首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

The present study is envisaged to develop nanoethosomal formulation for enhanced topical delivery of amphotericin B (AmB) for the treatment of cutaneous fungal infections. AmB encapsulated nanoethosomes were prepared using mechanical dispersion method in a strength of 0.1% w/w similar to the strength of marketed topical formulation. Vesicle size of nanoethosomal formulations was found to be in the range of 186?±?2 to 298?±?4?nm. The optimized nanoethosomal formulation was further incorporated in gel base to form AmB nanoethogel formulation. Rheological characterization study of nanoethogel demonstrated its viscoelastic nature with high elasticity and resistance to deformation at 37?°C. The yield stress value was found to be 108.05?±?2.4 and 52.15?±?0.9?Pa for nanoethogel and marketed gel formulation, respectively. The nanoethogel formulation exhibited 2.7- and 3.5-fold higher steady state transdermal flux and skin deposition of AmB, respectively, in comparison to marketed formulation. Confocal laser scanning microscopy (CLSM) study also revealed enhanced skin permeation and deposition with nanoethogel formulation. In vivo study showed that topical application of nanoethogel does not exhibit any skin irritation as tested by Draize test. The developed formulation, in comparison to the marketed gel, demonstrated a remarkable increase in the antifungal activity against Candida albicans. It is thus corroborated from the above results that nanoethosomal formulation represents an efficacious carrier for effective topical delivery of AmB.  相似文献   

2.
The aim of this study was to evaluate, for the first time, the antifungal efficacy of nanocapsules and nanoemulsions containing Melaleuca alternifolia essential oil (tea tree oil) in an onychomycosis model. The antifungal activity of nanostructured formulations was evaluated against Trichophyton rubrum in two different in vitro models of dermatophyte nail infection. First, nail powder was infected with T. rubrum in a 96-well plate and then treated with the formulations. After 7 and 14 days, cell viability was verified. The plate counts for the samples were 2.37, 1.45 and 1.0 log CFU mL?1 (emulsion, nanoemulsion containing tea tree oil and nanocapsules containing tea tree oil, respectively). A second model employed nails fragments which were infected with the microorganism and treated with the formulations. The diameter of fungal colony was measured. The areas obtained were 2.88 ± 2.08 mm2, 14.59 ± 2.01 mm2, 40.98 ± 2.76 mm2 and 38.72 ± 1.22 mm2 for the nanocapsules containing tea tree oil, nanoemulsion containing tea tree oil, emulsion and untreated nail, respectively. Nail infection models demonstrated the ability of the formulations to reduce T. rubrum growth, with the inclusion of oil in nanocapsules being most efficient.  相似文献   

3.
An original ligand (Lac-10-Chol) designed to interact with asialoglycoprotein receptors to potentially target hepatocyte was synthesised by grafting a lactose head to a cholesteryl structure, which was then included in liposomes. Preliminary formulation tests led to the selection of conventional formulations based on soybean phosphatidylcholine/cholesterol/DOTAP (± DOPE) (± Lac-10-Chol) that present reproducible absolute entrapment value (1.45?±?0.10%), with a size of 109?±?7?nm and a slight positive charge (3.77?±?1.59?mV). Cell viability (via the MTT test), expressed as the percentage of nontreated cells in HepG2 cells, was very close to the control. Internalization tests evidenced an intracellular penetration of fluorescent liposomes, but no specific ligand effect was demonstrated (P?>?0.05). Nevertheless, regarding the adenosine triphosphate (ATP) assay, a slight increase was obtained with liposome loaded with ATP incorporating Lac-10-chol after 24 hours (P?<?0.05).  相似文献   

4.
The aim of present study was to develop conventional and PEGylated (long circulating), liposomes containing anastrozole (ANS) for effective treatment of breast cancer. ANS is a third-generation non-steroidal aromatase inhibitor of the triazole class used for the treatment of advanced and late-stage breast cancer in post-menopausal women. Under such disease conditions the median duration of therapy should be prolonged until tumor regression ends (>31 months). Liposomes were prepared by the thin film hydration method by using ANS and various lipids such as soyaphosphatidyl choline, cholesterol and methoxy polyethylene glycol distearoyl ethanolamine in different concentration ratios and evaluated for physical characteristics, in vitro drug release and stability. Optimized formulations of liposome were studied for in vitro cytotoxic activity against the BT-549 and MCF-7 cell lines and in vivo behavior in Wistar rats. Preformulation studies, both Fourier transform infrared study and differential scanning calorimetry analysis showed no interaction between the drug and the excipients used in the formulations. The optimized formulations AL-07 and AL-09 liposomes showed encapsulation efficiencies in the range 65.12?±?1.05% to 69.85?±?3.2% with desired mean particle size distribution of 101.1?±?5.9 and 120.2?±?2.8?nm and zeta potentials of ?43.7?±?4.7 and ?62.9?±?3.5 mV. All the optimized formulations followed Higuchi-matrix release kinetics and when plotted in accordance with the Korsemeyer–Peppas method, the n-value 0.5?n?in vitro cytotoxicity studies (p?(0–∞) values when compared to pure drug (p?相似文献   

5.
Onychomycosis is a common fungal infection affecting nails. The primary cause for onychomycosis is dermatophytes, while Candida species have emerged as second-line pathogens. Onychomycosis due to Candida (candidal onychomycosis) is increasingly found in individuals having defective immunity consequential to aging, diabetes mellitus, vascular diseases, HIV infection and drug therapies such as immunosuppressives and broad-spectrum antibiotics. Breached local immunity at the nail complex due to trauma, chronic exposure to moisture and chemicals including smoke, detergents, soap, etc., also contribute to candidal onychomycosis. Adhesion, filamentation, secretion of extracellular enzymes and the development of antifungal resistance are some of the virulence mechanisms of Candida species associated with onychomycosis. Diagnosis of onychomycosis depends on history and clinical examination, direct microscopic investigation, mycological culture and histopathology. Restoration of immune defenses, elimination of fungi using appropriate drug therapy and improvement of nail hygiene with the removal of predisposing factors are key aspects in the management of candidal onychomycosis.  相似文献   

6.
Abstract

Ropivacaine, a novel long-acting local anesthetic, has been proved to own superior advantage. However, Naropin® Injection, the applied form in clinic, can cause patient non-convenience. The purpose of this study was to formulate ropivacaine (RPV) in ethosomes and evaluate the potential of ethosome formulation in delivering RPV transdermally. The RPV-loaded ethosomes were prepared with thin-film dispersion technique and the formulation was characterized in terms of size, zeta potential, differential scanning calorimetry (DSC) analysis and X-ray diffraction (XRD) study. The results showed that the optimized RPV-ethosomes displayed a typical lipid bilayer structure with a narrow size distribution of 73.86?±?2.40?nm and drug loading of 8.27?±?0.37%, EE of 68.92?±?0.29%. The results of DSC and XRD study indicated that RPV was in amorphous state when encapsulated into ethosomes. Furthermore, the results of ex vivo permeation study proved that RPV-ethosomes could promote the permeability in a high-efficient, rapid way (349.0?±?11.5?μg?cm?2 at 12?h and 178.8?±?7.1?μg?cm?2 at 0.5?h). The outcomes of histopathology study forecasted that the interaction between ethosomes and skin could loosen the tight conjugation of corneocyte layers and weaken the permeation barrier. In conclusion, RPV-ethosomes could be a promising delivery system to encapsulate RPV and deliver RPV for transdermal administration.  相似文献   

7.
Context: Pirfenidone (PFD) is an anti-fibrotic and anti-inflammatory agent indicated for the treatment of idiopathic pulmonary fibrosis (IPF). The current oral administration of PFD has several limitations including first pass metabolism and gastrointestinal irritation.

Objective: The aim of this study is to investigate the feasibility of transdermal delivery of PFD using liposomal carrier system.

Materials and methods: PFD-loaded liposomes were prepared using soy phosphatidylcholine (SPC) and sodium cholate (SC). Encapsulation efficiency (EE) of PFD in liposomes was optimized using different preparation techniques including thin film hydration (TFH) method, direct injection method (DIM) and drug encapsulation using freeze–thaw cycles. In vitro drug release study was performed using dialysis membrane method. The skin permeation studies were performed using excised porcine ear skin model in a Franz diffusion cell apparatus.

Results and discussion: The average particle size and zeta-potential of liposomes were 191?±?4.1?nm and ?40.4?±?4.5?mV, respectively. The liposomes prepared by TFH followed by 10 freeze–thaw cycles showed the greatest EE of 22.7?±?0.63%. The optimized liposome formulation was incorporated in hydroxypropyl methyl cellulose (HPMC) hydrogel containing different permeation enhancers including oleic acid (OA), isopropyl myristate (IPM) and propylene glycol (PG). PFD-loaded liposomes incorporated in hydrogel containing OA and IPM showed the greatest flux of 10.9?±?1.04?μg/cm2/h across skin, which was 5-fold greater compared with free PFD. The cumulative amount of PFD permeated was 344?±?28.8?μg/cm2 with a lag time of 2.3?±?1.3?h.

Conclusion: The hydrogel formulation containing PFD-loaded liposomes can be developed as a potential transdermal delivery system.  相似文献   

8.
The aim of this study is to develop and evaluate niosomal dispersions loaded with the hydrophilic drug; lomefloxacin Hcl (LXN) for the management of ocular bacterial conjunctivitis. LXN-loaded niosomes were prepared by the thin film hydration method following a full factorial formulation design. Two independent variables were evaluated: the type of surfactant (X1) and the surfactant:cholesterol ratio (X2). The dependent variables comprised entrapment efficiency (EE%: Y1), particle size (PS: Y2) and zeta potential (ZP: Y3). The optimum formulation, N-LXN14 (Tw60: CH, 1:1), was spherical in shape and exhibited EE% of 68.41?±?0.07, PS of 176.0?±?0.98 and ZP of -40.70?±?2.20 with a sustained release profile over 8?hours following the Higuchi model. N-LXN14 proved good physicochemical stability under refrigeration up to 3 months. Ocular irritancy test showed no signs of ocular toxicity, confirming the safety and suitability for ocular application. Microbiological evaluation of the antibacterial effect of N-LXN14 was conducted using the susceptibility test and through the induction of topical conjunctivitis by Staphylococcus aureus (S. aureus) followed by topical therapy. Susceptibility test manifested significantly higher percent inhibition of S. aureus and higher AUC0–12?h of N-LXN14 (604.59?±?0.05) compared to the commercial product (126.25?±?0.049). Both clinical observation and colony count of the infected eyes after eight days of treatment demonstrated significant improvement in therapeutic response. The infected eyes were completely healed with eradication of S. aureus. In conclusion, the results showed that LXN niosomal dispersions may serve as a promising superior ocular delivery system in the treatment of bacterial conjunctivitis.  相似文献   

9.
The interactions between three liposomal formulations and Pseudomonas aeruginosa cells were evaluated by a lipid mixing assay and electron paramagnetic resonance (EPR) spectroscopy. The effect of the bacteria on the liposomal phase characteristics, the release of the liposomes’ content, and the uptake rate of gentamicin by bacteria were monitored as a function of time, using EPR spectroscopy. The [16-DSA uptake]Total from DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine) liposomes reached 93?±?12% over a 3-hour assay period, of which 9% crossed the bacterial inner membrane. A small amount of 16-DSA uptake from DPPC/Chol (cholesterol) vesicles was found throughout the 3-hour period of time. Although DPPC/DMPG (dimyristoylphosphatidylglycerol) vesicles showed a smaller value of [16-DSA uptake]Total with respect to that of DPPC vesicles, they appeared to be effective in disrupting the bacterial membrane, resulting in a greater accumulation of 16-DSA inside the inner membrane. Exposure to bacteria caused the DPPC/Chol, DPPC, and DPPC/DMPG formulations to release 4.6?±?1.5, 17.6?±?1.2, and 34?±?3.7% of their content, respectively. Time-dependent fluid regions were developed within the vesicles when mixed with bacteria, and their growth over time depended on liposomal formulations. Incubation of gentamicin with bacteria for 3 hours resulted in 87?±?3% of the drug crossing the bacterial inner membrane. In conclusion, interaction between the liposome drug carriers and the bacterial cells result in vesicle fusion, disruption of the bacterial membrane, release of the liposomal content in the close vicinity of the bacteria cells, and the subsequent intracellular uptake of the released liposomal content.  相似文献   

10.
The aim of the present research work was to develop, characterize and optimize sertaconazole nitrate (STZN) embedded flexisomes (STZN-FS) to improve the cutaneous anti-fungal activity of STZN. Flexisomes are self-aggregating, flexible, deformable lipidic vesicles possessing an aqueous core. A 32 factorial design was implemented to optimize the effects of the critical material attributes of concentration of phospholipid (X1) and edge activator (X2) on the critical quality attributes of particle size (Y1), entrapment efficiency (Y2), and deformability index (Y3). Statistical analysis was performed to be identify the best fit model and determine its significance. The sizes of the optimized STZN-FS were found to be 246.2?±?2.49?nm with entrapment efficiencies of 86.16?±?0.56% and deformability indices of 30.46?±?0.41. Zeta potential analysis showed negatively charged surface with a zeta potential value of ?30.9?mV. TEM analysis showed spherical shapes, confirming the vesicular characteristics. The optimized STZN-FS were further formulated into hydrogels. The % drug diffusion of STZN-FS hydrogels was found to be 13.24% and drug deposition in the skin layers was found to be 83.54%, showing that a high concentration of the drug was available at the site of action. The zone of inhibition STZN-FS hydrogel (30?mm) was higher than the marketed formulation (22?mm) and the plain STZN hydrogel (14?mm) against Candida albicans. From the above studies, it was concluded that STZN loaded STZN-FS shows high flexibility and enhanced antifungal activity. STZN-FS are thus found to be potential carriers for drug deposition in skin layers without disturbing their integrity.  相似文献   

11.
Abstract

The motive behind present work was to discover a solution for overcoming the problems allied with a deprived oral bioavailability of salbutamol sulfate (SS) due to its first pass hepatic metabolism, shorter half-life, and systemic toxicity at high doses. Pulmonary delivery provides an alternative route of administration to avoid hepatic metabolism of SS, moreover facilitated diffusion and prolonged retention can be achieved by incorporation into liposomes. Liposomes were prepared by thin film hydration technique using 32 full factorial design and formulation was optimized based on the vesicle size and percent drug entrapment (PDE) of liposomes. Optimized liposomal formulation exhibited an average size of about 167.2?±?0.170?nm, with 80.68?±?0.74% drug entrapment, and 9.74?±?1.10?mV zeta potential. The liposomal dispersion was then spray dried and further characterized for in-vitro aerosol performance using Andersen Cascade Impactor. Optimized liposomal formulation revealed prolonged in-vitro drug release of more than 90% up to 14?h following Higuchi’s controlled release model. Thus, the proposed new-fangled liposomal formulation would be a propitious alternative to conventional therapy for efficient and methodical treatment of asthma and alike respiratory ailments.  相似文献   

12.
This study was aimed at preparing orally administered naringenin-loaded liposome for pharmacokinetic and tissue distribution studies in animal models. The liposomal system, consisting of phospholipid, cholesterol, sodium cholate, and isopropyl myristate, was prepared using the thin-film hydration method. Physicochemical characterization of naringenin-loaded liposome such as particle size, zeta potential, and encapsulation efficiency produced 70.53?±?1.71 nm, ?37.4?±?7.3 mV, and 72.2?±?0.8%, respectively. The in vitro release profile of naringenin from the formulation in three different media (HCl solution, pH 1.2; acetate buffer solution, pH 4.5; phosphate buffer solution, pH 6.8) was significantly higher than the free drug. The in vivo studies also revealed an increase in AUC of the naringenin-loaded liposome from 16648.48 to 223754.0 ng·mL?1 h as compared with the free naringenin. Thus, approximately 13.44-fold increase in relative bioavailability was observed in mice after oral administration. The tissue distribution further showed that the formulation was very predominant in the liver. These findings therefore indicated that the liposomal formulation significantly improved the solubility and oral bioavailability of naringenin, thus leading to wider clinical applications.  相似文献   

13.
Onychomycosis is a common nail problem, accounting for up to half of all nail diseases. Several nail disorders may mimic the onychomycosis clinically. Therefore, a sensitive, quick, and inexpensive test is essential for screening nail specimens for the administration of the proper drug. The aim of this study was to compare 4 different diagnostic methods in the evaluation of onychomycosis and to determine their sensitivity, specificity, positive predictive value, and negative predictive value. In a cross-sectional study, nail specimens were collected from 101 patients suspected to have onychomycosis during a 14-month period. The nail specimens were examined using potassium hydroxide (KOH) 20 %, KOH-treated nail clipping stained with periodic acid-Schiff (KONCPA), and calcofluor white (CFW) stain, and grew a fungal culture. The culture was chosen as the gold standard for statistical analysis using the McNemar and chi-square tests. Out of 101 patients, 100 (99 %) patients had at least 1 of the 4 diagnostic methods positive for the presence of organisms. The positive rates for the fungal culture, KOH preparation, CFW, and KONCPA were 74.2, 85.1, 91.09, and 99.01 %, respectively. The sensitivity and negative predictive value of KONCPA was 100 %. KONCPA was the most sensitive among the tests and was also superior to other methods in its negative predictive value. KONCPA was easy to perform, rapid, and gave significantly higher rates of detection of onychomycosis compared to the standard methods of KOH preparation and fungal culture. Therefore, KONCPA should be the single method of choice for the evaluation of onychomycosis.  相似文献   

14.
The cationic and mannosylated liposomes were prepared using the cast film method and compared for their antileishmaniasis activity. The surface of the Amphotericin B (Amp B)-bearing cationic multilamellar liposomes was covalently coupled with p-aminophenyl-α-D-mannoside using glutaraldehyde as a coupling agent, which was confirmed by agglutination of the vesicles with concanavalin A. The prepared liposomes were characterized for shape, size, percent drug entrapment, vesicle count, zeta potential, and in vitro drug release. Vesicle sizes of cationic and mannosylated liposomes were found to be 2.32?±?0.23 and 2.69?±?0.13?µm, respectively. Zeta potential of cationic liposomes was higher (30.38?±?0.3 mV), as compared to mannosylated liposomes (17.7?±?0.8 mV). Percentage drug release from cationic and mannose-coupled liposomes was found to be 45.7%?±?3.1 and 41.9%?±?2.8, respectively, after 24 hours. The in vivo antileishmanial activity was performed on Leishmania donovani–infected golden hamster, and results revealed that Amp B solution was reduced by 42.5?±?1.8% in the parasite load, whereas the placebo cationic liposomes and drug-containing cationic liposomes showed a reduced parasite load (i.e., 28.1?±?1.5 and 61.2?±?3.2%, respectively). The mannose-coupled liposomes showed a maximum reduction in parasite load (i.e., 78.8?±?3.9%). The biodistribution study clearly showed the higher uptake of mannosylated liposomes in the liver and spleen and hence the active targeting to the reticular endothelial system, which, in turn, would provide a direct attack of the drug to the site where the pathogen resides, rendering the other organs free and safe from the toxic manifestations of the drug.  相似文献   

15.
Onychomycosis in Malaysia   总被引:2,自引:0,他引:2  
The common etiological agents of onychomycosis are dermatophytes, molds and yeasts. A mycological nail investigation of onychomycosis using direct microscopy and culture was conducted by the Mycology Unit, Department of Medical Microbiology, University of Malaya from March 1996 to November 1998. The study involved 878 nail clippings or subungal scrapings from subjects with onychomycosis. On direct microcopy examination, 50% of the specimens were negative for fungal elements. On culture, 373 specimens had no growth; bacteria were isolated from 15 nail specimens. Among the 490 specimens with positive fungal cultures, 177 (36.1%) were dermatophytes, 173 (35.5%) were molds and 130 (26.5%) were Candida. There were 2% (10/490) mixed infections of molds, yeasts and dermatophytes. Trichophyton rubrum (115/177) and Trichophyton mentagrophytes (59/177) were the main dermatophytes isolated. The molds isolated were predominantly Aspergillus niger (61/173), Aspergillus nidulans (30/173), Hendersonula toruloidea (26/173) and Fusarium species (16/173). 96.9% of the Candida species identified were Candida albicans.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

16.
The present research work was aimed to formulate clotrimazole encapsulated Cavamax W7 composite ethosomes by injection method for improved delivery across epidermis. 32 factorial design was used to design nine formulations (F1-F9) and compared with ethosomal formulations (F10-F12). F9 with vesicle size of 202.8 ± 4.8 nm, highest zeta potential (−83.6 ± 0.96 mV) and %EE of 98.42 ± 0.15 was selected as optimized composite ethosome and F12 as reference ethosomal formulation. As revealed by transmission electron microscopy F9 vesicles were more condensed, uniformly spherical in shape than F12 vesicles. Vesicular stability studies indicated F9 to be more stable as compared to F12. Both F9 and F12 were incorporated in carbopol 934 gel base to get G1–G8 gel formulations and evaluated for in vitro skin permeability. Cavamax W7 composite ethosomal optimized gel (G5) showed higher in vitro percent cumulative drug permeation (88.53 ± 2.10%) in 8 h and steady state flux (J ss) of 3.39 ± 1.45 μg/cm2/min against the J ss of 1.57 ± 0.23 μg/cm2/min for ethosomal gel (G1) and 1.13 ± 0.06 μg/cm2/min for marketed formulation. The J ss flux of G5 was independent of amount of drug applied/unit area of skin. In vivo confocal laser scanning microscopic study of G5 depicted uniform and deeper penetration of rhodamine B (marker) in epidermis from Cavamax W7 composite ethosomal gel in comparison to G1. Finally, G5 demonstrated better (p < 0.05) antifungal activity against Candida albicans and Aspergillus niger than G1 thus, signifying that Cavamax W7 composite ethosomes present a superior stable and efficacious vesicular system than ethosomal formulation for topical delivery of clotrimazole.  相似文献   

17.
Abstract

The therapeutic index (T.I.) of amphotericin B (amB) is significantly increased when the drug is formulated in a variety of liposome and lipidic systems. This increase is due to a dramatic decrease in toxicity with maintenance of antifungal activity. Three formulations are currently being commercialized: ABLC?, AmBisome and Amphocil?. ABLC? is a ribbon-type lipid complex with a diameter in the 2-5 micron range consisting of dimyristoylphosphatidylcholine, dimyristoylphosphatidylglycerol and amB (7/3/10 mole ratio). AmBisome? is a liposome with a particle diameter less than 100 nm and composed of hydrogenated soy phosphatidylcholine, cholesterol, distearoylphosphatidylglycerol and amB (2/1/0.8/0.4 mole ratio). Amphocil? is a lipidic particle with a diameter of 115 nm and consists of cholesterylsulfate and amB (1/1 mole ratio). In spite of the differences, each formulation reduces the transfer of amB into a sensitive site of toxicity while affecting transfer of the drug into the fungal target to a lesser extent. Two principal mechanisms account for this: vehicle composition decreases the transfer rate of amB into cholesterol containing mammalian membranes (sites of toxicity) more than into ergosterol containing fungal membranes (sites of efficacy). Vehicle diameter influences the pharmacokinetics and disposition of the drug into the reticuloendothelial system. Immediate toxicity is reduced because the drug is rapidly eliminated from the central compartment and directed into macrophages. Subsequent release from macrophages at sites of infection can improve die efficacy. The chapters in this volume review the current understanding of the mechanism of amB and cover in detail die biophysical, pharmaceutical and therapeutic aspects of amphotericin B lipid formulations.  相似文献   

18.
The aims of our investigation were to develop and optimize ciclopirox (CPX) nail lacquer using nonbiodegradable Eudragit RLPO (E-RLPO) as a film former and to assess its penetration efficiency across the human nail plate. Preliminary trials such as hydration enhancement factor (HEF), a retained drug in the nail plate, and SEM were studied to select the optimized permeation enhancer to be incorporated in the optimized lacquer formulation. A 33 full factorial design was built up to study the effect of three different factors, concentration of E-RLPO (10, 20, and 30%), Tween 80 (0.25, 0.5, and 1%), and triacetin (0, 10, and 30% of polymer weight). The studied responses were the drying time, water resistance, viscosity, and drug release up to 4 h. An ex vivo permeation study for the optimized formulations was carried out. The preliminary study aided the selection of 5% papain (endopeptidase enzyme) as a penetration enhancer; it showed the highest HEF of 15.27%, the highest amount of drug retained in the nail plate (886.2 μg/g). An ex vivo permeation study guided the selection of F4B (flux value of 3.79 μg/cm2/h) as optimized formulation. The optimized lacquer formula showed threefold increases in the permeation than the marketed CPX lacquer (Batrafen®). Confocal laser scanning microscopy revealed the higher intensity of the Rhodamine B dye across the nail plate in the case of the formula containing papain than the marketed formula without papain. Conclusively, an efficient and stable nail lacquer was developed for potential transungual delivery of CPX to target the drug to the nail bed and ensure efficiency against onychomycosis.  相似文献   

19.
The present study aimed to evaluate the potential of liposomes loaded with paromomycin (PA), an aminoglycoside antibiotic associated with poor skin penetration, for the topical treatment of cutaneous leishmaniasis (CL). Fluid liposomes were prepared and characterized for particle size, zeta potential, and drug entrapment. Permeation studies were performed with two in vitro models: intact and stripped skin. The antileishmanial activity of free and liposomal PA was evaluated in BALB/c mice infected by Leishmania (L.) major. Drug entrapment ranged from 10 to 14%, and the type of vesicle had little influence on this parameter. Particle size and polydispersity index of the vesicles composed by phosphatidylcholine (PC) and PC/cholesterol (Chol) ranged from of 516 to 362?nm and 0.7 to 0.4, respectively. PA permeation across intact skin was low, regardless of the formulation tested, while drug penetration into skin (percent of the applied dose) from PC (7.2?±?0.2%) and PC/Chol (4.8?±?0.2%) liposomes was higher than solution (1.9?±?0.1%). PA-loaded liposomes enhanced in vitro drug permeation across stripped skin and improved the in vivo antileishmanial activity in experimentally infected mice. Our findings suggest that the liposomes represent a promising alternative for the topical treatment of CL using PA.  相似文献   

20.
Context: Gout is a painful disorder which does not have an efficient delivery system for its treatment.

Objective: Development and in vitro, in vivo evaluation of allopurinol-loaded nonionic surfactant-based niosomes was envisaged.

Materials and methods: Niosomes were prepared with Span 20 and Tween 20 (1:1 molar ratio) using ether injection method. The formulations were screened for entrapment efficiency, particle size analysis, zeta potential, release kinetics, in vivo activity, and stability studies.

Result: Stable, spherical vesicles of average particle size 304?nm with zeta-potential and entrapment efficiency of 22.2?mV and 79.44?±?0.02%, respectively, were produced. In vitro release study revealed 82.16?±?0.04% release of allopurinol within 24?h. The niosomal formulation was further evaluated for its antigout potential in monosodium urate (MSU) crystal induced gout animal model. The formulation demonstrated significant uric acid level reduction and enhanced antigout activity when compared with the pure allopurinol.

Discussion: The better antigout activity displayed by niosomal formulation could be attributed to sustained release of drug, higher drug solubility within biological fluids, better membrane interaction, smaller size, and presence of cholesterol and surfactant.

Conclusions: This study reveals that niosomes can be an efficient delivery system for the treatment of gout.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号