共查询到20条相似文献,搜索用时 15 毫秒
1.
Brisson L Castan S Fontbonne H Nicoletti C Puigserver A Ajandouz el H 《Chemistry and physics of lipids》2008,154(1):33-37
Caco-2 cells were used as a model for investigating and comparing the absorption of alpha-tocopherol (Tol) and alpha-tocopheryl acetate (Tac) solubilized in micelles based on a mixture of sodium taurocholate (NaTC) and oleic acid. Surprisingly, the uptake of Tac was found to be similar to that of Tol, and in both cases, the dose-response plots suggest that protein-mediated transport processes were involved. Moreover Tol or Tac were also secreted into the basolateral medium of Caco-2 cells but Tac was mainly hydrolyzed either prior to absorption or intracellularly. The solubilization of Tol or Tac by NaTC on the apical side of the cell monolayer is a prerequisite for the uptake process, although larger amounts of the bile salt are necessary to solubilize Tac than Tol. Caco-2 cells showed hydrolytic activity on Tac, and additional cholesterol esterase may be taken up by the cells, thus increasing the rates of intracellular hydrolysis of Tac. Based on our findings, a scheme is suggested accounting for the absorption of alpha-tocopheryl acetate by enterocytes. 相似文献
2.
《Journal of liposome research》2013,23(4):318-326
AbstractThe aim was to investigate the potential of proliposomes to improve the permeability of tenofovir, anti-HIV, for oral delivery. Tenofovir was incorporated into phosphatidylcholine proliposomes and their absorption was determined in Caco-2 cell cultures grown on Transwell inserts using aqueous drug solutions as reference. Five batches of proliposomes were prepared with different stearylamine levels and characterized in terms of vesicular morphology, drug encapsulation efficiency (EEF), drug leakage, vesicular sizing and surface charges. Cytotoxicity of the reconstituted liposomes was evaluated by the MTT assay. The obtained results showed that increasing the incorporated percentage of stearylamine led to an increase in drug encapsulation, a slower drug leakage and larger liposomes formed. Compared to the drug solutions at corresponding concentrations, the proposed formulations showed a positive relationship (R2?=?0.9756) for the influence of increasing the stearylamine percentage on reduction of mitochondrial activity. Regarding the drug permeability, enhancements of apparent permeability by 16.5- and 5.2-folds were observed for proliposomes formulations with 5% and 15% stearylamine, respectively. A good correlation was observed between the Caco-2 and dialysis models that might indicate passive diffusion as well as paracellular transport as suggested mechanisms for drug absorption. Cationic proliposomes offered a potential formulation to improve the permeation of tenofovir. 相似文献
3.
Gerard Leblondel Yves Mauras Annie Cailleux Pierre Allain 《Biological trace element research》2001,83(3):191-206
The transport and uptake of the most common Se compounds, selenate (SeO
4
2−
), selenite (SeO
3
2−
), selenomethionine, and selenocystine, were investigated using confluent monolayers of Caco-2 cells, a human carcinoma cell
line. Comparative measurements were performed in the absorptive (apical to basolateral side) and exsorptive (basolateral to
apical side) directions. Apparent permeability coefficients (P
app), calculated from transport experiments in the absorptive direction, showed increasing values in the following rank order:
about 1×10−6 cm/s ≤ mannitol ≤ SeO
3
2−
≤ selenocystine < selenomethionine < SeO
4
2−
≤ about 16×10−6 cm/s. The ratios of the P
app measured in the absorptive versus exsorptive directions indicated that only the organic forms presented a net polarized transport
(P
app ratio ≫1), suggesting the presence of a transcellular pathway. No significant excretion was observed. The transport of selenomethionine
was inhibited by its sulfur analog, methionine, suggesting a common transport mechanism. In contrast, an inhibition of the
transport of selenocystine by cysteine was not observed. From the two substrates tested, sulfate and thiosulfate, only thiosulfate
inhibited the transport of SeO
4
2−
. This effect was also observed for SeO
3
2−
(i.e., was unspecific), which questioned the assertion of a common transport for sulfate and SeO
4
2−
and may confirm the paracellular pathway of SeO
4
2−
suggested by the P
app ratio of about 1. The addition of glutathione (GSH) in large excess had no consequence on the passage of SeO
3
2−
but strongly increased the uptake (about fourfold). The liquid chromatography — mass spectrometry (LC-MS) data showed that,
in the ionic condition of incubation medium, GSH promptly reduced SeO
3
2−
(≤2 min) in its elemental form Se0, which cannot ascribe to selenodiglutathione a direct role in the effect of GSH. 相似文献
4.
Bitte Aspenstrm-Fagerlund Birgitta Sundstrm Jonas Tallkvist Nils-Gunnar Ilbck Anders W. Glynn 《Chemico-biological interactions》2009,181(2):272-278
Passive paracellular absorption, regulated by tight junctions (TJs), is the main route for absorption of poorly absorbed hydrophilic substances. Surface active substances, such as fatty acids, may enhance absorption of these substances by affecting the integrity of TJ and increasing the permeability. It has been suggested that aluminium (Al) absorption occurs mainly by the paracellular route. Herein, we investigated if physiologically relevant exposures of fully differentiated Caco-2 cell monolayers to oleic acid and docosahexaenoic acid (DHA), which are fatty acids common in food, increase absorption of Al and the paracellular marker mannitol. In an Al toxicity test, mannitol and Al absorption through Caco-2 cell monolayers were similarly modulated by Al concentrations between 1 and 30 mM, suggesting that absorption of the two compounds occurred via the same pathways. Exposure of Caco-2 cell monolayers to non-toxic concentrations of Al (2 mM) and 14C-mannitol in fatty acid emulsions (15 and 30 mM oleic acid, 5 and 10 mM DHA) caused a decreased transepithelial electrical resistance (TEER). Concomitantly, fractional absorption of Al and mannitol, expressed as percentage of apical Al and mannitol retrieved at the basolateral side, increased with increasing dose of fatty acids. Transmission electron microscopy was applied to assess the effect of oleic acid on the morphology of TJ. It was shown that oleic acid caused a less structured morphology of TJ in Caco-2 cell monolayers. Taken together our findings indicate that fatty acids common in food increase the paracellular intestinal absorption of Al. These findings may influence future risk assessment of human Al exposure. 相似文献
5.
《Bioorganic & medicinal chemistry letters》2014,24(22):5199-5202
A number of cytotoxic conjugated unsaturated ketones were screened for their membrane permeability characteristics using Caco-2 and MDCK cells with the view of finding promising leads for in vivo evaluations. 3b–e and 4a–b demonstrated high permeability characteristics. In particular, 4a emerged as a promising lead which showed excellent apparent permeability (Papp: 54.70) and efflux ratio (ER: 0.15) values. In general, the relative apparent permeabilities of these enones are similar in both bioassays. 相似文献
6.
Determination of thalidomide in transport buffer for Caco-2 cell monolayers by high-performance liquid chromatography with ultraviolet detection 总被引:2,自引:0,他引:2
Zhou S Li Y Kestell P Paxton JW 《Journal of chromatography. B, Analytical technologies in the biomedical and life sciences》2003,785(1):165-173
We report simple validated HPLC methods for the determination of thalidomide in the transport buffer for the human colonic cell line (Caco-2) cell monolayers. An aliquot of 50 microl of the mixture was injected onto a Spherex C(18) column (150 x 4.6 mm; 5 microm) at a flow-rate of 0.5 ml/min of mobile phase consisting of acetonitrile-10 mM ammonium acetate buffer (24:76, v/v, pH 5.5), and thalidomide was detected by ultraviolet detector at a wavelength of 220 nm. Calibration curves for thalidomide were constructed at the concentration range of 0.025-1.0 and 1.0-50 microM in transport buffer. The validated methods were used to determine the transport of thalidomide by Caco-2 monolayers. The transport across the monolayers from the apical (A) to basolateral (B) side was similar to that from B to A side. The apparent permeability coefficient (P(app)) values of thalidomide at 10-300 microM from the A to B and from B to A side was 2-6 x 10(-5) cm/s, with a marked decrease in P(app) values from A to B side at increased thalidomide concentration. The A to B transport appears to be dependent on temperature and sodium ion. Sodium azide, 2,4-dinitrophenol (both ATP inhibitors), 5-fluorouracil, cytidine and glutamic acid significantly inhibited the transport of thalidomide. These results indicate that the transport of thalidomide by Caco-2 monolayers was rapid, which might involve an energy-dependent mechanism. 相似文献
7.
We determined the extent of Na+-independent, proton-driven amino acid transport in human intestinal epithelia (Caco-2). In Na+-free conditions, acidification of the apical medium (apical pH 6.0, basolateral pH 7.4) is associated with a saturable net absorption of glycine. With Na+-free media and apical pH set at 6.0, (basolateral pH 7.4), competition studies with glycine indicate that proline, hydroxyproline, sarcosine, betaine, taurine, -alanine, -aminoisobutyric acid (AIB), -methylaminoisobutyric acid (MeAIB), -amino-n-butyric acid and l-alanine are likely substrates for pH-dependent transport in the brush border of Caco-2 cells. Both d-serine and d-alanine were also substrates. In contrast leucine, isoleucine, valine, phenylalanine, methionine, threonine, cysteine, asparagine, glutamine, histidine, arginine, lysine, glutamate and d-aspartate were not effective substrates. Perfusion of those amino acids capable of inhibition of acid-stimulated net glycine transport at the brush-border surface of Caco-2 cell monolayers loaded with the pH-sensitive dye 2,7-bis(2-carboxyethyl-5(6)-carboxyfluorescein) (BCECF) caused cytosolic acidification consistent with proton/amino acid symport. In addition, these amino acids stimulate an inward short-circuit current (I
sc) in voltage-clamped Caco-2 cell monolayers in Na+-free media (pH 6.0). Other amino acids such as leucine, isoleucine, phenylalanine, tryptophan, methionine, valine, serine, glutamine, asparagine, d-aspartic acid, glutamic acid, cysteine, lysine, arginine and histidine were without effect on both pHi and inward I
sc. In conclusion, Caco-2 cells express a Na+-independent, H+-coupled, rheogenic amino acid transporter at the apical brush-border membrane which plays an important role in the transepithelial transport of a range of amino acids across this human intestinal epithelium.This study was supported by a Wellcome Trust Fellowship (to DTT). Charlotte Ward, Maureen Sinclair and Ken Elliott provided excellent technical assistance. 相似文献
8.
The effect of various liposome formulations on insulin penetration across Caco-2 cell monolayer 总被引:4,自引:0,他引:4
The aim of the study was to determine the penetration properties of various insulin containing liposome formulations through Caco-2 cell monolayer and to compare the in vitro test results with in vivo tests. The effect of sodium taurocholate as a penetration enhancer when it was added to the liposome formulation was also investigated. In vitro permeation experiments were performed in diffusion cells with the Caco-2 cell monolayer used as the membrane. Permeability values of various insulin containing liposome formulations through Caco-2 cells were determined (log k(insulin-solution) = -2.217 +/- 0.0723 cm.h(-1), log k(insulin-liposome) = -2.141 +/- 0.0625 cm.h(-1), log k(insulin-sodium tauroholate liposome)= -1.952 +/- 0.0623 cm.h(-1)). In vivo tests were performed in mice. Formulations were administered orally and blood glucose levels were determined and penetrations were compared with the Caco-2 cell experiment results. In conclusion, the permeability of insulin was increased across Caco-2 cell monolayer when the liposome sodium taurocholate (NaTC) formulation was used. The oral administration of insulin and NaTC incorporated liposomes significantly decreased blood glucose levels. Furthermore, it was shown that a high in vitro/in vivo correlation was observed using the Caco-2 cell monolayer model. 相似文献
9.
Our recent study [S. Kobayashi, S. Tanabe, M. Sugiyama, Y. Konishi, Transepithelial transport of hesperetin and hesperidin in intestinal Caco-2 cell monolayers, Biochim. Biophys. Acta, 1778 (2008) 33-41] shows that the mechanism of absorption of hesperetin involves both proton-coupled active transport and transcellular passive diffusion. Here, as well as analyzing the cell permeability of hesperetin, we also study the transport of other flavanones, naringenin and eriodictyol, using Caco-2 cell monolayers. Similar to hesperetin mentioned, naringenin and eriodictyol showed proton-coupled polarized transport in apical-to-basolateral direction in non-saturable manner, constant permeation in the apical-to-basolateral direction (Jap → bl) irrespective of the transepithelial electrical resistance (TER), and preferable distribution into the basolateral side after apical loading in the presence of a proton gradient. Furthermore, the proton-coupled Jap → bl of hesperetin, naringenin and eriodictyol, were inhibited by substrates of the monocarboxylic acid transporter (MCT), such as benzoic acid, but not by ferulic acid. In contrast, both benzoic and ferulic acids have no stimulatory effect on Jap → bl of each flavanone by trans-stimulation analysis. These results indicates that proton-driven active transport is commonly participated in the absorption of flavanone in general, and that its transport is presumed to be unique other than MCT-mediated transport for absorption of phenolic acids (PAs), sodium-dependent MCT (SMCT) nor anion exchanger-mediated transport. 相似文献
10.
Kenichi Nagayama Tomiaki Oguchi Michiko Arita Takeshi Honda 《FEMS microbiology letters》1994,120(1-2):207-210
Abstract Cell-associated hemagglutination (cHA) activity with human erythrocytes was examined for 468 clinical and 71 environmental strains of Vibrio parahaemolyticus . Approximately 95% of the strains tested were cHA positive irrespective of source or Kanagawa phenomenon. 75% of clinical strains showed relatively strong mannose-sensitive hemagglutination (MSHA), whereas 88% of the environmental strains showed relatively weak mannose-resistant hemagglutination (MRHA). Adherence of V. parahaemolyticus to Caco-2 cells was also determined. A clear positive correlation between cell-associated MSHA and adherence to Caco-2 cells was observed. 相似文献
11.
Weiyin Huang Shuang Chen Lin Sun Hubin Wwang Hongqun Qiao 《Saudi Journal of Biological Sciences》2022,29(4):2247-2252
BackgroundThe aim of this work is to investigate the intestinal permeability of lamivudine and explore its absorption mechanism.MethodCaco-2 cells monolayer and single-pass intestinal perfusion (SPIP) were selected for the investigation of lamivudine under different conditions, such as different concentration, absorption time, bidirectional transportation, and transportation with efflux transporters inhibitor. The concentration of lamivudine both in Caco-2 cells monolayer samples and SPIP samples was detected by HPLC-UV. Then the permeability parameters were calculated.ResultsThe established HPLC-UV method reach the requirements for detection. There is no statistically difference between absorption parameters of lamivudine both in Caco-2 cells monolayer and SPIP (P > 0.05) under different dose groups. After transportation with efflux transporters inhibitor, the efflux rate of lamivudine in three dose groups was significantly decreased from 2.67, 2.59 and 2.59 to 1.78, 1.61, and 1.81 respectively. Lamivudine exhibits an absorption mechanism of passive diffusion.ConclusionThe absorption of lamivudine may be related to efflux transporters. In addition, lamivudine is a moderate-permeability drug in Biopharmaceutics Classification System. 相似文献
12.
All-trans retinoic acid enhances differentiation and influences permeability of intestinal Caco-2 cells under serum-free conditions 总被引:4,自引:0,他引:4
Vitamin A and retinoids are essential nutrients for the differentiation of epithelia. Vitamin A deficiency is accompanied by an impairment in intestinal integrity. We investigated whether retinoids influence the differentiation and permeability of Caco-2 cells under serum-free culture conditions as a model for the intestinal epithelium. Treatment of the Caco-2 cells with retinoic acids (RA) resulted in an increased specific activity, enhanced mRNA expression, and induction of the 5'-flanking promoter activity of the marker enzyme for the differentiation intestinal alkaline phosphatase. Surprisingly, permeability of the Caco-2 monolayer, as measured by transepithelial electric resistance and [3H]-mannitol flux, was found to be enhanced by RA. Treatment with RA had only a slight effect on the mRNA expression of the tight junction-associated proteins occludin, ZO-1, claudin-1, -3, and -4, but enhanced the expression of claudin-2, which was recently suggested to form a paracellular ion channel. The role of retinoids as potent inducers of epithelial differentiation was confirmed for the Caco-2 cells under serum-free culture conditions and it was concluded that IAP is a target gene of RA. The inverse regulation of the permeability by RA under these serum-free conditions showed that other mechanisms, which are essential to regulate intestinal epithelial integrity with respect to decreased permeability, have to be identified. 相似文献
13.
In a previous study, we characterized Cd–Hg interactions for uptake in human intestinal Caco-2 cells. We pursued our investigations
on metal uptake from metal mixtures, focusing on the effects of Hg on cellular homeostasis. A 4-fold higher equilibrium accumulation
value of 0.3 μmol/L 203Hg was measured in the presence of 100 μmol/L unlabeled Hg in the serum-free exposure medium without modification in the initial
uptake rate. This phenomenon was eliminated at 4∘C. Mercury induced an increase in tritiated water and [3H]mannitol uptakes for exposure times greater than 20 min. Incubations for 20 min and 30 min with 100 μmol/L Hg and 2 mmol/L
N-ethylmaleimide (NEM) resulted in a 34% and 50% reductions in cellular thiol staining, respectively, with additive effects.
Lactate dehydrogenase leakage and live/dead assays confirmed the maintenance of cell membrane integrity in Hg- or NEM-treated
cells. We conclude that Hg may alter membrane permeability and increase cell volume without any loss in cell viability. This
phenomenon is sensitive to temperature and could involve Hg interaction with membrane thiols, possibly related to solute transport.
During metal uptake from metal mixtures, Hg may thus promote the uptake of other toxic metals by increasing cell volume and
consequently cell capacity.
Deceased 25 March 2004 相似文献
14.
15.
The human intestinal epithelial cell line Caco-2; pharmacological and pharmacokinetic applications 总被引:13,自引:0,他引:13
The gastrointestinal tract remains the most popular and acceptable route of administration for drugs. It offers the great advantage of convenience and many compounds are well absorbed and thereby provide acceptable plasma concentration-time profiles. Currently there is considerable interest from the pharmaceutical industry in development of cell culture systems that would mimic the intestinal mucosa in order to evaluate strategies for investigating and/or enhancing drug absorption. The intestinal epithelial cells of primary interest, from the standpoint of drug absorption and metabolism, are the villus cells, which are fully differentiated cells. Anin vitro cell culture system consisting of a monolayer of viable, polarized and fully differentiated villus cells, similar to that found in the small intestine, would be a valuable tool in the study of drug and nutrient transport and metabolism.The Caco-2 cell line, which exhibits a well-differentiated brush border on the apical surface and tight junctions, and expresses typical small-intestinal microvillus hydrolases and nutrient transporters, has proven to be the most popularin vitro model (a) to rapidly assess the cellular permeability of potential drug candidates, (b) to elucidate pathways of drug transport (e.g., passive versus carrier mediated), (c) to assess formulation strategies designed to enhance membrane permeability, (d) to determine the optimal physicochemical characteristics for passive diffusion of drugs, and (e) to assess potential toxic effects of drug candidates or formulation components on this biological barrier. Since differentiated Caco-2 cells express various cytochrome P450 isoforms and phase II enzymes such as UDP-glucuronosyltransferases, sulfotransferases and glutathione-S-transferases, this model could also allow the study of presystemic drug metabolism. 相似文献
16.
The effect of some milk components on the cellular uptake of cadmium has been studied using a human intestinal cell line (Caco-2). Cadmium uptake by Caco-2 cells increased with the concentration of this metal in the culture medium, in a saturable way. These cells were exposed to different concentrations of cadmium and the synthesis of metallothionein was studied by a cadmium-saturation method. The levels of metallothionein increased with the cadmium concentration in the medium up to 20 μM of metal. Supplementation of the culture medium with 10% bovine milk caused a 25% decrease in the uptake of cadmium with respect to that internalized by the cells maintained in the culture medium alone. However, the uptake of cadmium from the medium supplemented with 10% human milk was similar to that with serum-free medium. β-Lactoglobulin interacted with cadmium when studied by equilibrium dialysis, showing a stoichiometric binding constant of 5 × 104l/mol. Interaction of lactoferrin with cadmium, however, was negligible. When Caco-2 cells were incubated in culture medium containing lactoferrin, cadmium uptake decreased with respect to that observed incubating the cells in a medium containing β-lactoglobulin or in the free-protein medium. The inhibitory effect of lactoferrin on the uptake of cadmium might be due to a reduction of the cell surface charge, through its binding to the membrane. 相似文献
17.
Natalia Buzzi Paola Scodelaro BilbaoRicardo Boland Ana Russo de Boland 《Biochimica et Biophysica Acta (BBA)/General Subjects》2009,1790(12):1651-1659
Background
ATP exerts diverse effects on various cell types via specific purinergic P2Y receptors. Intracellular signaling cascades are the main routes of communication between P2Y receptors and regulatory targets in the cell.Methods and results
We examined the role of ATP in the modulation of ERK1/2, JNK1/2, and p38 MAP kinases (MAPKs) in human colon cancer Caco-2 cells. Immunoblot analysis showed that ATP induces the phosphorylation of MAPKs in a time- and dose-dependent manner, peaking at 5 min at 10 µM ATP. Moreover, ATPγS, UTP, and UDP but not ADP or ADPβS increased phosphorylation of MAPKs, indicating the involvement of, at least, P2Y2/P2Y4 and P2Y6 receptor subtypes. RT–PCR studies and PCR product sequencing supported the expression of P2Y2 and P2Y4 receptors in this cell line. Spectrofluorimetric measurements showed that cell stimulation with ATP induced transient elevations in intracellular calcium concentration. In addition, ATP-induced phosphorylation of MAPKs in Caco-2 cells was dependent on Src family tyrosine kinases, calcium influx, and intracellular Ca2+ release and was partially dependent on the cAMP/PKA and PKC pathways and the EGFR.General significance
These findings provide new molecular basis for further understanding the mechanisms involved in ATP functions, as a signal transducer and activator of MAP kinase cascades, in colon adenocarcinoma Caco-2 cells. 相似文献18.
Christiane Lacombe Viviane Viallard Stphane Schaak Herv Paris 《Biology of the cell / under the auspices of the European Cell Biology Organization》1996,88(3):123-129
Summary— As evidenced by pertussis toxin-catalysed [32P]ADP-ribosylation, immunoblotting and Northern blot, the human adenocarcinoma intestinal cell line Caco-2 expresses Gi2 and Gi3 proteins. The localization of these two Gis within the cell was investigated by using subcellular fractionation and confocal microscopy on intact cell layer. A brush-border rich fraction and a pellet containing the remaining cellular membranes were prepared. [32P]ADP-ribosylation and immunoblotting demonstrated the presence of both αi2 and αi3 in these two preparations. Immunofluorescence studies performed on intact cells grown on Transwell filters and viewed by confocal microscopy further confirmed the localization of αi3-subunit on basolateral as well as on apical membranes. In contrast, αi2-subunit was shown to accumulate mainly in the intra-cellular compartment while only faint staining of the plasma membrane was detectable. Based upon double-labelling experiments with antibody against rough endoplasmic reticulum (RER), there is a strong possibility that intra-cellular sites of αi2-subunit correspond to association with RER membranes. 相似文献
19.
Effects of capsaicin on human intestinal cell line Caco-2 总被引:1,自引:0,他引:1
The influence of capsaicin processing on human intestinal cell line Caco-2 was examined by measuring transepithelial electrical
resistance (TER). There was an increase in permeability at high concentration (200 to 500 μM) of capsaicin, and the effect
was inhibited by pretreatment of capsazepine, which is a competitive antagonist of the vanilloid receptor 1 (VR1). LDH-activity
as well as changes in intracellular Ca2+ were determined to know whether or not capsaicin affected TER activity through its influence on the tight junction. We also
determined the expression of the VR1-like protein on Caco-2 cells in time-dependent manner by western blotting using vanilloid
receptor (VR1) antiserum. Our results showed that the permeability increase by capsaicin was through binding to VR1-like protein
of Caco-2 cells.
This revised version was published online in July 2006 with corrections to the Cover Date. 相似文献
20.
Milk is the source of β-casomorphins – biologically active peptides with opioid activity – which are suspected to play various roles in the human body. The local influence of exogenous opioid peptides on gastrointestinal functions has been widely reported. After passing the gut barrier, β-casomorphins may affect the functions of immunological system, as well as dopaminergic, serotoninergic and GABA-ergic systems in brain, regulate the opioid receptor development and elicit behavioral effects. However, possibilities and mechanisms of the intestinal transport of β-casomorphins in human body in vivo have not been reported so far. In our research, the transepithelial transport of μ-opioid receptor agonists – human β-casomorphin-5 and 7(BCM5, BCM7) and antagonist – lactoferroxin A (LCF A) have been investigated using Caco-2 monolayer. In order to determine the pathway of investigated peptide transport across Caco-2 monolayer, two directions of the transport (apical to basolateral and basolateral to apical) have been studied. All investigated peptides were transported across the human intestinal cell line Caco-2 and the curves of cumulative amount of transported peptides in time were linear in each case. In addition, the hydrolysis of β-casomorphins during 60 min of experiment by dipeptidyl peptidase IV was observed. The data suggest the possibility of transport of opioid peptides derived from food across human intestinal mucosa. 相似文献