首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Simultaneous intragastric administration of large doses of KCl (430 mg/kg and 860 mg/kg) with ethanol (4 g/kg) significantly reduces blood alcohol levels and diminishes manifestations of alcohol intoxication in rats. It was shown with parenteral administration of alcohol that the effect is not related to an acceleration of alcohol metabolism. Analysis of alcohol concentrations of gastric and intestinal content as well as in situ studies with animals whose stomachs were ligated at the pylorus revealed that KCl interferes with the absorption of alcohol through inhibition of gastric absorption and gastric emptying. The finding that equimolal concentrations of NaCl were unable to duplicate the described effects characterizes them as specific actions of the potassium ion.  相似文献   

2.
Tolerance to alcohol effects is one of the defining features of clinical alcohol dependence. Here, we hypothesized that the post-dependent state may include tolerance to sedative-hypnotic alcohol actions. To address this question, we used a recently developed animal model in which repeated cycles of alcohol intoxication and withdrawal trigger long-lasting behavioral plasticity. This animal model shares important features with the clinical condition. Animals were exposed to 7 weeks of intermittent alcohol vapor, allowed to recover for 3 weeks, and tested in protracted abstinence to exclude contributions from acute withdrawal. Post-dependent and control rats were injected with a hypnotic dose of alcohol (3 g/kg), and the loss of righting reflex (LORR) was recorded, blood alcohol levels were monitored, and the elimination rate was calculated. Post-dependent animals showed a decrease in LORR. Alcohol metabolism and elimination kinetics did not differ between groups. In conclusion, a history of alcohol dependence induces long-lasting hypnotic tolerance. This process may play an important role in maintaining the dependent state.  相似文献   

3.
There is an emerging body of data suggesting that mood disorders are associated with decreased brain-derived neurotrophic factor (BDNF). The present study aims to investigate the effects of the mood stabilizers lithium (Li) and valproate (VPT) in an animal model of bipolar disorder. In the first experiment (acute treatment), rats were administered D-amphetamine (AMPH) or saline for 14 days, and then between day 8 and 14, rats were treated with either Li, VPT or saline. In the second experiment (maintenance treatment), rats were pretreated with Li, VPT or saline, and then between day 8 and 14, rats were administered AMPH or saline. In both experiments, locomotor activity was measured using the open-field test and BDNF levels were measured in rat hippocampus by sandwich-ELISA. Li and VPT reversed AMPH-induced behavioral effects in the open-field test in both experiments. In the first experiment, Li increased BDNF levels in rat hippocampus. In the second experiment, AMPH decreased BDNF levels and Li and VPT increased BDNF levels in rat hippocampus. Our results suggest that the present model fulfills adequate face, construct and predictive validity as an animal model of mania.  相似文献   

4.
Chronic obstructive pulmonary diseases, as well as prolonged residence at high altitude, can result in generalized airway hypoxia, eliciting an increase in pulmonary vascular resistance. We hypothesized that a portion of the elevated pulmonary vascular resistance following chronic hypoxia (CH) is due to the development of myogenic tone. Isolated, pressurized small pulmonary arteries from control (barometric pressure congruent with 630 Torr) and CH (4 wk, barometric pressure = 380 Torr) rats were loaded with fura 2-AM and perfused with warm (37 degrees C), aerated (21% O(2)-6% CO(2)-balance N(2)) physiological saline solution. Vascular smooth muscle (VSM) intracellular Ca(2+) concentration ([Ca(2+)](i)) and diameter responses to increasing intraluminal pressure were determined. Diameter and VSM cell [Ca(2+)](i) responses to KCl were also determined. In a separate set of experiments, VSM cell membrane potential responses to increasing luminal pressure were determined in arteries from control and CH rats. VSM cell membrane potential in arteries from CH animals was depolarized relative to control at each pressure step. VSM cells from both groups exhibited a further depolarization in response to step increases in intraluminal pressure. However, arteries from both control and CH rats distended passively to increasing intraluminal pressure, and VSM cell [Ca(2+)](i) was not affected. KCl elicited a dose-dependent vasoconstriction that was nearly identical between control and CH groups. Whereas KCl administration resulted in a dose-dependent increase in VSM cell [Ca(2+)](i) in arteries taken from control animals, this stimulus elicited only a slight increase in VSM cell [Ca(2+)](i) in arteries from CH animals. We conclude that the pulmonary circulation of the rat does not demonstrate pressure-induced vasoconstriction.  相似文献   

5.

Background

We have used a genetical genomic approach, in conjunction with phenotypic analysis of alcohol consumption, to identify candidate genes that predispose to varying levels of alcohol intake by HXB/BXH recombinant inbred rat strains. In addition, in two populations of humans, we assessed genetic polymorphisms associated with alcohol consumption using a custom genotyping array for 1,350 single nucleotide polymorphisms (SNPs). Our goal was to ascertain whether our approach, which relies on statistical and informatics techniques, and non-human animal models of alcohol drinking behavior, could inform interpretation of genetic association studies with human populations.

Results

In the HXB/BXH recombinant inbred (RI) rats, correlation analysis of brain gene expression levels with alcohol consumption in a two-bottle choice paradigm, and filtering based on behavioral and gene expression quantitative trait locus (QTL) analyses, generated a list of candidate genes. A literature-based, functional analysis of the interactions of the products of these candidate genes defined pathways linked to presynaptic GABA release, activation of dopamine neurons, and postsynaptic GABA receptor trafficking, in brain regions including the hypothalamus, ventral tegmentum and amygdala. The analysis also implicated energy metabolism and caloric intake control as potential influences on alcohol consumption by the recombinant inbred rats. In the human populations, polymorphisms in genes associated with GABA synthesis and GABA receptors, as well as genes related to dopaminergic transmission, were associated with alcohol consumption.

Conclusion

Our results emphasize the importance of the signaling pathways identified using the non-human animal models, rather than single gene products, in identifying factors responsible for complex traits such as alcohol consumption. The results suggest cross-species similarities in pathways that influence predisposition to consume alcohol by rats and humans. The importance of a well-defined phenotype is also illustrated. Our results also suggest that different genetic factors predispose alcohol dependence versus the phenotype of alcohol consumption.  相似文献   

6.
Electroacupuncture (EA) has been shown to modify the effects of various drugs of abuse, including alcohol. Inbred P rats were trained to drink alcohol voluntarily and then subjected to two periods of alcohol deprivation lasting 3 days. During the second deprivation, the rats received either EA or sham EA. The rats were pretreated with naltrexone (5 mg/kg) or saline 30 min before each of the EA or sham EA sessions. Approximately 6 h after the last naltrexone or saline treatment, the alcohol tubes were returned and alcohol and water intakes were recorded later at 2, 4, 6, and 24 h. Only EA led to a decrease in alcohol intake, which was most prominent at 6 and 24 h, and this inhibitory effect of EA was blocked by naltrexone, suggesting that activation of the endogenous opiate system may be responsible for EA’s effects on alcohol intake in the alcohol-dependent iP rats. Special issue article in honor of Ji-Sheng Han.  相似文献   

7.
Although alcohol abuse is the major cause of chronic pancreatitis, the pathogenesis of alcoholic chronic pancreatitis (ACP) remains obscure. A critical obstacle to understanding the mechanism of ACP is lack of animal models. Our objective was to develop one such model. Rats were pair-fed for 8 wk ethanol or control Lieber-DeCarli liquid diet. For the last 2 wk, they received cyclosporin A (CsA; 20 mg/kg once daily) or vehicle. After 1 wk on CsA, one episode of acute pancreatitis was induced by four 20 microg/kg injections of cerulein (Cer); controls received saline. Pancreas was analyzed 1 wk after the acute pancreatitis. CsA or Cer treatments alone did not result in pancreatic injury in either control (C)- or ethanol (E)-fed rats. We found, however, that alcohol dramatically aggravated pathological effect of the combined CsA+Cer treatment on pancreas, resulting in massive loss of acinar cells, persistent inflammatory infiltration, and fibrosis. Macrophages were prominent in the inflammatory infiltrate. Compared with control-fed C+CsA+Cer rats, their ethanol-fed E+CsA+Cer counterparts showed marked increases in pancreatic NF-kappaB activation and cytokine/chemokine mRNA expression, collagen and fibronectin, the expression and activities of matrix metalloproteinase-2 and -9, and activation of pancreatic stellate cells. Thus we have developed a model of alcohol-mediated postacute pancreatitis that reproduces three key responses of human ACP: loss of parenchyma, sustained inflammation, and fibrosis. The results indicate that alcohol impairs recovery from acute pancreatitis, suggesting a mechanism by which alcohol sensitizes pancreas to chronic injury.  相似文献   

8.
Antibiotic efficacy in intraabdominal sepsis: a clinically relevant model   总被引:1,自引:0,他引:1  
We present preliminary data on the role of antibiotics in intraabdominal sepsis using a new, clinically relevant animal model. Peritoneal cavity infection was induced by ligation and perforation of the cecum in adult rats. Surviving rats were randomized to receive either saline or cefoxitin at the time of cecal excision and peritoneal lavage, 18 h after the onset of infection. This is different from previous models of abdominal sepsis (in which antibiotics are given within 4 h of peritoneal contamination) and mimics the clinical setting in which antibiotics are initiated much later, at the time of operation. Antibiotic-treated rats received 20 mg cefoxitin i.m. every 8 h for 7 days; controls received saline at similar times. Thirty-nine of 67 control rats died (58%) versus 20 of 64 (31%) that received cefoxitin (p less than 0.005). We conclude that even with delayed administration, antibiotics appear to improve the outcome of intraabdominal sepsis. With further characterization of this model we plan to use it as an in vivo assay to compare the efficacy of different antimicrobial agents in intraabdominal sepsis.  相似文献   

9.
Female rats rendered "pseudopregnant" by treatment with PMS and hCG and ovariectomized rats injected with estradiol and progesterone (OVX-E2-P) were subjected to cortical spreading depression (SD). Within 7-10 min under ether anesthesia in a stereotaxic instrument a frontal craniotomy was performed and a cotton ball saturated with physiological saline (control) or 25% KCl was applied to the exposed dura, covered with dental cement and skin sutured. The animals were then placed in separate containers in an isolated room and decapitated for collection of trunk blood at 0, 15, 30, or 60 min after surgery. In PMS-hCH saline-treated control animals, prolactin levels had dropped by 15 and 30 min when compared with the zero-time values but by 60 min had increased significantly above the 30-min level. At that time (60 min), prolactin values in the KCl group were significantly lower than in the controls. Corticosterone levels were high at both 15 and 60 min in control and KCl groups. In OVX-E2-P control animals, plasma prolactin levels also rose at 60 min compared with 15- and 30-min samples and at 60 min were significantly higher than in the KCl group. In control animals, LH levels were lower at 15 and 60 min than at zero time, but they remained unchanged in the KCl group. The dato are interpreted as indicating that cortical SD suppresses the stress responses observed in saline-treated control animals.  相似文献   

10.
Recent evidence indicated that alcohol exposure during the fetal period increases the susceptibility to tumor development in mammary and prostate tissues. Whether fetal alcohol exposure increases the susceptibility to prolactin-producing tumor (prolactinoma) development in the pituitary was studied by employing the animal model of estradiol-induced prolactinomas in Fischer 344 female rats. We employed an animal model of fetal alcohol exposure that simulates binge alcohol drinking during the first two trimesters of human pregnancy and involves feeding pregnant rats with a liquid diet containing 6.7% alcohol during gestational day 7 to day 21. Control rats were pair-fed with isocaloric liquid diet or fed ad libitum with rat chow diet. Adult alcohol exposed and control female offspring rats were used in this study on the day of estrus or after estrogen treatment. Results show that fetal alcohol-exposed rats had increased levels of pituitary weight, pituitary prolactin (PRL) protein and mRNA, and plasma PRL. However, these rats show decreased pituitary levels of dopamine D2 receptor (D2R) mRNA and protein and increased pituitary levels of D2R promoter methylation. Also, they show elevated pituitary mRNA levels of DNA methylating genes (DNMT1, DNMT3b, MeCP2) and histone modifying genes (HDAC2, HDAC4, G9a). When fetal alcohol exposed rats were treated neonatally with a DNA methylation inhibitor 5-Aza deoxycytidine and/or a HDAC inhibitor trichostatin-A their pituitary D2R mRNA, pituitary weights and plasma PRL levels were normalized. These data suggest that fetal alcohol exposure programs the pituitary to increase the susceptibility to the development of prolactinomas possibly by enhancing the methylation of the D2R gene promoter and repressing the synthesis and control of D2R on PRL-producing cells.  相似文献   

11.
Recently, we reported that large bilateral gustatory cortex (GC) lesions significantly impair taste sensitivity to salts in rats. Here we extended the tastants examined to include sucrose and quinine in rats with ibotenic acid-induced lesions in GC (GCX) and in sham-operated controls (SHAM). Presurgically, immediately after drinking NaCl, rats received a LiCl or saline injection (i.p.), but postsurgical tests indicated a weak conditioned taste aversion (CTA) even in controls. The rats were then trained and tested in gustometers to discriminate a tastant from water in a two-response operant taste detection task. Psychometric functions were derived for sucrose, KCl, and quinine. Our mapping system was used to determine placement, size, and symmetry of the lesions (~91% GC damage on average). For KCl, there was a significant rightward shift (ΔEC50 = 0.57 log10 units; p<0.001) in the GCX psychometric function relative to SHAM, replicating our prior work. There was also a significant lesion-induced impairment (ΔEC50 = 0.41 log10 units; p = 0.006) in quinine sensitivity. Surprisingly, taste sensitivity to sucrose was unaffected by the extensive lesions and was comparable between GCX and SHAM rats. The fact that such large bilateral GC lesions did not shift sucrose psychometric functions relative to SHAM, but did significantly compromise quinine and KCl sensitivity suggests that the neural circuits responsible for the detection of specific taste stimuli are partially dissociable. Lesion-induced impairments were observed in expression of a postsurgical CTA to a maltodextrin solution as assessed in a taste-oriented brief-access test, but were not reflected in a longer term 46-h two-bottle test. Thus, deficits observed in rats after extensive damage to the GC are also dependent on the test used to assess taste function. In conclusion, the degree to which the GC is necessary for the maintenance of normal taste detectability apparently depends on the chemical and/or perceptual features of the stimulus.  相似文献   

12.
If liver alcohol dehydrogenase were rate-limiting in ethanol metabolism, inhibitors of the enzyme should inhibit the metabolism with the same type of kinetics and the same kinetic constants in vitro and in vivo. Against varied concentrations of ethanol, 4-methylpyrazole is a competitive inhibitor of purified rat liver alcohol dehydrogenase (Kis = 0.11 microM, in 83 mM potassium phosphate and 40 mM KCl buffer, pH 7.3, 37 degrees C) and is competitive in rats (with Kis = 1.4 mumol/kg). Isobutyramide is essentially an uncompetitive inhibitor of purified enzyme (Kii = 0.33 mM) and of metabolism in vivo (Kii = 1.0 mmol/kg). Low concentrations of both inhibitors decreased the rate of metabolism as a direct function of their concentrations. Qualitatively, therefore, alcohol dehydrogenase activity appears to be a major rate-limiting factor in ethanol metabolism. Quantitatively, however, the constants may not agree because of distribution in the animal or metabolism of the inhibitors. At saturating concentrations of inhibitors, ethanol is eliminated by inhibitor-insensitive pathways, at about 10% of the total rate at a dose of ethanol of 10 mmol/kg. Uncompetitive inhibitors of alcohol dehydrogenase should be especially useful for inhibiting the metabolism of alcohols since they are effective even at saturating levels of alcohol, in contrast to competitive inhibitors, whose action is overcome by saturation with alcohol.  相似文献   

13.
Fat sand rats Psammomys obesus feed exclusively on plants of the family Chenopodiaceae, which contain high concentrations of chloride salts (NaCl, KCl) and oxalate salts. Ingestion of large quantities of oxalate is challenging for mammals because oxalate chelates Ca(2+) cations, reducing Ca(2+) availability. Oxalate is a metabolic end-point in mammalian metabolism, however it can be broken-down by intestinal bacteria. We predicted that in fat sand rats microbial breakdown of oxalate will be substantial due to the high dietary load. In addition, since a high concentration of soluble chloride salts increases the solubility of calcium oxalate in solution, we examined whether a change in the intake of chloride salts affects microbial oxalate breakdown and calcium excretion in fat sand rats. We measured oxalate, calcium and other inorganic matter (ash) intake and excretion in fat sand rats feeding on two different diets: saltbush (Atriplex halimus), their natural diet, and goose-foot (Chenopodium album), a non-native chenopod on which fat sand rats will readily feed and that has a similar oxalate content to saltbush but only 2/3 of the ash content. In animals feeding on both diets, 65-80% of the oxalate ingested did not appear in urine or faeces. In animals consuming the more saline saltbush, significantly more oxalate was apparently degraded (p<0.001), while significantly less oxalate was excreted in urine (p<0.01) and in faeces (p<0.05). We propose, therefore, that fat sand rats rely on symbiotic bacteria to remove a large portion of the oxalates ingested with their diet, and that the high dietary salt intake may play a beneficial role in their oxalate and calcium metabolism.  相似文献   

14.
In order to investigate the diabetes-associated neuropathy and prevent effects of cyclohexenonic long-chain fatty alcohol, a neurotrophic substance, in trachea, we studied its effect on streptozotocin-diabetic hyper-reactivity in the rat trachea. Diabetes was induced in 8-week-old male Sprague-Dawley rats by administering an intraperitoneal injection of streptozotocin (50 mg/kg). The rats were divided randomly into four groups and were maintained for four weeks: age-matched control rats, diabetic rats without treatment with cyclohexenonic long-chain fatty alcohol, and diabetic rats treated with cyclohexenonic long-chain fatty alcohol (2 and 8 mg/kg, i.p. every day). The serum glucose and insulin levels were determined, and the contractile responses of the trachea induced by carbachol and KCl were investigated. Treatment with cyclohexenonic long-chain fatty alcohol did not alter the rats' diabetic status, i.e., body weight, thickness of the trachea, serum glucose levels, and serum insulin levels, but significantly improved the diabetic-induced hyper-reactivity of the rat trachea in a dose-dependent manner. There was no significant difference in either the carbachol- or KCl-induced contractile forces between groups with or without mucosa in the functional studies. In histological examinations, thinning of cricoid cartilage, thickness of basal membrane, and degeneration, fragmentation of elastic fibers in the submucosal layer, and hypertrophy of smooth muscle bundle in the membranous wall of trachea were observed in the diabetic rat trachea, which were improved by treatment with cyclohexenonic long-chain fatty alcohol. Our data indicate that this drug can prevent hyper-reactivity in the diabetic trachea.  相似文献   

15.
目的:探讨大鼠急性酒精中毒合并颅脑外伤后AQP4在海马区表达的变化.方法:健康成年雄性SD大鼠96只,随机分为4组:假手术组(N组)、急性酒精中毒组(A组)、中度创伤性脑损伤组(T组)和急性酒精中毒合并中度创伤性脑损伤(AT组).腹腔注射酒精(2.5g/kg),2h后以重物自由落体击打大鼠头部建立急性酒精中毒合并中度创伤性脑损伤(traumatic brain injury,TBI)动物模型.各组动物分别存活1、3、5、14天.免疫组化方法检测海马CA1区AQP4的表达.结果:AQP4阳性产物分布于胶质纤维和毛细血管壁,各实验组表达均高于N组.术后1天T组比AT组表达显著增高(P<0.01),术后3天AT组比T组表达增高(P<0.05),术后14天AT组比T组表达显著增高(P<0.01).结论:大鼠急性酒精中毒合并颅脑外伤后晚期,海马CA1区AQP4表达增高,可能加重晚期继发性脑水肿,是急性酒精中毒合并颅脑外伤预后不良的原因之一.  相似文献   

16.
Chloride influx provokes lamellipodium formation in microglial cells.   总被引:1,自引:0,他引:1  
Lamellipodium extension and retraction is the driving force for cell migration. Although several studies document that activation of chloride channels are essential in cell migration, little is known about their contribution in lamellipodium formation. To address this question, we characterized chloride channels and transporters by whole cell recording and RT-PCR, respectively, as well as quantified lamellipodium formation in murine primary microglial cells as well as the microglial cell-line, BV-2, using time-lapse microscopy. The repertoire of chloride conducting pathways in BV-2 cells included, swelling-activated chloride channels as well as the KCl cotransporters, KCC1, KCC2, KCC3, and KCC4. Swelling-activated chloride channels were either activated by a hypoosmotic solution or by a high KCl saline, which promotes K(+) and Cl(-) influx instead of efflux by KCCs. Conductance through swelling-activated chloride channels was completely blocked by flufenamic acid (200 microM), SITS (1 mM) and DIOA (10 microM). By exposing primary microglial cells or BV-2 cells to a high KCl saline, we observed a local swelling, which developed into a prominent lamellipodium. Blockade of chloride influx by flufenamic acid (200 microM) or DIOA (10 microM) as well as incubation of cells in a chloride-free high K(+) saline suppressed formation of a lamellipodium. We assume that local swellings, established by an increase in chloride influx, are a general principle in formation of lamellipodia in eukaryotic cells.  相似文献   

17.
Development and time-course characteristics of Early rotational response (ER) to apomorphine in 6-hydroxydopamine-lesioned rats is explored. We show here how this ER can be considered a conditioned response that arises when the drug is repeatedly administered, according to a classical conditioning paradigm. In this way, the ER to apomorphine can be considered a non-pharmacological, conditioned, placebo response, the drug action being the unconditioned stimulus (UCS). In our model, the undrugged rotational response elicited by saline injections two weeks after drug treatment can be considered as the conditioned response (CR) to the conditioned stimulus, the CS being the environment associated with the drug treatment. This CR had not previously been identified during the drug treatment. Thus, we studied the acquisition of the ER, nonexistent after the first injection of apomorphine. Furthermore, we distinguish between this ER and the later, strictly pharmacological rotational response (LR) to apomorphine. Finally, we related this ER to the undrugged, paradoxical response to saline. In conclusion, we demonstrate the paradigm of pharmacological conditioning using this animal model of Parkinson's disease, supported by our own results and those of Silverman and Ho (1981).  相似文献   

18.
Postoperative cognitive dysfunction (POCD) is a clinical phenomenon characterized by cognitive deficits in patients after anesthesia and surgery, especially in geriatric surgical patients. Although it has been documented that isoflurane exposure impaired cognitive function in several aged animal models, there are few clinical interventions and treatments available to prevent this disorder. Minocycline has been well established to exert neuroprotective effects in various experimental animal models and neurodegenerative diseases. Therefore, we hypothesized that pretreatment with minocycline attenuates isoflurane-induced cognitive decline in aged rats. In the present study, twenty-month-old rats were administered minocycline or an equal volume of saline by intraperitoneal injection 12 h before exposure to isoflurane. Then the rats were exposed to 1.3% isoflurane for 4 h. Two weeks later, spatial learning and memory of the rats were examined using the Morris Water Maze. We found that pretreatment with minocycline mitigated isoflurane-induced cognitive deficits and suppressed the isoflurane-induced excessive release of IL-1β and caspase-3 in the hippocampal CA1 region at 4 h after isoflurane exposure, as well as the number of TUNEL-positive nuclei. In addition, minocycline treatment also prevented the changes of synaptic ultrastructure in the hippocampal CA1 region induced by isoflurane. In conclusion, pretreatment with minocycline attenuated isoflurane-induced cognitive impairment in aged rats.  相似文献   

19.
Brain creatine kinase activity in an animal model of mania   总被引:4,自引:0,他引:4  
There is evidence pointing to dysfunction at the mitochondrial level as an important target for the understanding of the pathophysiology of bipolar disorder (BD). We assessed creatine kinase (CK) activity in rats submitted to an animal model of mania which included the use of lithium and valproate. In the acute treatment, amphetamine (AMPH) or saline was administered to rats for 14 days, and between day 8 and 14, rats were treated with either lithium, valproate or saline. In the maintenance treatment, rats were pretreated with lithium, valproate or saline, and between day 8 and 14, AMPH or saline were administered. In both experiments, locomotor activity was assessed by open-field test and CK activity was evaluated in hippocampus, striatum, cerebellum, whole cortex and prefrontal cortex. Our results showed that mood stabilizers reversed AMPH-induced behavioral effects. Moreover, AMPH (acute treatment) inhibited CK activity in hippocampus, striatum and cortex, but not in cerebellum and prefrontal cortex, and administration of lithium or valproate did not reverse the enzyme inhibition. In the maintenance treatment, AMPH decreased CK activity in saline-pretreated rats in hippocampus, striatum and cortex, but not in cerebellum and prefrontal cortex. AMPH administration in lithium- or valproate-pretreated animals decreased CK activity in hippocampus, striatum and cortex. Our results showed that AMPH inhibited CK activity and that mood stabilizers were not able to reverse and/or prevent the enzyme inhibition. These findings reinforce the hypothesis that mitochondrial dysfunction plays an important role in the pathophysiology of BD.  相似文献   

20.
The Wistar-Kyoto (WKY) rat strain has been described as an animal model of depressive behavior that consumes significantly greater amounts of alcohol compared to the Wistar (WIS) rat strain. Since the mesolimbic dopamine (DA) type-2 (D2) receptors mediate reward-related behaviors, the present study measured the binding of [125I]-Iodosulpiride to D2 receptors in the brains of WKY versus WIS rats following 24 days of voluntary alcohol or water consumption. Alcohol consuming WKY rats showed a significant increase in D2 receptor binding in several regions of the mesolimbic and nigrostriatal systems. In contrast, alcohol consuming WIS rats showed a reduction in D2 receptor binding in DA cell body areas. The differential regulation of D2 receptors by voluntary alcohol consumption in the two rat strains suggests that D2 receptor mediated neurotransmission may be playing a role in the increased alcohol drinking behavior reported in WKY rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号