首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Various dressings are available to heal chronic wounds which many times fail to achieve the expected results. To overcome some of their drawbacks, formulation of a novel dressing; lyophilized liposomal wafers having better wound healing potential has been proposed in the present study. The drug incorporated in the formulation is gatifloxacin (GTX) which is a fourth-generation fluoroquinolone antibiotic having in vitro activity against both Gram-negative and Gram-positive bacteria. The formulation was designed in three stages where at first liposomes were prepared, the liposomes were converted to gel using chitosan and lastly this gel was lyophilized to form liposomal wafers. Liposomes were prepared by varying the concentration of lipid and cholesterol and evaluated for particle size, entrapment efficiency, in vitro cumulative release, transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Liposomes were converted to liposomal gel using chitosan and evaluated for texture, clarity, viscosity, spreadibility and in vitro drug release. Finally, this liposomal batch was subjected to lyophilization to convert it to liposomal wafers and subjected to SEM, differential scanning calorimetric, X-ray diffraction and drug release studies. The in vivo studies were carried out on Wistar rats where wound healing potential of the wafers was confirmed by histopathological evaluation.  相似文献   

2.
The preparation of a new kind of multilayered liposome, called a stable plurilamellar vesicle (SPLV), is described. Although SPLVs and classical multilamellar vesicles (MLVs) are made of the same materials and appear overtly similar in the electron microscope, the two types of vesicles differ as determined by stability, entrapment efficiency, electron spin resonance (ESR), NMR, X-ray diffraction, and biological effects. It is demonstrated that, contrary to what has been assumed, classical MLVs exclude solutes during their formation and, thus, are under a state of osmotic compression. By contrast, the SPLV process produces liposomes that are not compressed. The effects of osmotic compression are discussed. It is suggested that the state of osmotic stress is an important variable that distinguishes various types of liposomes and that has significant physical and biological consequences.  相似文献   

3.
Unilamellar vesicle populations having a narrow size distribution and mean radius below 100 nm are preferred for drug delivery applications. In the present work, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) was used to prepare giant unilamellar vesicles (GUVs) by electroformation and multilamellar vesicles (MLVs) by thin film hydration. Our experiments show that in contrast to MLVs, a single-pass extrusion of GUVs through track-etched polycarbonate membranes at moderate pressure differences is sufficient to produce small liposomes having low polydispersity index. Moreover, we observe that the drug encapsulating potential of extruded liposomes obtained from GUVs is significantly higher compared to liposomes prepared by extrusion of MLVs. Furthermore, our experiments carried out for varying membrane pore diameters and extrusion pressures suggest that the size of extruded liposomes is a function of the velocity of GUV suspensions in the membrane pore.  相似文献   

4.
Most subunit vaccines require adjuvants in order to induce protective immune responses to the targeted pathogen. However, many of the potent immunogenic adjuvants display unacceptable local or systemic reactogenicity. Liposomes are spherical vesicles consisting of single (unilamellar) or multiple (multilamellar) phospholipid bi-layers. The lipid membranes are interleaved with an aqueous buffer, which can be utilised to deliver hydrophilic vaccine components, such as protein antigens or ligands for immune receptors. Liposomes, in particular cationic DDA:TDB vesicles, have been shown in animal models to induce strong humoral responses to the associated antigen without increased reactogenicity, and are currently being tested in Phase I human clinical trials. We explored several modifications of DDA:TDB liposomes--including size, antigen association and addition of TLR agonists--to assess their immunogenic capacity as vaccine adjuvants, using Ovalbumin (OVA) protein as a model protein vaccine. Following triple homologous immunisation, small unilamellar vesicles (SUVs) with no TLR agonists showed a significantly higher capacity for inducing spleen CD8 IFNγ responses against OVA in comparison with the larger multilamellar vesicles (MLVs). Antigen-specific antibody reponses were also higher with SUVs. Addition of the TLR3 and TLR9 agonists significantly increased the adjuvanting capacity of MLVs and OVA-encapsulating dehydration-rehydration vesicles (DRVs), but not of SUVs. Our findings lend further support to the use of liposomes as protein vaccine adjuvants. Importantly, the ability of DDA:TDB SUVs to induce potent CD8 T cell responses without the need for adding immunostimulators would avoid the potential safety risks associated with the clinical use of TLR agonists in vaccines adjuvanted with liposomes.  相似文献   

5.
The ability of pegylated liposomes (sterically stabilized liposomes-SSL) to localize in solid tumors via the enhanced permeability and retention (EPR) effect, partly depends on their long circulating properties which can be achieved by grafting polyethylene glycol (PEG) to the liposomes’ surface. Alkannin and shikonin (A/S) are naturally occurring hydroxynaphthoquinones with a well-established spectrum of wound healing, antimicrobial, anti-inflammatory, antioxidant, and recently established antitumor activity. The purpose of this work was to prepare and characterize shikonin-loaded pegylated liposomes as a new drug carrier for shikonin, as a continuation of authors’ previous work on conventional shikonin-loaded liposomal formulations. Three new pegylated liposomal formulations of shikonin (DSPC-PEG2000, EPC-PEG2000, and DPPC-PEG2000) were prepared and characterized in terms of physicochemical characteristics, pharmacokinetics, and stability (at 4?°C, for 28?d) and compared with the corresponding conventional ones. Particle size distribution, ζ-potential, entrapment efficiency, and release profile of the entrapped drug were measured. Results indicated the successful incorporation of shikonin into liposomes alongside with their good physicochemical characteristics, high entrapment efficiency, satisfactory in vitro release profile, and good physical stability. The results are considered promising and could be used as a road map for designing further in vivo experiments.  相似文献   

6.
The use of active ingredients in wound management have evolved alongside the pharmaceutical agents and dressings used to deliver them. However, the development of gauzes, dressings with specific properties, still remains a challenge for several medical applications. A new methodology for the controlled release of active components for the healing of burn wounds is proposed herein. Cotton and non‐woven bandages have been cationised to promote the attachment of protein microspheres. The active agents, piroxicam and vegetable oil, were entrapped into the microspheres using ultrasound energy. Active agents were released from the microspheres by a change in pH. Wound healing was assessed through the use of standardised burn wounds induced by a cautery in human full‐thickness skin equivalents (EpidermFT). The best re‐epithelialisation and fastest wound closure was observed in wounds treated with proteinaceous microspheres attached to gauzes, after six days of healing, in comparison with commercial collagen dressing and other controls. Furthermore, the ability of these materials to reduce the inflammation process, together with healing improvement, makes these biomaterials suitable for wound‐dressing applications.  相似文献   

7.
This study aimed to investigate the influence of the preparation conditions on the performance of an ethosomal formulation for topical delivery of the local anesthetic agent, benzocaine (BZC). Ethosomes were prepared with different techniques, such as thin-layer evaporation, freezing and thawing, reverse-phase evaporation, extrusion and sonication, obtaining, respectively, multilayer vesicles (MLVs), frozen and thawed MLV (FATMLV), large unilamellar vesicles (LUVs), and small unilamellar vesicles (SUVs). The obtained vesicles were characterized for morphology, size, zeta potential, and entrapment efficiency (EE%), and their stability was monitored during storage at 4°C. In vitro permeation properties from gels incorporating drug ethosomal dispersions were evaluated in vitro by using artificial lipophilic membranes, while their anesthetic effect was determined in vivo on rabbits. The results suggested that the vesicle preparation method plays an important role in affecting the properties and effectiveness of ethosomal formulations. MLVs and LUVs exhibited higher drug EE% and better stability than FATMLV and SUV vesicles. The In vitro drug permeation rate was directly related to the vesicle EE% and varied in the order MLV>LUV≈FATMLV>SUV. The therapeutic efficacy of BZC ethosomal formulations was significantly improved with respect to the corresponding BZC solution. The best results, in terms of enhanced intensity of anesthetic effect, were given by formulations containing MLVs and LUVs, and the order of effectiveness was MLV≈LUV>FATMLV≈SUV, rather similar to that found in permeation studies. On the contrary, unexpectedly, the effectiveness order in increasing the duration of drug action was SUV≥MLV>LUV≈FATMLV. The highest efficacy of SUVs was probably due to the more intimate contact with the epithelium due to their greatest surface area, which allowed the longest extension of drug therapeutic action. The overall results suggest that a suitably developed ethosomal formulation of BZC can be of actual value for improving its clinical effectiveness in topical anesthesia.  相似文献   

8.
The aim of the present investigation was to prepare and evaluate a vesicular dual-drug delivery system for effective management of the mucosal ulcer. Inner encapsulating and double liposomes were prepared by the glass-bead and reverse-phase evaporation methods, respectively. The formulation consisted of inner liposomes bearing ranitidine bismuth citrate (RBC) and outer liposomes encapsulating amoxicillin trihydrate (AMOX). The optimized inner liposomes and double liposomes were extensively characterized for vesicle size, morphology, zeta potential, vesicles count, entrapment efficiency, and in vitro drug release. In vitro, the double liposomes demonstrated a sustained release of AMOX and RBC of 93.6 ± 1.9 and 84.1 ± 0.9%, respectively, at the end of 144 hours. Ex vivo studies were conducted on Helicobacter pylori (ATCC26695) bacterial cell lines. Double liposomes showed a more enhanced percent H. pylori growth inhibition than the plain drug combination. Further, in vivo studies illustrated enhanced antisecretory and ulcer-protective activity of double liposomes, as compared to the plain drug combination. Microscopic studies also supported the ulcer-protective action of the formulation. Thus, it may be concluded that double liposomes are instrumental in reducing gastric secretions and targeting ulcer sites with the interception of minimal side effects, thus suggesting their potential in ulcer therapy.  相似文献   

9.
The present study aimed to evaluate the potential of liposomes loaded with paromomycin (PA), an aminoglycoside antibiotic associated with poor skin penetration, for the topical treatment of cutaneous leishmaniasis (CL). Fluid liposomes were prepared and characterized for particle size, zeta potential, and drug entrapment. Permeation studies were performed with two in vitro models: intact and stripped skin. The antileishmanial activity of free and liposomal PA was evaluated in BALB/c mice infected by Leishmania (L.) major. Drug entrapment ranged from 10 to 14%, and the type of vesicle had little influence on this parameter. Particle size and polydispersity index of the vesicles composed by phosphatidylcholine (PC) and PC/cholesterol (Chol) ranged from of 516 to 362?nm and 0.7 to 0.4, respectively. PA permeation across intact skin was low, regardless of the formulation tested, while drug penetration into skin (percent of the applied dose) from PC (7.2?±?0.2%) and PC/Chol (4.8?±?0.2%) liposomes was higher than solution (1.9?±?0.1%). PA-loaded liposomes enhanced in vitro drug permeation across stripped skin and improved the in vivo antileishmanial activity in experimentally infected mice. Our findings suggest that the liposomes represent a promising alternative for the topical treatment of CL using PA.  相似文献   

10.
Penetration potential of vesicles destined for trans(dermal) administration remains to be of great interests both in respect to drug therapy and cosmetic treatment. This study investigated the applicability of the phospholipid vesicle-based permeation assay (PVPA) as a novel in vitro skin barrier model for screening purposes in preformulation studies. Various classes of liposomes containing hydrophilic model drug were examined, including conventional liposomes (CLs), deformable liposomes (DLs) and propylene glycol liposomes (PGLs). The size, surface charge, membrane deformability and entrapment efficiency were found to be affected by the vesicle lipid concentration, the presence of the surfactant and propylene glycol. All liposomes exhibited prolonged drug release profiles with an initial burst effect followed by a slower release phase. The permeation of the drug from all of the tested liposomes, as assessed with the mimicked stratum corneum – PVPA model, was significantly enhanced as compared to the permeability of the drug in solution form. Although the DLs and the PGLs exhibited almost the same membrane elasticity, the permeability of the drug delivered by PGLs was higher (6.2?×?10?6?cm/s) than DLs (5.5?×?10?6?cm/s). Therefore, this study confirmed both the potential of liposomes as vesicles in trans(dermal) delivery and potential of the newly developed skin-PVPA for the screening and optimization of liposomes at the early preformulation stage.  相似文献   

11.
In this study the anticancer activity of paclitaxel-loaded nano-liposomes on glioma cell lines was investigated. Soya phosphatidylcholine:cholesterol (SPC:Chol), hydrogenated soya phosphatidylcholine:cholesterol (HSPC:Chol) or dipalmitoylphosphatidylcholine:cholesterol (DPPC:Chol) in 1:1?mole ratio were used to prepare ethanol-based proliposomes. Following hydration of proliposomes, the size of resulting vesicles was subsequently reduced to nanometer scale via probe-sonication. The resulting formulations were characterized in terms of size, zeta potential and morphology of the vesicles, and entrapment efficiency of paclitaxel (PX) as well as the final pH of the preparations. DPPC-liposomes entrapped 35–92% of PX compared to 27–74% and 25–60% entrapped by liposomes made from SPC and HSPC formulations respectively, depending on drug concentration. The entrapment efficiency of liposomes was dependent on the lipid bilayer properties and ability of PX to modify surface charge of the vesicles. In vitro cytotoxicity studies revealed that PX-liposome formulations were more selective at inhibiting the malignant cells. The cytotoxicity of PX-liposomes was dependent on their drug-entrapment efficiency. This study has shown PX-liposomes generated from proliposomes have selective activity against glioma cell lines, and the synthetic DPPC phospholipid was most suitable for maximized drug entrapment and highest activity against the malignant cells in vitro.  相似文献   

12.
Macrophages are pivotal in promoting wound healing. We hypothesized that topical application of liposomes with glycolipids that carry Galα1-3Galβ1-4GlcNAc-R epitopes (α-gal liposomes) on wounds may accelerate the healing process by rapid recruitment and activation of macrophages in wounds. Immune complexes of the natural anti-Gal Ab (constituting ~1% of Ig in humans) bound to its ligand, the α-gal epitope on α-gal liposomes would induce local activation of complement and generation of complement chemotactic factors that rapidly recruit macrophages. Subsequent binding of the Fc portion of anti-Gal coating α-gal liposomes to FcγRs on recruited macrophages may activate macrophage genes encoding cytokines that mediate wound healing. We documented the efficacy of this treatment in α1,3galactosyltrasferase knockout mice. In contrast to wild-type mice, these knockout mice lack α-gal epitopes and can produce the anti-Gal Ab. The healing time of excisional skin wounds treated with α-gal liposomes in these mice is twice as fast as that of control wounds. Moreover, scar formation in α-gal liposome-treated wounds is much lower than in physiologic healing. Additional sonication of α-gal liposomes resulted in their conversion into submicroscopic α-gal nanoparticles. These α-gal nanoparticles diffused more efficiently in wounds and further increased the efficacy of the treatment, resulting in 95-100% regeneration of the epidermis in wounds within 6 d. The study suggests that α-gal liposome and α-gal nanoparticle treatment may enhance wound healing in the clinic because of the presence of high complement activity and high anti-Gal Ab titers in humans.  相似文献   

13.
The aim of this work was to prepare coenzyme Q10 (CoQ10) long-circulating liposomes, and establish the quality standard to determine the content and entrapment efficiency. CoQ10 long-circulating liposomes were prepared by the film dispersion method, HPLC assay for the determination of CoQ10 was developed. Free drugs and liposomes were separated using the protamine aggregation method and entrapment efficiency was determined. The liposomes were homogeneous and the mean diameter was 166.0 nm, Zeta potential was −22.2 mV. The content and entrapment efficiency of CoQ10 were 98.2% and 93.2% for three batches of liposomes, respectively. The lyophilized form of liposomes prepared by freeze-drying showed stable quality characteristics during storage. The formulation and preparative method can be used to prepare CoQ10 long-circulating liposomes with high entrapment efficiency and high quality, the determination method of drug content and entrapment efficiency were effective and rapid and can be used for quality evaluation of liposomes.  相似文献   

14.
The purpose of this study was to formulate topically effective controlled release ophthalmic acetazolamide liposomal formulations. Reverse-phase evaporation and lipid film hydration methods were used for the preparation of reversephase evaporation (REVs) and multilamellar (MLVs) acetazolamide liposomes consisting of egg phosphatidylcholine (PC) and cholesterol (CH) in the molar ratios of (7∶2), (7∶4), (7∶6), and (7∶7) with or without stearylamine (SA) or dicetyl phosphate (DP) as positive and negative charge inducers, respectively. The prepared liposomes were evaluated for their entrapment efficiency and in vitro release. Multilamellar liposomes entrapped greater amounts of drug than REVs liposomes. Drug loading was increased by increasing CH content as well as by inclusion of SA. Drug release rate showed an order of negatively charged > neutral > positively charged liposomes, which is the reverse of the data of drug loading efficiency. Physical stability study indicated that approximately 89%, 77%, and 69% of acetazolamide was retained in positive, negative, and neutral MLVs liposomal formulations up to a period of 3 months at 4°C. The intraocular pressure (IOP)-lowering activity of selected acetazolamide liposomal formulations was determined and compared with that of plain liposomes and acetazolamide solution. Multilamellar acetazolamide liposomes revealed more prolonged effect than REVs liposomes. The positively charged and neutral liposomes exhibited greater lowering in IOP and a more prolonged effect than the negatively charged ones. The positive multilamellar liposomes composed of PC:CH:SA (7:4:1) molar ratio showed the maximal response, which reached a value of −7.8±1.04 mmHg after 3 hours of topical administration. Published: January 5, 2007  相似文献   

15.
Clotrimazole, an imidazole derivative antifungal agent is widely used for the treatment of mycotic infections of the genitourinary tract. In order to develop alternative formulation for the vaginal administration of clotrimazole to provide sustained and controlled release of appropriate drug for local vaginal therapy, liposomes/niosomes were evaluated as delivery vehicles. To optimize the preparation of liposomes/niosomes with regards to size and entrapment efficiency, multilamellar liposomes/niosomes containing drug were prepared by lipid hydration method. The ability of the systems to deliver clotrimazole into and through the mucosa was evaluated in vitro using rabbit vaginal mucosa with vertical Franz diffusion cells. The in vitro permeation data showed that the liposomes/niosomes system increased the clotrimazole total penetration through the vaginal mucosa by 1.6, 1.5-fold, the accumulation of clotrimazole into the mucosa was increased by 3.1, 2.3-fold, respectively, as compared with control during 24 hr. These results suggest that the studied liposomes/niosomes systems may be appropriate vesicles for the vaginal mucosa delivery of clotrimazole for local vaginal therapy.  相似文献   

16.
Liposome structure and solute entrapment in multilayered vesicles (MLVs) prepared by reverse-phase evaporation (REV) were studied. MLV-REV vesicles prepared from ether/water emulsions have high entrapment. Entrapment depends on drug, drug concentration, lipid, lipid concentration, and the container used to prepare the vesicles. By use of 300 microL of aqueous phase and 100 mg of phosphatidylcholine (PC), vesicles prepared in a test tube 25 mm X 175 mm have higher entrapment than vesicles prepared in a 100-mL round-bottom or pear-shaped flask. By use of a test tube, 100 mg of PC, and 300 microL of aqueous phase containing sucrose (1-50 mg/mL), greater than 90% sucrose entrapment was obtained. Increasing lipid content to 150 mg of PC decreased entrapment to approximately 80%. Neutral PC MLV-REV vesicles have optimum entrapment. Mixing negatively charged lipids or cholesterol (CH) with PC to make MLV-REV vesicles results in decreased entrapment compared to using only PC. Preparing vesicles with the solid lipid dipalmitoylphosphatidylcholine (DPPC) or DPPC/CH mixtures (0 less than or equal to mol % CH less than or equal to 50) results in approximately 30-40% entrapment when diethyl ether is used to make the MLV-REV emulsion. Substituting diisopropyl ether for diethyl ether and heating the MLV-REV emulsion during vesicle formation generate DPPC/CH vesicles that entrap 60% of added solutes. The high entrapment found for MLV vesicles prepared from water/organic solvent emulsions depends on maintaining a core during the process of liposome formation. A method to calculate the fraction of water residing in the liposomes' core is presented and used to compare multilayered vesicles prepared by different processes. X-ray diffraction data demonstrate that a heterogeneous distribution of lipid may exist in multilayered vesicles prepared by the REV process.  相似文献   

17.
Abstract

The motive behind present work was to discover a solution for overcoming the problems allied with a deprived oral bioavailability of salbutamol sulfate (SS) due to its first pass hepatic metabolism, shorter half-life, and systemic toxicity at high doses. Pulmonary delivery provides an alternative route of administration to avoid hepatic metabolism of SS, moreover facilitated diffusion and prolonged retention can be achieved by incorporation into liposomes. Liposomes were prepared by thin film hydration technique using 32 full factorial design and formulation was optimized based on the vesicle size and percent drug entrapment (PDE) of liposomes. Optimized liposomal formulation exhibited an average size of about 167.2?±?0.170?nm, with 80.68?±?0.74% drug entrapment, and 9.74?±?1.10?mV zeta potential. The liposomal dispersion was then spray dried and further characterized for in-vitro aerosol performance using Andersen Cascade Impactor. Optimized liposomal formulation revealed prolonged in-vitro drug release of more than 90% up to 14?h following Higuchi’s controlled release model. Thus, the proposed new-fangled liposomal formulation would be a propitious alternative to conventional therapy for efficient and methodical treatment of asthma and alike respiratory ailments.  相似文献   

18.
Ofloxacin, available as ophthalmic solution, has two major problems: first, it needs frequent administration every 4 hours or even every 1 hour to treat severe eye infection; second, there is formation of white crystalline deposit on cornea due to its pH-dependent solubility, which is very low at pH of corneal fluid. In order to provide a solution to previous problems, ofloxacin in this study is prepared as topically effective in situ thermosensitive prolonged release liposomal hydrogel. Two preparation procedures were carried out, leading to the formation of multilamellar vesicles (MLVs) and reverse-phase evaporation vesicles (REVs) at pH 7.4. Effects of method of preparation, lipid content, and charge inducers on encapsulation efficiency were studied. For the preparation of in situ thermosensitive hydrogel, chitosan/β-glycerophosphate system was synthesized and used as carrier for ofloxacin liposomes. The effect of addition of liposomes on gelation temperature, gelation time, and rheological behaviors of the hydrogel were evaluated. In vitro transcorneal permeation was also determined. MLVs entrapped greater amount of ofloxacin than REVs liposomes at pH 7.4; drug loading was increased by including charge-inducing agent and by increasing cholesterol content until a certain limit. The gelation time was decreased by the addition of liposomes into the hydrogel. The prepared liposomal hydrogel enhances the transcorneal permeation sevenfold more than the aqueous solution. These results suggested that the in situ thermosensitive ofloxacin liposomal hydrogel ensures steady and prolonged transcorneal permeation, which improves the ocular bioavailability, minimizes the need for frequent administration, and decreases the ocular side effect of ofloxacin.  相似文献   

19.
Various amounts of Ovalbumin (OVA) were encapsulated into positively and negatively charged multilamellar liposomes, with the aim to investigate the entrapment efficiency in different buffers and to study their effects on the liposome size and zeta potential. Results showed that the entrapment efficiency of OVA in anionic liposomes was the same in 10 mM Phosphate Buffer (PB) as in Phosphate-Buffered Saline (PBS; PB?+?0.15 M NaCl). Also, liposome size was approximately 1200 nm for all anionic liposomes incorporating OVA. The entrapment efficiency of OVA in cationic liposomes was highly dependent on ionic strength. The size of cationic liposomes was approximately 1200 nm in PBS, regardless of protein content, but increased with the amount of the incorporated protein in PB. Aggregation of cationic liposomes in PB was observed when the mass of the protein was 2.5 mg or greater. The zeta potential of anionic liposomes was negative and of cationic liposomes positive in the whole range of protein mass tested. These results show how different compositions of lipid and aqueous phases can be used to vary the entrapment efficiency, liposome size, and zeta potential—the factors that are of great importance for the use of liposomes as drug carriers.  相似文献   

20.
Various amounts of Ovalbumin (OVA) were encapsulated into positively and negatively charged multilamellar liposomes, with the aim to investigate the entrapment efficiency in different buffers and to study their effects on the liposome size and zeta potential. Results showed that the entrapment efficiency of OVA in anionic liposomes was the same in 10 mM Phosphate Buffer (PB) as in Phosphate-Buffered Saline (PBS; PB + 0.15 M NaCl). Also, liposome size was approximately 1200 nm for all anionic liposomes incorporating OVA. The entrapment efficiency of OVA in cationic liposomes was highly dependent on ionic strength. The size of cationic liposomes was approximately 1200 nm in PBS, regardless of protein content, but increased with the amount of the incorporated protein in PB. Aggregation of cationic liposomes in PB was observed when the mass of the protein was 2.5 mg or greater. The zeta potential of anionic liposomes was negative and of cationic liposomes positive in the whole range of protein mass tested. These results show how different compositions of lipid and aqueous phases can be used to vary the entrapment efficiency, liposome size, and zeta potential--the factors that are of great importance for the use of liposomes as drug carriers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号