首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In Crithidia fasciculata the biosynthesis of trypanothione (N(1),N(8)-bis(glutathionyl)spermidine; reduced trypanothione), a redox mediator unique to and essential for pathogenic trypanosomatids, was assumed to be achieved by two distinct enzymes, glutathionylspermidine synthetase and trypanothione synthetase (TryS), and only the first one was adequately characterized. We here report that the TryS of C. fasciculata, like that of Trypanosoma species, catalyzes the entire synthesis of trypanothione, whereas its glutathionylspermidine synthetase appears to be specialized for Gsp synthesis. A gene (GenBanktrade mark accession number AY603101) implicated in reduced trypanothione synthesis of C. fasciculata was isolated from genomic DNA and expressed in Escherichia coli as His-tagged or Nus fusion proteins. The expression product proved to be a trypanothione synthetase (Cf-TryS) that also displayed a glutathionylspermidine synthetase, an amidase, and marginal ATPase activity. The dual specificity of the Cf-TryS preparations was not altered by removal of the tags. Steady-state kinetic analysis of Cf-TryS yielded a pattern that was compatible with a concerted substitution mechanism, wherein the enzyme forms a ternary complex with Mg(2+)-ATP and GSH to phosphorylate GSH and then ligates the glutathionyl residue to glutathionylspermidine. Limiting K(m) values for GSH, Mg(2+)-ATP, and glutathionylspermidine were 407, 222, and 480 microm, respectively, and the k(cat) was 8.7 s(-1) for the TryS reaction. Mutating Arg-553 or Arg-613 to Lys, Leu, Gln, or Glu resulted in marked reduction or abrogation (R553E) of activity. Limited proteolysis with factor Xa or trypsin resulted in cleavage at Arg-556 that was accompanied by loss of activity. The presence of substrates, in particular of ATP and GSH alone or in combination, delayed proteolysis of wild-type Cf-TryS and Cf-TryS R553Q but not in Cf-TryS R613Q, which suggests dynamic interactions of remote domains in substrate binding and catalysis.  相似文献   

2.
The bifunctional trypanothione synthetase-amidase (TRYS) comprises two structurally distinct catalytic domains for synthesis and hydrolysis of trypanothione ( N 1, N 8- bis (glutathionyl)spermidine). This unique dithiol plays a pivotal role in thiol-redox homeostasis and in defence against chemical and oxidative stress in trypanosomatids. A tetracycline-dependent conditional double knockout of TRYS (cDKO) was generated in bloodstream Trypanosoma brucei . Culture of cDKO parasites without tetracycline induction resulted in loss of trypanothione and accumulation of glutathione, followed by growth inhibition and cell lysis after 6 days. In the absence of inducer, cDKO cells were unable to infect mice, confirming that this enzyme is essential for virulence in vivo as well as in vitro . To establish whether both enzymatic functions were essential, an amidase-dead mutant cDKO line was generated. In the presence of inducer, this line showed decreased growth in vitro and decreased virulence in vivo , indicating that the amidase function is not absolutely required for viability. The druggability of TRYS was assessed using a potent small molecule inhibitor developed in our laboratory. Growth inhibition correlated in rank order cDKO, single KO, wild-type and overexpressing lines and produced the predicted biochemical phenotype. The synthetase function of TRYS is thus unequivocally validated as a drug target by both chemical and genetic methods.  相似文献   

3.
The trypanothione synthetase (TryS) catalyses the two-step biosynthesis of trypanothione from spermidine and glutathione and is an attractive new drug target for the development of trypanocidal and antileishmanial drugs, especially since the structural information of TryS from Leishmania major has become available. Unfortunately, the TryS structure was solved without any of the substrates and lacks loop regions that are mechanistically important. This contribution describes docking and molecular dynamics simulations that led to further insights into trypanothione biosynthesis and, in particular, explains the binding modes of substrates for the second catalytic step. The structural model essentially confirm previously proposed binding sites for glutathione, ATP and two Mg2+ ions, which appear identical for both catalytic steps. The analysis of an unsolved loop region near the proposed spermidine binding site revealed a new pocket that was demonstrated to bind glutathionylspermidine in an inverted orientation. For the second step of trypanothione synthesis glutathionylspermidine is bound in a way that preferentially allows N1-glutathionylation of N8-glutathionylspermidine, classifying N8-glutathionylspermidine as the favoured substrate. By inhibitor docking, the binding site for N8-glutathionylspermidine was characterised as druggable.  相似文献   

4.
Protozoa of the order Kinetoplastida differ from other organisms in their ability to conjugate glutathione (l-gamma-glutamyl-cysteinyl-glycine) and spermidine to form trypanothione [N(1),N(8)-bis(glutathionyl)spermidine], a metabolite involved in defense against chemical and oxidant stress and other biosynthetic functions. In Crithidia fasciculata, trypanothione is synthesized from GSH and spermidine via the intermediate glutathionylspermidine in two distinct ATP-dependent reactions catalyzed by glutathionylspermidine synthetase (GspS; EC ) and trypanothione synthetase (TryS; EC ), respectively. Here we have cloned a single copy gene (TcTryS) from Trypanosoma cruzi encoding a protein with 61% sequence identity with CfTryS but only 31% with CfGspS. Saccharomyces cerevisiae transformed with TcTryS were able to synthesize glutathionylspermidine and trypanothione, suggesting that this enzyme is able to catalyze both biosynthetic steps, unlike CfTryS. When cultures were supplemented with aminopropylcadaverine, yeast transformants contained glutathionylaminopropylcadaverine and homotrypanothione [N(1),N(9)-bis(glutathionyl)aminopropylcadaverine], metabolites that have been previously identified in T. cruzi, but not in C. fasciculata. Kinetic studies on recombinant TcTryS purified from Escherichia coli revealed that the enzyme displays high-substrate inhibition with glutathione (K(m) and K(i) of 0.57 and 1.2 mm, respectively, and k(cat) of 3.4 s(-1)), but obeys Michaelis-Menten kinetics with spermidine, aminopropylcadaverine, glutathionylspermidine, and MgATP as variable substrate. The recombinant enzyme possesses weak amidase activity and can hydrolyze trypanothione, homotrypanothione, or glutathionylspermidine to glutathione and the corresponding polyamine.  相似文献   

5.
Most organisms use glutathione to regulate intracellular thiol redox balance and protect against oxidative stress; protozoa, however, utilize trypanothione for this purpose. Trypanothione biosynthesis requires ATP-dependent conjugation of glutathione (GSH) to the two terminal amino groups of spermidine by glutathionylspermidine synthetase (GspS) and trypanothione synthetase (TryS), which are considered as drug targets. GspS catalyzes the penultimate step of the biosynthesis-amide bond formation between spermidine and the glycine carboxylate of GSH. We report herein five crystal structures of Escherichia coli GspS in complex with substrate, product or inhibitor. The C-terminal of GspS belongs to the ATP-grasp superfamily with a similar fold to the human glutathione synthetase. GSH is likely phosphorylated at one of two GSH-binding sites to form an acylphosphate intermediate that then translocates to the other site for subsequent nucleophilic addition of spermidine. We also identify essential amino acids involved in the catalysis. Our results constitute the first structural information on the biochemical features of parasite homologs (including TryS) that underlie their broad specificity for polyamines.  相似文献   

6.
Cleavage of peptidoglycan plays an important role in bacterial cell division, cell growth and cell lysis. Here, we reveal that several known peptidoglycan amidases fall into a family, which includes many proteins of previously unknown function. The family includes two different peptidoglycan cleavage activities: L-muramoyl-L-alanine amidase and D-alanyl-glycyl endopeptidase activity. The family includes the amidase portion of the bifunctional glutathionylspermidine synthase/amidase enzyme from bacteria and pathogenic trypanosomes. The glutathionylspermidine synthase is thought to be a key component of the alternative pathway in trypanosomes for protection from oxygen-radical damage and has been proposed as a potential drug target. The CHAP (cysteine, histidine-dependent amidohydrolases/peptidases) domain is often found in association with other domains that cleave peptidoglycan. The large number of multifunctional hydrolases suggests that they might act in a cooperative manner to cleave specialized substrates.  相似文献   

7.
Glutathionylspermidine is an intermediate formed in the biosynthesis of trypanothione, an essential metabolite in defence against chemical and oxidative stress in the Kinetoplastida. The kinetic mechanism for glutathionylspermidine synthetase (EC 6.3.1.8) from Crithidia fasciculata (CfGspS) obeys a rapid equilibrium random ter-ter model with kinetic constants K(GSH) = 609 microM, K(Spd) = 157 microM and K(ATP) = 215 microM. Phosphonate and phosphinate analogues of glutathionylspermidine, previously shown to be potent inhibitors of GspS from Escherichia coli, are equally potent against CfGspS. The tetrahedral phosphonate acts as a simple ground state analogue of glutathione (GSH) (K(i) approximately 156 microM), whereas the phosphinate behaves as a stable mimic of the postulated unstable tetrahedral intermediate. Kinetic studies showed that the phosphinate behaves as a slow-binding bisubstrate inhibitor [competitive with respect to GSH and spermidine (Spd)] with rate constants k(3) (on rate) = 6.98 x 10(4) M(-1) x s(-1) and k(4) (off rate) = 1.3 x 10(-3) s(-1), providing a dissociation constant K(i) = 18.6 nM. The phosphinate analogue also inhibited recombinant trypanothione synthetase (EC 6.3.1.9) from C. fasciculata, Leishmania major, Trypanosoma cruzi and Trypanosoma brucei with K(i)(app) values 20-40-fold greater than that of CfGspS. This phosphinate analogue remains the most potent enzyme inhibitor identified to date, and represents a good starting point for drug discovery for trypanosomiasis and leishmaniasis.  相似文献   

8.
The bifunctional Escherichia coli glutathionylspermidine synthetase/amidase (GspSA) catalyzes both the synthesis and hydrolysis of Gsp. Its amidase domain (GspA), which catalyzes the hydrolysis of Gsp into glutathione and spermidine, plays an important role in redox sensing and protein S-thiolation. To gain insight of the regulation and catalytic mechanism of and further understand the recycling of the Gsp dimer and Gsp-S-protein adducts, we solved two crystal structures of GspA and GspSA both with the C59A mutation and bound with the substrate, Gsp. In both structures, Cys59, His131, and Glu147 form the catalytic triad, which is similar to other cysteine proteases. Comparison of the GspA_Gsp complex and apo GspSA structures indicates that on binding with Gsp, the side chains of Asn149 and Gln58 of the amidase domain are induced to move closer to the carbonyl oxygen of the cleaved amide bond of Gsp, thereby participating in catalysis. In addition, the helix-loop region of GspA, corresponding to the sequence (30)YSSLDPQEYEDDA(42), involves in regulating the substrate binding. Our previous study indicated that the thiol of Cys59 of GspA is only oxidized to sulfenic acid by H(2)O(2). When comparing the active site of GspA with those of other cysteine proteases, we found that limited space and hydrophobicity of the environment around Cys59 play an important role to inhibit its further oxidation. The structural results presented here not only elucidate the catalytic mechanism and regulation of GspA but also help us to design small molecules to inhibit or probe for the activity of GspA.  相似文献   

9.
Trypanosomatids, the causative agents of several tropical diseases, lack glutathione reductase and thioredoxin reductase but have a trypanothione reductase instead. The main low molecular weight thiols are trypanothione (N(1),N(8)-bis-(glutathionyl)spermidine) and glutathionyl-spermidine, but the parasites also contain free glutathione. To elucidate whether trypanosomes employ S-thiolation for regulatory or protection purposes, six recombinant parasite thiol redox proteins were studied by ESI-MS and MALDI-TOF-MS for their ability to form mixed disulfides with glutathione or glutathionylspermidine. Trypanosoma brucei mono-Cys-glutaredoxin 1 is specifically thiolated at Cys(181). Thiolation of this residue induced formation of an intramolecular disulfide bridge with the putative active site Cys(104). This contrasts with mono-Cys-glutaredoxins from other sources that have been reported to be glutathionylated at the active site cysteine. Both disulfide forms of the T. brucei protein were reduced by tryparedoxin and trypanothione, whereas glutathione cleaved only the protein disulfide. In the glutathione peroxidase-type tryparedoxin peroxidase III of T. brucei, either Cys(47) or Cys(95) became glutathionylated but not both residues in the same protein molecule. T. brucei thioredoxin contains a third cysteine (Cys(68)) in addition to the redox active dithiol/disulfide. Treatment of the reduced protein with GSSG caused glutathionylation of Cys(68), which did not affect its capacity to catalyze reduction of insulin disulfide. Reduced T. brucei tryparedoxin possesses only the redox active Cys(32)-Cys(35) couple, which upon reaction with GSSG formed a disulfide. Also glyoxalase II and Trypanosoma cruzi trypanothione reductase were not sensitive to thiolation at physiological GSSG concentrations.  相似文献   

10.
Trypanothione is a unique and essential redox metabolite of trypanosomatid parasites, the biosynthetic pathway of which is regarded as a promising target for antiparasitic drugs. Synthesis of trypanothione occurs by the consecutive conjugation of two glutathione molecules to spermidine. Both reaction steps are catalyzed by trypanothione synthetase (TRYS), a molecule known to be essential in Trypanosoma brucei. However, other trypanosomatids (including some Leishmania species and Trypanosoma cruzi) potentially express one additional enzyme, glutathionylspermidine synthetase (GSPS), capable of driving the first step of trypanothione synthesis yielding glutathionylspermidine. Because this monothiol can substitute for trypanothione in some reactions, the possibility existed that TRYS was redundant in parasites harboring GSPS. To clarify this issue, the functional relevance of both GSPS and TRYS was investigated in Leishmania infantum (Li). Employing a gene-targeting approach, we generated a gsps−/− knockout line, which was viable and capable of replicating in both life cycle stages of the parasite, thus demonstrating the superfluous role of LiGSPS. In contrast, elimination of both LiTRYS alleles was not possible unless parasites were previously complemented with an episomal copy of the gene. Retention of extrachromosomal LiTRYS in the trys−/−/+TRYS line after several passages in culture further supported the essentiality of this gene for survival of L. infantum (including its clinically relevant stage), hence ruling out the hypothesis of functional complementation by LiGSPS. Chemical targeting of LiTRYS with a drug-like compound was shown to also lead to parasite death. Overall, this study disqualifies GSPS as a target for drug development campaigns and, by genetic and chemical evidence, validates TRYS as a chemotherapeutic target in a parasite endowed with GSPS and, thus, probably along the entire trypanosomatid lineage.  相似文献   

11.
Trypanosomatids differ from other cells in their ability to conjugate glutathione with the polyamine spermidine to form the antioxidant metabolite trypanothione (N1,N8-bis(glutathionyl)spermidine). In Trypanosoma cruzi, trypanothione is synthesized by an unusual trypanothione synthetase/amidase (TcTryS) that forms both glutathionylspermidine and trypanothione. Because T. cruzi is unable to synthesize putrescine and is dependent on uptake of exogenous polyamines by high affinity transporters, synthesis of trypanothione may be circumstantially limited by lack of spermidine. Here, we show that the parasite is able to circumvent the potential shortage of spermidine by conjugating glutathione with other physiological polyamine substrates from exogenous sources (spermine, N8-acetylspermidine, and N-acetylspermine). Novel thiols were purified from epimastigotes, and structures were determined by matrix-assisted laser desorption ionization time-of-flight analysis to be N1,N12-bis(glutathionyl)spermine, N1-glutathionyl-N8-acetylspermidine, and N1-glutathionyl-N12-acetylspermine, respectively. Structures were confirmed by enzymatic synthesis with recombinant TcTryS, which catalyzes formation of these compounds with kinetic parameters equivalent to or better than those of spermidine. Despite containing similar amounts of spermine and spermidine, the epimastigotes, trypomastigotes, and amastigotes of T. cruzi preferentially synthesized trypanothione. Bis(glutathionyl)spermine disulfide is a physiological substrate of recombinant trypanothione reductase, comparable to trypanothione and homotrypanothione disulfides. The broad substrate specificity of TcTryS could be exploited in the design of polyamine-based inhibitors of trypanothione metabolism.  相似文献   

12.
In the Trypanosomatidae, trypanothione has subsumed many of the roles of glutathione in defense against chemical and oxidant stress. Crithidia fasciculata lacks glutathione S-transferase, but contains an unusual trypanothione S-transferase activity that is associated with eukaryotic translation elongation factor 1B (eEF1B). Here we describe the cloning, expression, and reconstitution of the purified alpha, beta, and gamma subunits of eEF1B from Leishmania major. Individual subunits lacked trypanothione S-transferase activity. Only eEF1B, formed by reconstitution or co-expression of the three subunits, was able to conjugate a variety of electrophilic substrates to trypanothione or glutathionylspermidine, but not glutathione. In contrast to the C. fasciculata eEF1B, the L. major enzyme also displayed peroxidase activity against a variety of organic hydroperoxides. The enzyme showed no activity with hydrogen peroxide and greatest activity with linoleic acid hydroperoxide (1 unit mg(-1)). Kinetic studies suggest a ternary complex mechanism, with Km values of 140 mum for trypanothione and 7.4 mm for cumene hydroperoxide and kcat=25 s(-1). Immunofluorescence studies indicate that the enzyme may be localized to the surface of the endoplasmic reticulum. These results suggest that, in addition to its role in protein synthesis, the Leishmania eEF1B may help protect the parasite from lipid peroxidation.  相似文献   

13.
Carbamoyl phosphate synthetase II encodes the first enzymic step of de novo pyrimidine biosynthesis. Carbamoyl phosphate synthetase II is essential for Toxoplasma gondii replication and virulence. In this study, we characterised the primary structure of a 28kb gene encoding Toxoplasma gondii carbamoyl phosphate synthetase II. The carbamoyl phosphate synthetase II gene was interrupted by 36 introns. The predicted protein encoded by the 37 carbamoyl phosphate synthetase II exons was a 1,687 amino acid polypeptide with an N-terminal glutamine amidotransferase domain fused with C-terminal carbamoyl phosphate synthetase domains. This bifunctional organisation of carbamoyl phosphate synthetase II is unique, so far, to protozoan parasites from the phylum Apicomplexa (Plasmodium, Babesia, Toxoplasma) or zoomastigina (Trypanosoma, Leishmania). Apicomplexan parasites possessed the largest carbamoyl phosphate synthetase II enzymes due to insertions in the glutamine amidotransferase and carbamoyl phosphate synthetase domains that were not present in the corresponding gene segments from bacteria, plants, fungi and mammals. The C-terminal allosteric regulatory domain, the carbamoyl phosphate synthetase linker domain and the oligomerisation domain were also distinct from the corresponding domains in other species. The novel C-terminal regulatory domain may explain the lack of activation of Toxoplasma gondii carbamoyl phosphate synthetase II by the allosteric effector 5-phosphoribosyl 1-pyrophosphate. Toxoplasma gondii growth in vitro was markedly inhibited by the glutamine antagonist acivicin, an inhibitor of glutamine amidotransferase activity typically associated with carbamoyl phosphate synthetase II, guanosine monophosphate synthetase, or CTP synthetase.  相似文献   

14.
Several phage-encoded peptidoglycan hydrolases have been found to share a conserved amidase domain with a variety of bacterial autolysins (N-acetylmuramoyl-L-alanine amidases), bacterial and eukaryotic glutathionylspermidine amidases, gamma-D-glutamyl-L-diamino acid endopeptidase and NLP/P60 family proteins. All these proteins contain conserved cysteine and histidine residues and hydrolyze gamma-glutamyl-containing substrates. These cysteine residues have been shown to be essential for activity of several of these amidases and their thiol groups apparently function as the nucleophiles in the catalytic mechanisms of all enzymes containing this domain. The CHAP (cysteine, histidine-dependent amidohydrolases/peptidases) superfamily includes a variety of previously uncharacterized proteins, including the tail assembly protein K of phage lambda. Some members of this superfamily are important surface antigens in pathogenic bacteria and might represent drug and/or vaccine targets.  相似文献   

15.
Trypanothione is a thiol unique to the Kinetoplastida and has been shown to be a vital component of their antioxidant defenses. However, little is known as to the role of trypanothione in xenobiotic metabolism. A trypanothione S-transferase activity was detected in extracts of Leishmania major, L. infantum, L. tarentolae, Trypanosoma brucei, and Crithidia fasciculata, but not Trypanosoma cruzi. No glutathione S-transferase activity was detected in any of these parasites. Trypanothione S-transferase was purified from C. fasciculata and shown to be a hexadecameric complex of three subunits with a relative molecular weight of 650,000. This enzyme complex was specific for the thiols trypanothione and glutathionylspermidine and only used 1-chloro-2,4-dinitrobenzene from a range of glutathione S-transferase substrates. Peptide sequencing revealed that the three components were the alpha, beta, and gamma subunits of ribosomal eukaryotic elongation factor 1B (eEF1B). Partial dissociation of the complex suggested that the S-transferase activity was associated with the gamma subunit. Moreover, Cibacron blue was found to be a tight binding inhibitor and reactive blue 4 an irreversible time-dependent inhibitor that covalently modified only the gamma subunit. The rate of inactivation by reactive blue 4 was increased more than 600-fold in the presence of trypanothione, and Cibacron blue protected the enzyme from inactivation by 1-chloro-2,4-dinitrobenzene, confirming that these dyes interact with the active site region. Two eEF1Bgamma genes were cloned from C. fasciculata, but recombinant C. fasciculata eEF1Bgamma had no S-transferase activity, suggesting that eEF1Bgamma is unstable in the absence of the other subunits.  相似文献   

16.
Glutathionylspermidine synthetase/amidase (GspS) is an essential enzyme in the biosynthesis and turnover of trypanothione and represents an attractive target for the design of selective anti-parasitic drugs. We synthesised a series of analogues of glutathione (L-gamma-Glu-L-Leu-Gly-X) where the glycine carboxylic acid group (X) has been substituted for other acidic groups such as tetrazole, hydroxamic acid, acylsulphonamide and boronic acid. The boronic acid appears the most promising lead compound (IC(50) of 17.2 microM).  相似文献   

17.
Steenkamp DJ 《IUBMB life》2002,53(4-5):243-248
Trypanosomatids produce significant amounts of four major low molecular mass thiols, trypanothione, glutathionylspermidine, glutathione, and ovothiol A. Of these, only glutathione is present in cells of the host. All four low molecular mass thiols are directly or indirectly maintained in a reduced state by trypanothione reductase. Available evidence, from gene disruption studies, indicate that this is an essential enzyme. Attempts to exploit trypanothione reductase as a chemotherapeutic target lead to the design of competitive and irreversible inhibitors of the enzyme. A promising route involves the design of redox cyclers interacting specifically with trypanothione reductase as subversive substrates. Progress in studies on the biosynthesis of ovothiol A is summarized.  相似文献   

18.

Background

Trypanosomatids are early-diverging eukaryotes devoid of the major disulfide reductases – glutathione reductase and thioredoxin reductase – that control thiol-redox homeostasis in most organisms. These protozoans have evolved a unique thiol-redox system centered on trypanothione, a bis-glutathionyl conjugate of spermidine. Notably, the trypanothione system is capable to sustain several cellular functions mediated by thiol-dependent (redox) processes.

Scope of review

This review provides a summary of some historical and evolutionary aspects related to the discovery and appearance of trypanothione in trypanosomatids. It also addresses trypanothione's biosynthesis, physicochemical properties and reactivity towards biologically-relevant oxidants as well as its participation as a cofactor for metal binding. In addition, the role of the second most abundant thiol of trypanosomatids, glutathione, is revisited in light of the putative glutathione-dependent activities identified in these organisms.

Major conclusions

Based on biochemical and genome data, the occurrence of a thiol-redox system that is strictly dependent on trypanothione appears to be a feature unique to the order Kinetoplastida. The properties of trypanothione, a dithiol, are the basis for its unique reactivity towards a wide diversity of oxidized and/or electrophilic moieties in proteins and low molecular weight compounds from endogenous or exogenous sources. Novel functions have emerged for trypanothione as a potential cofactor in iron metabolism.

General significance

The minimalist thiol-redox system, developed by trypanosomatids, is an example of metabolic fitness driven by the remarkable physicochemical properties of a glutathione derivative. From a pharmacological point of view, such specialization is the Achilles' heel of these ancient and deadly parasites. This article is part of a Special Issue entitled Cellular functions of glutathione.  相似文献   

19.
The lipid second messenger diacylglycerol acts by binding to the C1 domains of target proteins, which translocate to cell membranes and are allosterically activated. Here we report the crystal structure at 3.2 A resolution of one such protein, beta2-chimaerin, a GTPase-activating protein for the small GTPase Rac, in its inactive conformation. The structure shows that in the inactive state, the N terminus of beta2-chimaerin protrudes into the active site of the RacGAP domain, sterically blocking Rac binding. The diacylglycerol and phospholipid membrane binding site on the C1 domain is buried by contacts with the four different regions of beta2-chimaerin: the N terminus, SH2 domain, RacGAP domain, and the linker between the SH2 and C1 domains. Phospholipid binding to the C1 domain triggers the cooperative dissociation of these interactions, allowing the N terminus to move out of the active site and thereby activating the enzyme.  相似文献   

20.
Certain bacteria synthesize glutathionylspermidine (Gsp), from GSH and spermidine. Escherichia coli Gsp synthetase/amidase (GspSA) catalyzes both the synthesis and hydrolysis of Gsp. Prior to the work reported herein, the physiological role(s) of Gsp or how the two opposing GspSA activities are regulated had not been elucidated. We report that Gsp-modified proteins from E. coli contain mixed disulfides of Gsp and protein thiols, representing a new type of post-translational modification formerly undocumented. The level of these proteins is increased by oxidative stress. We attribute the accumulation of such proteins to the selective inactivation of GspSA amidase activity. X-ray crystallography and a chemical modification study indicated that the catalytic cysteine thiol of the GspSA amidase domain is transiently inactivated by H2O2 oxidation to sulfenic acid, which is stabilized by a very short hydrogen bond with a water molecule. We propose a set of reactions that explains how the levels of Gsp and Gsp S-thiolated proteins are modulated in response to oxidative stress. The hypersensitivities of GspSA and GspSA/glutaredoxin null mutants to H2O2 support the idea that GspSA and glutaredoxin act synergistically to regulate the redox environment of E. coli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号