss of synapses and the death of neurons, ultimately impacting on signal transmission and manifesting in the disease phenotype. Furthermore, mutations in cytoskeletal proteins have been implicated in numerous diseases and, in some cases, identified as the cause of the disease, highlighting the critical role of the cytoskeleton in disease pathology. This review focuses on the role of cytoskeletal proteins in the pathology of mental disorders, neurodegenerative diseases and motor function deficits. In particular, we illustrate how cytoskeletal proteins can be directly linked to disease pathology and progression.  相似文献   

11.
12.
Over the past 40 years evidence from many sources has indicated that the mammalian acrosome reaction occurs within or near the cumulus oophorus. Recently, however, workers investigating in vitro fertilization in the mouse have concluded that in this system the acrosome reaction takes place on the surface of the zona pellucida. We have investigated the interaction of rat spermatozoa and the zona pellucida by using the scanning electron microscope (SEM) and two monoclonal antibodies which are directed to antigens of the rat sperm acrosome. When in vitro inseminated eggs from which the cumulus has been removed are viewed with the SEM some sperm heads on the surface of the zona pellucida appear unaltered whereas others appear to be undergoing changes. In vivo, all displayed altered head morphology. Using immunogold labeling we found that the two antibodies employed, 2C4 and 5B1, were directed to acrosomal content and vesiculating acrosomal membranes. Immunofluoresence staining of zonae pellucidae in in vitro fertilization studies revealed numerous small positive regions. These were presumably acrosomal content and membranes which had been left on the zona surface by spermatozoa which had been associated with the zona surface. Our results suggest that the rat acrosome interacts with the zona pellucida. During this interaction some acrosomal content and membranes detach from the spermatozoon and remain on the surface of the zona pellucida.  相似文献   

13.
    
The structural and functional resemblance between the bacterial cell-division protein FtsZ and eukaryotic tubulin was the first indication that the eukaryotic cytoskeleton may have a prokaryotic origin. The bacterial ancestry is made even more obvious by the findings that the bacterial cell-shape-determining proteins Mreb and Mbl form large spirals inside non-spherical cells, and that MreB polymerises in vitro into protofilaments very similar to actin. Recent advances in research on two proteins involved in prokaryotic cytokinesis and cell shape determination that have similar properties to the key components of the eukaryotic cytoskeleton are discussed.  相似文献   

14.
Changes in cytoskeletal structures have been investigated during apoptosis of epithelial HeLa cells induced by tumor necrosis factor- (TNF-). Shape and surface cell activity were investigated by time-lapse video microscopy, and changes of the cytoskeletal structure were studied by immune fluorescent microscopy. Addition of TNF- to HeLa cell culture caused early disruption of the actin cytoskeleton and vinculin-containing focal contacts, keratin filaments, and microtubules. Rounding of cells, general blebbing, and nuclear fragmentation were observed at the terminal apoptotic stages. Actomyosin complex inhibitors, H7 and HA1077, suppressed blebbing (but not cell rounding) and activated the development of apoptosis. The latter suggests that in contrast to blebbing the general rounding does not depend on increased contractility of actomyosin cortex. These cytoskeletal inhibitors accelerated the development of apoptosis of HeLa cells and increased sensitivity of HeLa-Bcl-2 cells (transfected with DNA encoding antiapoptotic protein Bcl-2) to TNF-induced apoptosis. Damage of cytoskeletal structures significantly attenuated antiapoptotic activity of Bcl-2 in the HeLa-Bcl-2 cells. It is suggested that the stimulation of apoptosis by cytoskeletal inhibitors may be attributed to the altered distribution of cell organelles, especially, mitochondria.  相似文献   

15.
Previous studies on the role of microtubule-associated protein 1B (MAP1B) in adapting microtubules for nerve cell-specific functions have examined the activity of the entire MAP1B protein complex consisting of heavy and light chains and revealed moderate effects on microtubule stability. Here we have analyzed the effects of the MAP1B light chain in the absence or presence of the heavy chain by immunofluorescence microscopy of transiently transfected cells. Distinct from all other MAPs, the MAP1B light chain–induced formation of stable but apparently flexible microtubules resistant to the effects of nocodazole and taxol. Light chain activity was inhibited by the heavy chain. In addition, the light chain was found to harbor an actin filament binding domain in its COOH terminus. By coimmunoprecipitation experiments using epitope-tagged fragments of MAP1B we showed that light chains can dimerize or oligomerize. Furthermore, we localized the domains for heavy chain–light chain interaction to regions containing sequences homologous to MAP1A. Our findings assign several crucial activities to the MAP1B light chain and suggest a new model for the mechanism of action of MAP1B in which the heavy chain might act as the regulatory subunit of the MAP1B complex to control light chain activity.  相似文献   

16.
Sperm of the greater bulldog bat Noctilio leporinus display an architecture that is totally unique among mammalian spermatozoa. The sperm head of Noctilio is extraordinarily large and flat and lies eccentrically with respect to the sperm tail. The major portion of the atypically large acrosome lies anterior to the nucleus and is shaped into a dozen accordionlike folds that run parallel to the long axis of the sperm. The ridge of each fold is shaped into ∼60 minute, evenly spaced rises that extend along the entire length of the fold. We speculate that acrosome ridges may serve to strengthen the sperm head during transport. Mol. Reprod. Dev. 48:90–94, 1997 © 1997 Wiley-Liss, Inc.  相似文献   

17.
Modifications in the cell membrane potential have been suggested to affect signaling mechanisms participating in diverse cellular processes, many of which involve structural cellular alterations. In order to contribute some evidence in this respect, we explored the effects of several depolarizing procedures on the structure and monolayer organization of bovine corneal endothelial cells in culture. Visually confluent cell monolayers were incubated with or without the depolarizing agent, either in a saline solution or in culture medium for up to 30 min. Membrane potential was monitored by fluorescence microscopy using oxonol V. Fluorescent probes were employed for F-actin, microtubules, and vinculin. Depolarization of the plasma membrane, achieved via the incorporation of gramicidin D into confluent endothelial cells or by modifications of the extracellular saline composition, provoked an increment of oxonol fluorescence and changes in cell morphology, consisting mainly of modifications in the cytoskeletal organization. In some areas, noticeable intercellular spaces appear. The cytoskeleton modifications mainly consist of a marked redistribution of F-actin and microtubules, with accompanying changes in vinculin localization. The results suggest that the depolarization of the plasma membrane potential may participate in mechanisms involved in cytoskeleton organization and monolayer continuity in corneal endothelial cells in culture.  相似文献   

18.
    
Cytoskeletal proteins assemble into dynamic polymers that play many roles in nuclear and cell division, signal transduction, and determination of cell shape and polarity. The distribution and dynamics of microtubules (MTs) and actin filaments (AFs) are determined, among other factors, by the location of their nucleation sites. Whereas the sites of microtubule nucleation in plants are known to be located under the plasma membrane and on the nuclear envelope during interphase, there is a striking lack of information about nucleation sites of AFs. In the studies reported herein, low temperature (0 °C) was used to de‐polymerize AFs and MTs in tobacco BY‐2 (Nicotiana tabacum L.) cells at interphase. The extent of de‐polymerization of cytoskeletal filaments in interphase cells during cold treatment and the subcellular distribution of nucleation sites during subsequent recovery at 25 °C were monitored by means of fluorescence microscopy. The results show that AFs re‐polymerized rapidly from sites located in the cortical region and on the nuclear envelope, similarly to the initiation sites of MTs. In contrast to MTs, however, complete reconstitution of AFs was preceded by the formation of transient actin structures including actin dots, rods, and filaments with a dotted signal. Immunoblotting of soluble and sedimentable protein fractions showed no changes in the relative amounts of free and membrane‐bound actin or tubulin.  相似文献   

19.
20.
    
The fertilization process is impaired when spermatozoa are previously incubated with Cytochalasin-D (Cyt-D). Although this fact reveals the participation of polymerized actin in fertilization, the specific event obstructed by Cyt-D treatment has not been determined. To identify this event, we capacitated guinea pig spermatozoa in minimal capacitating medium with pyruvate and lactate (MCM-PL) with Cyt-D, to inseminate hamster zona pellucida (ZP)-free eggs. Cyt-D (70 microM) decreased F-actin relative concentration in capacitated spermatozoa to a larger extent than in spermatozoa incubated under control conditions. Cyt-D also cancelled the F-actin increase normally observed in acrosome-reacted cells, and decreased the number of these cells with normal F-actin localization at the equatorial zone. Insemination of eggs with Cyt-D treated spermatozoa did not change early fertilization events such as the egg cortical reaction (CR), membranes fusion, and egg F-actin new localization, but clearly retarded, by 16 hr, spermatozoa incorporation deep into the egg cytoplasm, and decondensation of egg metaphase II chromosomes. These results show that actin polymerization is necessary for spermatozoa incorporation deep into the egg cytoplasm, but not for plasma membrane fusion nor egg activation early steps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号