首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For improving the theory of gradient microstructure of cartilage/bone interface, human distal femurs were studied. Scanning Electron Microscope (SEM), histological sections and MicroCT were used to observe, measure and model the microstructure of cartilage/bone interface. The results showed that the cartilage/bone interface is in a hierarchical structure which is composed of four different tissue layers. The interlocking of hyaline cartilage and calcified cartilage and that of calcified cartilage and subchondral bone are in the manner of “protrusion-pore” with average diameter of 17.0 μm and 34.1 μm respectively. In addition, the cancellous bone under the cartilage is also formed by four layer hierarchical structure, and the adjacent layers are connected by bone trabecula in the shape of H, I and Y, forming a complex interwoven network structure. Finally, the simplified structure model of the cartilage/bone interface was proposed according to the natural articular cartilage/bone interface. The simplified model is a 4-layer gradient biomimetic structure, which corresponds to four different tissues of natural cartilage/bone interface. The results of this work would be beneficial to the design of bionic scaffold for the tissue engineering of articular cartilage/bone.  相似文献   

2.
Organization of the collagen network is known to be different in healthy, osteoarthritic and repaired cartilage. The aim of the study was to investigate how the structure and properties of collagen network of cartilage modulate stresses in a knee joint with osteoarthritis or cartilage repair. Magnetic resonance imaging (MRI) at 1.5 T was conducted for a knee joint of a male subject. Articular cartilage and menisci in the knee joint were segmented, and a finite element mesh was constructed based on the two-dimensional section in sagittal projection. Then, the knee joint stresses were simulated under impact loads by implementing the structure and properties of healthy, osteoarthritic and repaired cartilage in the models. During the progression of osteoarthritis, characterized especially by the progressive increase in the collagen fibrillation from the superficial to the deeper layers, the stresses were reduced in the superficial zone of cartilage, while they were increased in and under menisci. Increased fibril network stiffness of repair tissue with randomly organized collagen fibril network reduced the peak stresses in the adjacent tissue and strains at the repair–adjacent cartilage interface. High collagen fibril strains were indicative of stress concentration areas in osteoarthritic and repaired cartilage. The collagen network orientation and stiffness controlled the stress distributions in healthy, osteoarthritic and repaired cartilage. The evaluation of articular cartilage function using clinical MRI and biomechanical modeling could enable noninvasive estimation of osteoarthritis progression and monitoring of cartilage repair. This study presents a step toward those goals.  相似文献   

3.
 Articular cartilage is a multilayered structure that lines the surfaces of all articulating joints. It contains cells, collagen fibrils, and proteoglycans with compositions that vary from the surface layer to the layer in contact with bone. It is composed of several zones that vary in structure, composition, and mechanical properties. In this paper we analyze the structure of the extracellular matrix found in articular cartilage in an effort to relate it to the ability of cartilage to store, transmit, and dissipate mechanical energy during locomotion. Energy storage and dissipation is related to possible mechanisms of mechanochemical transduction and to changes in cartilage structure and function that occur in osteoarthritis. In addition, we analyze how passive and active internal stresses affect mechanochemical transduction in cartilage, and how this may affect cartilage behavior in health and disease. Received: 8 February 2002 / Accepted: 9 July 2002  相似文献   

4.
This study describes the persistence of an embryonal structure through to sub-adulthood in the ostrich and emu. Mandibles from sub-adult ostrich and emu were subjected to special staining, light microscopy and dissected to reveal and describe Meckel's cartilage. Meckel's cartilage, composed of hyaline cartilage, was present within the neurovascular canal of both species. The persistence through to sub-adulthood of Meckel's cartilage in the ostrich and emu is a feature not previously reported in any other avian species. The proximal end of Meckel's cartilage was ossified in the region of the articular bone and the distal end was ossified in some specimens. Although this structure may ossify at a much later stage in life, the function in young and sub-adult birds may be to dampen shockwaves along the intramandibular nerve that result from the action of pecking. In the ostrich, the M. pseudotemporalis superficialis tendon inserted onto the supra-angular bone and Meckel's cartilage. In the emu, a small portion of the tendon was attached to the supra-angular bone and the main part to Meckel's cartilage. The persistence of Meckel's cartilage in adult lepidosaurs, crocodilians and ratites represents an unusual shared trait between the extant members of the above groups.  相似文献   

5.
Chondrodysplasia of gene knockout mice for aggrecan and link protein   总被引:2,自引:0,他引:2  
The proteoglycan aggregate of the cartilage is composed of aggrecan, link protein, and hyaluronan and forms a unique gel-like moiety that provides resistance to compression in joints and a foundational cartilage structure critical for growth plate formation. Aggrecan, a large chondroitin sulfate proteoglycan, is one of the major structural macromolecules in cartilage and binds both hyaluronan and link protein through its N-terminal domain G1. Link protein, a small glycoprotein, is homologous to the G1 domain of aggrecan. Mouse cartilage matrix deficiency (cmd) is caused by a functional null mutation of the aggrecan gene and is characterized by perinatal lethal dwarfism and craniofacial abnormalities. Link protein knockout mice show chondrodysplasia similar to but milder than cmd mice, suggesting a supporting role of link protein for the aggregate structure. Analysis of these mice revealed that the proteoglycan aggregate plays an important role in cartilage development and maintenance of cartilage tissue and may provide a clue to the identification of human genetic disorders caused by mutations in these genes. Published in 2003.  相似文献   

6.
Tissues similar to vertebrate cartilage have been described throughout the Metazoa. Often the designation of tissues as cartilage within non-vertebrate lineages is based upon sparse supporting data. To be considered cartilage, a tissue should meet a number of histological criteria that include composition and organization of the extracellular matrix. To re-evaluate the distribution and structural properties of these tissues, we have re-investigated the histological properties of many of these tissues from fresh material, and review the existing literature on invertebrate cartilages. Chondroid connective tissue is common amongst invertebrates, and differs from invertebrate cartilage in the structure and organization of the cells that comprise it. Groups having extensive chondroid connective tissue include brachiopods, polychaetes, and urochordates. Cartilage is found within cephalopod mollusks, chelicerate arthropods and sabellid polychaetes. Skeletal tissues found within enteropneust hemichordates are unique in that the extracellular matrix shares many properties with vertebrate cartilage, yet these tissues are completely acellular. The possibility that this tissue may represent a new category of cartilage, acellular cartilage, is discussed. Immunoreactivity of some invertebrate cartilages with antibodies that recognize molecules specific to vertebrate bone suggests an intermediate phenotype between vertebrate cartilage and bone. Although cartilage is found within a number of invertebrate lineages, we find that not all tissues previously reported to be cartilage have the appropriate properties to merit their distinction as cartilage.  相似文献   

7.
This study aims at examining the morphological changes in the cartilage structure of the bovine knee joint when the amputated joints are subjected to (a) a moderate load of 150 kg and (b) a high load of 300 kg and fitted on a knee joint articulating machine at 45 cycles/min for 2 h. The scanning-microscopic study of the surface structure of the experimental and control cartilage shows no appreciable change in the surface morphology of the cartilage when subjected to the moderate load of 150 kg. However, in the case of the high load (300 kg) there is appreciable change in the fibrillary structural pattern of the surface morphology. Histologically too, no appreciable change was noticed when subjected to moderate loadings, but in the case of high loading the cartilage develops roughness of the surface with occasional small clefts.  相似文献   

8.
Mechanical function of articular cartilage in joints between articulating bones is dependent on the composition and structure of the tissue. The mechanical properties of articular cartilage are traditionally tested in compression using one of the three loading geometries, i.e., confined compression, unconfined compression or indentation. The aim of this study was to utilize a composition-based finite element model in combination with a fractional factorial design to determine the importance of different cartilage constituents in the mechanical response of the tissue, and to compare the importance of the tissue constituents with different loading geometries and loading rates. The evaluated parameters included water and collagen fraction as well as fixed charge density on cartilage surface and their slope over the tissue thickness. The thicknesses of superficial and middle zones, as based on the collagen orientation, were also included in the evaluated parameters. A three-level resolution V fractional factorial design was used. The model results showed that inhomogeneous composition plays only a minor role in indentation, though that role becomes more significant in confined compression and unconfined compression. In contrast, the collagen architecture and content had a more profound role in indentation than with two other loading geometries. These differences in the mechanical role of composition and structure between the loading geometries were emphasized at higher loading rates. These findings highlight how the results from mechanical tests of articular cartilage under different loading conditions are dependent upon tissue composition and structure.  相似文献   

9.
The structure of the epiphyseal cartilage of the bullfrog Rana catesbeiana and its role in the growth of long bones were examined. The epiphyseal cartilage was inserted into the end of a tubular bone shaft, defining three regions: articular cartilage, lateral articular cartilage and growth cartilage. Joining the lateral cartilage to the bone was a fibrous layer of periosteum, rich in blood vessels. Osteoblasts with alkaline phosphatase activity were found on the surface of the periosteal bone, which presented a fibrous non-mineralised tip. The growth cartilage was inside the bone. The proliferative chondrocytes presented perpendicular separation of daughter cells and there was no columnar arrangement of the cells. Furthermore, chondrocyte hypertrophy was not associated with either calcification or endochondral ossification, in apparent contrast to the avian and mammalian models. Finally, there was no reinforcement system capable of directing cell volume increase into longitudinal growth. Since bone extension depends on the intramembranous ossification of the periosteum, the growth cartilage is inside and not at the end of the bone and the cells in the growth cartilage show no columnar arrangement and separate in a direction perpendicular to the long bone axis, we conclude that the growth cartilage mainly contributes to the radial expansion of the bone.  相似文献   

10.
Lammi MJ 《Biorheology》2004,41(3-4):593-596
It is well known that physiological forces are essential for the maintenance of normal composition and structure of articular cartilage. Although some of the mechanisms of mechanotransduction are known today, there are certainly many others left unrevealed. In order to understand the complicated systems present in articular cartilage, we have to bring together the data from all fields of cartilage mechanobiology. The 3rd Symposium on Mechanobiology of Cartilage and Chondrocyte was a good effort towards that goal.  相似文献   

11.
Mutation or loss of collagen VI has been linked to a variety of musculoskeletal abnormalities, particularly muscular dystrophies, tissue ossification and/or fibrosis, and hip osteoarthritis. However, the role of collagen VI in bone and cartilage structure and function in the knee is unknown. In this study, we examined the role of collagen VI in the morphology and physical properties of bone and cartilage in the knee joint of Col6a1(-/-) mice by micro-computed tomography (microCT), histology, atomic force microscopy (AFM), and scanning microphotolysis (SCAMP). Col6a1(-/-) mice showed significant differences in trabecular bone structure, with lower bone volume, connectivity density, trabecular number, and trabecular thickness but higher structure model index and trabecular separation compared to Col6a1(+/+) mice. Subchondral bone thickness and mineral content increased significantly with age in Col6a1(+/+) mice, but not in Col6a1(-/-) mice. Col6a1(-/-) mice had lower cartilage degradation scores, but developed early, severe osteophytes compared to Col6a1(+/+) mice. In both groups, cartilage roughness increased with age, but neither the frictional coefficient nor compressive modulus of the cartilage changed with age or genotype, as measured by AFM. Cartilage diffusivity, measured via SCAMP, varied minimally with age or genotype. The absence of type VI collagen has profound effects on knee joint structure and morphometry, yet minimal influences on the physical properties of the cartilage. Together with previous studies showing accelerated hip osteoarthritis in Col6a1(-/-) mice, these findings suggest different roles for collagen VI at different sites in the body, consistent with clinical data.  相似文献   

12.
Recognising that the unique biomechanical properties of articular cartilage are a consequence of its structure, this paper describes a finite element methodology which explicitly represents this structure using a modified overlay element model. The validity of this novel concept was then tested by using it to predict the axial curling forces generated by cartilage matrices subjected to saline solutions of known molality and concentration in a novel experimental protocol. Our results show that the finite element modelling methodology accurately represents the intrinsic biomechanical state of the cartilage matrix and can be used to predict its transient load-carriage behaviour. We conclude that this ability to represent the intrinsic swollen condition of a given cartilage matrix offers a viable avenue for numerical analysis of degenerate articular cartilage and also those matrices affected by disease.  相似文献   

13.
Different parts of the articular cartilage were resected in 46 rabbits at the age of 2.5 months. The resected narrow stripe of the articular cartilage completely restored by the 60--90th day and the growth of the condyles was not disturbed. Resection of considerable areas of the articular cartilage on the condyles and on the femoral head was accompanied by a certain disturbance of the osseous tissue growth in these areas with resulted impression of the condyles, deformation of the head and further formation of coxa vara. The removal of 1/3 of the articular cartilage of the cotyloid cavity resulted in a certain increase of its diamter, uneven development at the site of resection; the femoral head of this joint increased, its spherical shape was altered. The restored cartilage did not restore its original structure characteristic for a growing bone. The newly formed articular cartilage lost its ability to participate in endochondral bone formation during the growth of the animal.  相似文献   

14.
Current musculoskeletal imaging techniques usually target the macro-morphology of articular cartilage or use histological analysis. These techniques are able to reveal advanced osteoarthritic changes in articular cartilage but fail to give detailed information to distinguish early osteoarthritis from healthy cartilage, and this necessitates high-resolution imaging techniques measuring cells and the extracellular matrix within the multilayer structure of articular cartilage. This review provides a comprehensive exploration of the cellular components and extracellular matrix of articular cartilage as well as high-resolution imaging techniques, including magnetic resonance image, electron microscopy, confocal laser scanning microscopy, second harmonic generation microscopy, and laser scanning confocal arthroscopy, in the measurement of multilayer ultra-structures of articular cartilage. This review also provides an overview for micro-structural analysis of the main components of normal or osteoarthritic cartilage and discusses the potential and challenges associated with developing non-invasive high-resolution imaging techniques for both research and clinical diagnosis of early to late osteoarthritis.  相似文献   

15.

Recognising that the unique biomechanical properties of articular cartilage are a consequence of its structure, this paper describes a finite element methodology which explicitly represents this structure using a modified overlay element model. The validity of this novel concept was then tested by using it to predict the axial curling forces generated by cartilage matrices subjected to saline solutions of known molality and concentration in a novel experimental protocol. Our results show that the finite element modelling methodology accurately represents the intrinsic biomechanical state of the cartilage matrix and can be used to predict its transient load-carriage behaviour. We conclude that this ability to represent the intrinsic swollen condition of a given cartilage matrix offers a viable avenue for numerical analysis of degenerate articular cartilage and also those matrices affected by disease.  相似文献   

16.
Recently discovered cartilaginous structures in the forehead of the sperm whale (Behrmann and Klima 1985) were investigated histologically. The largest and most important of these structures is the nasal roof cartilage which can be derived from the tectum nasi, a part of the embryonic nasal capsule (Klima et al. 1986). In the investigated sperm whale fetuses, this structure consists of embryonic hyaline cartilage which is well suited for morphogenetic processes and fast growth. In the investigated adult sperm whale, the originally hyaline cartilage has been transformed into a special kind of elastic cartilage. The arrangement of cells, territories, and extracellular substance resembles hyaline cartilage. This component represents an adaptation to pressure load. The appearance and arrangement of elastic fibres resembles elastic cartilage. This component is an adaptation to distortion forces. Obviously, pressure and distortion are the strongest mechanical strains that the nasal roof cartilage is exposed. We see the function of this cartilage structure therein that, being a pressure-elastic skeletal support and following the left nasal meatus along its whole extension through the massive and soft forehead, it secures the only direct respiratory passage. Additionally, fibre bundles of transversely striated muscles are anchored in the perichondrium of the nasal roof cartilage. The function of this delicately interwoven muscle system is seen by us in the fine tuning of contraction and dilatation of the respiratory passage. Moreover, a possible function as a sound conducting cartilaginous structure serving the echolocation system is considered (c.f. Pilleri et al. 1983).  相似文献   

17.
13C NMR relaxation studies on cartilage and cartilage components   总被引:1,自引:0,他引:1  
We have investigated the molecular motions of polysaccharides of bovine nasal and pig articular cartilage by measuring the 13C NMR relaxation times (T1 and T2). Both types of cartilage differ significantly towards their collagen/glycosaminoglycan ratio, leading to different NMR spectra. As chondroitin sulfate is the main constituent of cartilage, aqueous solutions of related poly- and monosaccharides (N-acetylglucosamine and glucuronic acid) were also investigated. Although there are only slight differences in T1 relaxation of the mono- and the polysaccharides, T2 decreases about one order of magnitude, when glucuronic acid or N-acetylglucosamine and chondroitin sulfate are compared. It is concluded that the ring carbons are motion-restricted primarily by the embedment in the rigid pyranose structure and, thus, additional limitations of mobility do not more show a major effect. Significant differences were observed between bovine nasal and pig articular cartilage, resulting in a considerable line-broadening and a lower signal to noise ratio in the spectra of pig articular cartilage. This is most likely caused by the higher collagen content of articular cartilage in comparison to the polysaccharide-rich bovine nasal cartilage.  相似文献   

18.
Chondrocyte shape and volumetric concentration change as a function of depth in articular cartilage. A given chondrocyte shape produces different effects on the global material properties depending on the structure of the collagen fiber network. The shape and volumetric concentration of chondrocytes in articular cartilage appear to be related to the mechanical stability of the matrix. The present study was aimed to investigate, theoretically, the effects of the structural arrangement of the collagen fiber network, and the shape and distribution of chondrocytes, on the global material behavior of articular cartilage. Articular cartilage was assumed to be a four-phasic composite comprised of a matrix (associated with the properties of the proteoglycan structure), vertically and horizontally distributed collagen fibers, and spheroidal inclusions representing chondrocytes. A solution for composite materials was used to estimate the global, effective material properties of cartilage. Only the elasticity of the solid phase was investigated in the present study. Our simulations suggest that a soft, spheroidal cell inclusion in a fiber-reinforced proteoglycan matrix affects the material properties differently depending on the shape of the spheroidal inclusions. If the long axis of the inclusions is parallel to the collagen fibers, as in the deep zone, the soft inclusions increase the stiffness of the composite in the fiber direction, and reduce the stiffness of the composite in the direction normal to the fibers. Furthermore, we found that Young's modulus normal to the contact surface increases from the superficial to the deep zone in articular cartilage by a factor of 10-50, a finding that agrees well with experimental observations. Our analysis suggests that the combination of proteoglycan matrix, fiber orientation, and shape of chondrocytes are intimately related and are likely adapted to optimize the mechanical stability and load carrying capacity of the structure.  相似文献   

19.
The naturally occurring structure of articular cartilage has proven to be an effective means for the facilitation of motion and load support in equine and other animal joints. For this reason, cartilage has been extensively studied for many years. Although the roughness of cartilage has been determined from atomic force microscopy (AFM) and other methods in multiple studies, a comparison of roughness to joint function has not be completed. It is hypothesized that various joint types with different motions and regimes of lubrication have altered demands on the articular surface that may affect cartilage surface properties. Micro- and nanoscale stylus profilometry was performed on the carpal cartilage harvested from 16 equine forelimbs. Eighty cartilage surface samples taken from three different functioning joint types (radiocarpal, midcarpal, and carpometacarpal) were measured by a Veeco Dektak 150 Stylus Surface Profilometer. The average surface roughness measurements were statistically different for each joint. This indicates that the structure of cartilage is adapted to, or worn by, its operating environment. Knowledge of cartilage micro- and nanoscale roughness will assist the future development and design of treatments for intra- articular substances or surfaces to preserve joint integrity and reduce limitations or loss of joint performance.  相似文献   

20.
Two forms of dermatan sulfate proteoglycans, called DS-PGI and DS-PGII, have been isolated from both bovine fetal skin and calf articular cartilage and characterized. The proteoglycans were isolated using either (a) molecular sieve chromatography under conditions where DS-PGI selectively self-associates or (b) chromatography on octyl-Sepharose, which separates DS-PGI from DS-PGII based on differences in the hydrophobic properties of their core proteins. The NH2-terminal amino acid sequence of DS-PGI from skin and cartilage is identical. The NH2-terminal amino acid sequence of DS-PGII from skin and cartilage is identical. However, the amino acid sequence data and tryptic peptide maps demonstrate that the core proteins of DS-PGI and DS-PGII differ in primary structure. In DS-PGI from bovine fetal skin, 81-84% of the glycosaminoglycan was composed of IdoA-GalNAc(SO4) disaccharide repeating units. In DS-PGI from calf articular cartilage, only 25-29% of the glycosaminoglycan was composed of IdoA-GalNAc(SO4). In DS-PGII from bovine fetal skin, 85-93% of the glycosaminoglycan was IdoA-GalNAc(SO4), whereas in DS-PGII from calf articular cartilage, only 40-44% of the glycosaminoglycan was IdoA-GalNAc(SO4). Thus, analogous proteoglycans from two different tissues, such as DS-PGI from skin and cartilage, possess a core protein with the same primary structure, yet contain glycosaminoglycan chains which differ greatly in iduronic acid content. These differences in the composition of the glycosaminoglycan chains must be determined by tissue-specific mechanisms which regulate the degree of epimerization of GlcA-GalNAc(SO4) into IdoA-GalNAc(SO4) and not by the primary structure of the core protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号