首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cationic and mannosylated liposomes were prepared using the cast film method and compared for their antileishmaniasis activity. The surface of the Amphotericin B (Amp B)-bearing cationic multilamellar liposomes was covalently coupled with p-aminophenyl-α-D-mannoside using glutaraldehyde as a coupling agent, which was confirmed by agglutination of the vesicles with concanavalin A. The prepared liposomes were characterized for shape, size, percent drug entrapment, vesicle count, zeta potential, and in vitro drug release. Vesicle sizes of cationic and mannosylated liposomes were found to be 2.32?±?0.23 and 2.69?±?0.13?µm, respectively. Zeta potential of cationic liposomes was higher (30.38?±?0.3 mV), as compared to mannosylated liposomes (17.7?±?0.8 mV). Percentage drug release from cationic and mannose-coupled liposomes was found to be 45.7%?±?3.1 and 41.9%?±?2.8, respectively, after 24 hours. The in vivo antileishmanial activity was performed on Leishmania donovani–infected golden hamster, and results revealed that Amp B solution was reduced by 42.5?±?1.8% in the parasite load, whereas the placebo cationic liposomes and drug-containing cationic liposomes showed a reduced parasite load (i.e., 28.1?±?1.5 and 61.2?±?3.2%, respectively). The mannose-coupled liposomes showed a maximum reduction in parasite load (i.e., 78.8?±?3.9%). The biodistribution study clearly showed the higher uptake of mannosylated liposomes in the liver and spleen and hence the active targeting to the reticular endothelial system, which, in turn, would provide a direct attack of the drug to the site where the pathogen resides, rendering the other organs free and safe from the toxic manifestations of the drug.  相似文献   

2.
Raloxifene (RLX) has been strongly recommended for postmenopausal women at high risk of invasive breast cancer and for prevention of osteoporosis. However, low aqueous solubility and reduced bioavailability hinder its clinical application. The objective of this study was to explore the potential of RLX loaded mixed micelles (RLX-MM) using Pluronic F68 and Gelucire 44/14 for enhanced bioavailability and improved anticancer activity on human breast cancer cell line (MCF-7). RLX-MM were prepared by solvent evaporation method and optimized using 32 factorial design. The average size, entrapment efficiency and zeta potential of the optimized formulation were found to be 190?±?3.3 nm, 79?±?1.3%, 13?±?0.8 mV, respectively. In vitro study demonstrated 74.68% drug release from RLX-MM in comparison to 42.49% drug release from RLX dispersion. According to the in vitro cytotoxicity assay, GI50 values on MCF-7 breast cancer cell line for RLX-MM and free RLX were found to be 22.5 and 94.71 μg/mL, respectively. Significant improvement (P?<?0.05) in the anticancer activity on MCF-7 cell line was observed in RLX-MM over RLX pure drug. Additionally, oral bioavailability of RLX-MM was improved by 1.5-fold over free RLX when administered in female Wistar rats. Incorporation of RLX in the hydrophobic core and improved solubility of the drug due to hydrophilic shell attributed to the enhanced cytotoxicity and bioavailability of RLX-MM. This research establishes the potential of RLX loaded mixed micelles of Pluronic F68 and Gelucire 44/14 for improved bioavailability and anticancer activity on MCF-7 cell line.  相似文献   

3.
Onychomycosis is a fungal infection of nail unit that is caused by dermatophytes. Oral Terbinafine hydrochloride (TBF-HCl) is being used for the treatment of onychomycosis since 24 years. The side effects caused by the systemic application and limitations of topical administration of this drug regarding the diffusion through nail lead to the development of a new formulation based on, TBF-HCl-loaded liposome. The newly obtained film formulations were prepared and characterized via several parameters, such as physical appearance, drug content, thickness, bioadhesive properties and tensile strength. In vitro and ex vivo permeation studies were performed to select an optimum film formulation for antifungal activity to show the efficiency of formulations regarding the treatment of onychomycosis. The in vitro release percentages of drug were found 71.6?±?3.28, 54.4?±?4.26, 56.1?±?7.48 and 46.0?±?2.43 for liposome loaded pullulan films (LI-P, LII-P) and liposome loaded Eudragit films (LI-E, LII-E), respectively. The accumulated drug in the nail plates were found 31.16?±?4.22, 24.81?±?5.35, 8.17?±?1.81 and 8.92?±?3.37 for LI-P, LII-P, LI-E and LII-E, respectively, which within therapeutic range for all film formulations. The accumulated drug in the nail plate was found within therapeutic range for all film formulations. The efficacy of the selected TBF-HCl-loaded liposome film formulation was compared with TBF-HCl-loaded liposome, ethosome, liposome poloxamer gel and ethosome chitosan gel formulations. It was found that TBF-HCl-loaded liposome film formulation had better antifungal activity on fungal nails which make this liposome film formulation promising for ungual therapy of fungal nail infection.  相似文献   

4.
Seleno-short-chain chitosan (SSCC) was a synthesized chitosan derivative with the molecular weight of 4826.986 Da. The study is aimed to investigate cytotoxicity of SSCC on human breast cancer MCF-7 and BT-20 cells and explore apoptosis-related mechanism in vitro. The MTT (3- [4,5-Dimethylthiazol-2-yl]-2, 5-diphenylterazolium bromide) assay showed that SSCC exhibited significantly cytotoxic effects on MCF-7 and BT-20 cells in a dose- and time-dependent manner, and the effective inhibitory concentration was 100 μg/ml and 200 μg/ml, respectively. Apoptosis assay of these two kinds of cells was determined by Hoechst 33,342/PI and Annexin V-FITC/PI double staining. The cell cycle assay showed that SSCC triggered S and G2/M phase cell cycle arrest in MCF-7 cells and S phase cell cycle arrest in BT-20 cells in a time-dependent manner. Further studies demonstrated that SSCC led to the generation of reactive oxygen species (ROS) and the disruption of mitochondrial membrane potential (MMP) in these two kinds of cells. N- acetyl-L cysteine (NAC), as a radical scavenger, significantly inhibited the generation of ROS and decreased the apoptosis of MCF-7 and BT-20 cells. Moreover, the expression of mitochondrial apoptosis-related proteins was detected by western blot assay. SSCC up-regulated the expression of Bax, down-regulated the expression of Bcl-2, subsequently increased the release of cytochrome c from mitochondria to cytoplasm, and activated the cleavage of caspase-9 and ?3, which finally induced apoptosis in MCF-7 and BT-20 cells in vitro. Consequently, these data indicated that SSCC could induce apoptosis of MCF-7and BT-20 cells in vitro by mitochondrial pathway.  相似文献   

5.
Co-delivery of chemotherapeutic agents using nanocarriers is a promising strategy for enhancing therapeutic efficacy of anticancer agents. The aim of this work was to develop tamoxifen and imatinib dual drug loaded temperature-sensitive liposomes to treat breast cancer. Liposomes were prepared using 1, 2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), monopalmitoyl-2-hydroxy-sn-glycero-3-phosphocholine (MPPC), and different surface active agents. The liposomes were characterized for the average particle size, zeta potential, transition temperature, and drug release below and above liposomal transition temperature. The temperature-sensitive liposomes co-encapsulated with tamoxifen and imatinib were investigated for their synergistic activity against MCF-7 and MDA-MB-231 breast cancer cells. The liposomal nanoparticles showed a transition temperature of 39.4?°C and >70% encapsulation efficiency for tamoxifen and imatinib. The temperature-responsive liposomes showed more than 80% drug released within 30?min above transition temperature. Dual drug loaded liposomes showed synergistic growth inhibition against MCF-7 and MDA-MB-231 breast cancer cells. Co-delivery of tamoxifen and imatinib using temperature-sensitive liposomes can be developed as a potential targeting strategy against breast cancer.  相似文献   

6.
Context: Pirfenidone (PFD) is an anti-fibrotic and anti-inflammatory agent indicated for the treatment of idiopathic pulmonary fibrosis (IPF). The current oral administration of PFD has several limitations including first pass metabolism and gastrointestinal irritation.

Objective: The aim of this study is to investigate the feasibility of transdermal delivery of PFD using liposomal carrier system.

Materials and methods: PFD-loaded liposomes were prepared using soy phosphatidylcholine (SPC) and sodium cholate (SC). Encapsulation efficiency (EE) of PFD in liposomes was optimized using different preparation techniques including thin film hydration (TFH) method, direct injection method (DIM) and drug encapsulation using freeze–thaw cycles. In vitro drug release study was performed using dialysis membrane method. The skin permeation studies were performed using excised porcine ear skin model in a Franz diffusion cell apparatus.

Results and discussion: The average particle size and zeta-potential of liposomes were 191?±?4.1?nm and ?40.4?±?4.5?mV, respectively. The liposomes prepared by TFH followed by 10 freeze–thaw cycles showed the greatest EE of 22.7?±?0.63%. The optimized liposome formulation was incorporated in hydroxypropyl methyl cellulose (HPMC) hydrogel containing different permeation enhancers including oleic acid (OA), isopropyl myristate (IPM) and propylene glycol (PG). PFD-loaded liposomes incorporated in hydrogel containing OA and IPM showed the greatest flux of 10.9?±?1.04?μg/cm2/h across skin, which was 5-fold greater compared with free PFD. The cumulative amount of PFD permeated was 344?±?28.8?μg/cm2 with a lag time of 2.3?±?1.3?h.

Conclusion: The hydrogel formulation containing PFD-loaded liposomes can be developed as a potential transdermal delivery system.  相似文献   

7.
The present study aimed to evaluate the potential of liposomes loaded with paromomycin (PA), an aminoglycoside antibiotic associated with poor skin penetration, for the topical treatment of cutaneous leishmaniasis (CL). Fluid liposomes were prepared and characterized for particle size, zeta potential, and drug entrapment. Permeation studies were performed with two in vitro models: intact and stripped skin. The antileishmanial activity of free and liposomal PA was evaluated in BALB/c mice infected by Leishmania (L.) major. Drug entrapment ranged from 10 to 14%, and the type of vesicle had little influence on this parameter. Particle size and polydispersity index of the vesicles composed by phosphatidylcholine (PC) and PC/cholesterol (Chol) ranged from of 516 to 362?nm and 0.7 to 0.4, respectively. PA permeation across intact skin was low, regardless of the formulation tested, while drug penetration into skin (percent of the applied dose) from PC (7.2?±?0.2%) and PC/Chol (4.8?±?0.2%) liposomes was higher than solution (1.9?±?0.1%). PA-loaded liposomes enhanced in vitro drug permeation across stripped skin and improved the in vivo antileishmanial activity in experimentally infected mice. Our findings suggest that the liposomes represent a promising alternative for the topical treatment of CL using PA.  相似文献   

8.
Four series of N-methylpicolinamide moiety and thienopyrimidine moiety bearing pyridazinone were designed and synthesized and evaluated for the IC50 values against three cancer cell lines (A549, HepG2 and MCF-7) and some selected compounds were further evaluated for the activity against c-Met, Flt-3, VEGFR-2, c-Kit and EGFR kinases. Three compounds (35, 39 and 43) showed more active than positive control Foretinib against A549, HepG2 and MCF-7 cell lines. The most promising compound 43 showed superior activity against A549, HepG2 and MCF-7, with the IC50 values of 0.58?±?0.15?µM, 0.47?±?0.06?µM and 0.74?±?0.12?µM, which were 3.73–5.39-fold more activity than Foretinib, respectively. The experiments of enzyme-based showed that 43 restrain the c-Met selectively, with the IC50 values of 16?nM, which showed equal activity to Foretinib (14?nM) and better than the compound 5 (90?nM). Moreover, AO and Annexin V/PI staining and docking studies were carried out.  相似文献   

9.
A new series of 1,2,4-triazole-linked urea and thiourea conjugates have been synthesized and evaluated for their in vitro cytotoxicity against selected human cancer cell lines namely, breast (MCF-7, MDA-MB-231), lung (A549) prostate (DU145) and one mouse melanoma (B16-F10) cell line and compared with reference drug. The compound 5t showed significant cytotoxicity on MCF-7 breast cancer cell line with a IC50 value of 7.22?±?0.47?µM among all the tested compounds. Notably, induction of apoptosis by compound 5t on MCF-7 cells was evaluated using different staining techniques such as acridine orange/ethidium bromide (AO/EB), annexin V-FITC/PI, and DAPI. Further, clonogenic assay indicates the inhibition of colony formation on MCF-7 cells by compound 5t. Moreover, the flow-cytometric analysis also revealed that compound 5t caused the arrest of cells at G0/G1 phase of cell cycle. In addition, the compounds when tested on normal human cells (L-132) were found to be safer with low cytotoxicity profile.  相似文献   

10.
The inhibitory activities of selected cyclic urea and carbamate derivatives (113) toward α-glucosidase (α-Gls) in in vitro assay were examined in this study. All examined compounds showed higher inhibitory activity (IC50) against α-Gls compared to standard antidiabetic drug acarbose. The most potent was benzyl (3,4,5-trimethoxyphenyl)carbamate (12) with IC50?=?49.85?±?0.10?µM. In vitro cytotoxicity of the investigated compounds was tested on three human cancer cell lines HeLa, A549 and MDA-MB-453 using MTT assay. The best antitumour activity was achieved with compound 2 (trans-5-phenethyl-1-phenylhexahydro-1H-imidazo[4,5-c]pyridin-2(3H)-one) against MDA-MB-453 human breast cancer cell line (IC50?=?83.41?±?1.60?µM). Cyclic ureas and carbamates showed promising anti-α-glucosidase activity and should be further tested as potential antidiabetic drugs. The PLS model of preliminary QSAR study indicated that, in planing the future synthesis of more potent compounds, the newly designed should have the substituents capable of polar interactions with receptor sites in various positions, while avoiding the increase of their lipophilicity.  相似文献   

11.
Amphotericin B (AmB) liposome formulations are very successful in the treatment of fungal infections and leishmaniasis. But higher cost limits its widespread use among people in developing countries. Therefore, we have developed a modified ethanol-injection method for the preparation of AmB liposomes. Two liposomal formulations were developed with dimyristoyl phosphatidylcholine [F-1a] and soya phosphatidylcholine [F-2a], along with egg phosphatidyl glycerol and cholesterol. AmB was dissolved in acidified dimethyl acetamide and mixed with ethanolic lipid solution and rapidly injected in 5% dextrose to prepare liposomes. Liposomes were characterized on the basis of size (~100?nm), zeta (–43.3?±?2.8 mV) and percent entrapment efficiency (>95%). The in vitro release study showed an insignificant difference (P?≥?0.05) for 24-hour release between marketed AmB liposomes (AmBisome) and F-1a and F-2a. Proliposome concentrate, used for the preparation of in situ liposomes, was physically stable for more than 3 months at experimental conditions. Similarly, AmB showed no sign of degradation in reconstituted liposomes stored at 2–8°C for more than 3 months. IC50 value of Ambisome (0.18 µg/mL) was comparatively similar to F-1a (0.17 µg/mL) and F-2a (0.16 µg/mL) against intramacrophagic amastigotes. Under experimental conditions, a novel modified method for AmB liposomes is a great success and generates interest for development as a platform technology for many therapeutic drug products.  相似文献   

12.
A facile one-pot method for the synthesis of new phenanthrene fused-dihydrodibenzo-quinolinone derivatives has been successfully accomplished by employing sulfamic acid as catalyst. These new compounds were evaluated for their in vitro cytotoxic potential against human lung (A549), prostate (PC-3 and DU145), breast (MCF-7) and colon (HT-29 and HCT-116) cancer cell lines. Among all the tested compounds, one of the derivatives 8p showed good anti-proliferative activity against A549 lung cancer cell line with an IC50 of 3.17?±?0.52?µM. Flow cytometric analyses revealed that compound 8p arrested both Sub G1 and G2/M phases of cell cycle in a dose dependent manner. The compound 8p also displayed significant inhibition of tubulin polymerization and disruption of microtubule network (IC50 of 5.15?±?0.15?µM). Molecular docking studies revealed that compound 8p efficiently interacted with critical amino acid Cys241 of the α/β-tubulin by a hydrogen bond (SH…O?=?2.4?Å). Further, the effect of 8p on cell viability was also studied by AO/EB, DCFDA and DAPI staining. The apoptotic characteristic features revealed that 8p inhibited cell proliferation effectively through apoptosis by inducing the ROS generation. Analysis of mitochondrial membrane potential through JC-1 staining and annexin V binding assay indicated the extent of apoptosis in A549 cancer cells.  相似文献   

13.
The interactions between three liposomal formulations and Pseudomonas aeruginosa cells were evaluated by a lipid mixing assay and electron paramagnetic resonance (EPR) spectroscopy. The effect of the bacteria on the liposomal phase characteristics, the release of the liposomes’ content, and the uptake rate of gentamicin by bacteria were monitored as a function of time, using EPR spectroscopy. The [16-DSA uptake]Total from DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine) liposomes reached 93?±?12% over a 3-hour assay period, of which 9% crossed the bacterial inner membrane. A small amount of 16-DSA uptake from DPPC/Chol (cholesterol) vesicles was found throughout the 3-hour period of time. Although DPPC/DMPG (dimyristoylphosphatidylglycerol) vesicles showed a smaller value of [16-DSA uptake]Total with respect to that of DPPC vesicles, they appeared to be effective in disrupting the bacterial membrane, resulting in a greater accumulation of 16-DSA inside the inner membrane. Exposure to bacteria caused the DPPC/Chol, DPPC, and DPPC/DMPG formulations to release 4.6?±?1.5, 17.6?±?1.2, and 34?±?3.7% of their content, respectively. Time-dependent fluid regions were developed within the vesicles when mixed with bacteria, and their growth over time depended on liposomal formulations. Incubation of gentamicin with bacteria for 3 hours resulted in 87?±?3% of the drug crossing the bacterial inner membrane. In conclusion, interaction between the liposome drug carriers and the bacterial cells result in vesicle fusion, disruption of the bacterial membrane, release of the liposomal content in the close vicinity of the bacteria cells, and the subsequent intracellular uptake of the released liposomal content.  相似文献   

14.
Effective targeting and killing of intraperitoneally disseminated micrometastases remains a challenge.

Objective/Methods:?In this work, we evaluated the potential of antibody-labeled PEGylated large liposomes as vehicles for direct intraperitoneal (i.p.) drug delivery with the aim to enhance the tumor-to-normal organ ratio and to improve the bioexposure of cancer cells to the delivered therapeutics while shifting the toxicities toward the spleen. These targeted liposomes are designed to combine: (1) specific targeting to and internalization by cancer cells mediated by liposome-conjugated tumor-specific antibodies, (2) slow clearance from the peritoneal cavity, and (3) shift of normal organ toxicities from the liver to the spleen due to their relatively large size.

Results:?Conjugation of anti-HER2/neu antibodies to the surface of large (approximately 600?nm in diameter) PEGylated liposomes results in fast, specific binding of targeted liposomes to cancer cells in vitro, followed by considerable cellular internalization. In vivo, after i.p. administration, these liposomes exhibit fast, specific binding to i.p. cancerous tumors. Large liposomes are slowly cleared from the peritoneal cavity, and they exhibit increased uptake by the spleen relative to the liver, while targeted large liposomes demonstrate specific tumor uptake at early times. Although tissue and tumor uptake are greater for cationic liposomes, the tumor-to-liver and spleen-to-liver ratios are similar for both membrane compositions, suggesting a primary role for the liposome’s size, compared to the liposome’s surface charge.

Conclusions:?The findings of this study suggest that large targeted liposomes administered i.p. could be a potent drug-delivery strategy for locoregional therapy of i.p. micrometastatic tumors.  相似文献   

15.
Adenosine triphosphate (ATP)-binding cassette (ABC) transporters play a key role in the development of multidrug resistance (MDR) in cancer cells. P-glycoprotein (P-gp) and multidrug resistance-associated protein 1 (MRP1) are important proteins in this superfamily which are widely expressed on the membranes of multidrug resistance (MDR) cancer cells. Besides, upregulation of cellular autophagic responses is considered a contributing factor for MDR in cancer cells. We designed a liposome system co-encapsulating a chemotherapeutic drug (doxorubicin hydrochloride, DOX) and a typical autophagy inhibitior (chloroquine phosphate, CQ) at a weight ratio of 1:2 and investigated its drug resistance reversal mechanism. MTT assay showed that the IC50 of DOX/CQ co-encapsulated liposome in DOX-resistant human breast cancer cells (MCF7/ADR) was 4.7?±?0.2?μM, 5.7-fold less than that of free DOX (26.9?±?1.9 μM), whereas it was 19.5-fold in doxorubicin-resistant human acute myelocytic leukemia cancer cells (HL60/ADR) (DOX/CQ co-encapsulated liposome 1.2?±?0.1?μM, free DOX 23.4?±?2.8?μM). The cellular uptake of DOX increased upon addition of free CQ, indicating that CQ may interact with P-gp and MRP1; however, the expressions of P-gp and MRP1 remained unchanged. In contrast, the expression of the autophagy-related protein LC3-II increased remarkably. Therefore, the mechanism of MDR reversal may be closely related to autophagic inhibition. Evaluation of anti-tumor activity was achieved in an MCF-7/ADR multicellular tumor spheroid model and transgenic zebrafish model. DOX/CQ co-encapsulated liposome exerted a better anti-tumor effect in both models than that of liposomal DOX or DOX alone. These findings suggest that encapsulating CQ with DOX in liposomes significantly improves the sensitivity of DOX in DOX-resistant cancer cells.  相似文献   

16.
The oral administration of celecoxib (CLX) is a real problem because of its low aqueous solubility that results in high variability in absorption and its severe adverse effect such as cardiotoxic effects and gastrointestinal toxicity. Self-nanoemulsifying drug delivery systems (SNEDDS) can enhance the poor dissolution and erratic absorption of poorly water-soluble drugs such as CLX. This study was conducted to investigate the potential of SNEDDS to enhance the efficacy of CLX on inflamed mucous tissue and reduce systemic adverse effects by increasing its poor dissolution properties. A pseudo-ternary phase diagram was derived from the results of CLX solubility experiments in various excipients. These studies revealed the use of Labrafil M 2515 CS as oil, tween 80 as a surfactant, and polyethylene glycol 400 as a co-surfactant for the optimization of SNEDDS formulations. Eight formulations were formulated and characterized by their particle size, polydispersity index, viscosity, globular shape, drug solubility, self-emulsification efficiency, in vitro drug release, and permeation. The anti-inflammatory effect of CLX-SNEDDS was evaluated by carrageenan-induced cheek oedema in rats. The cheeks were treated with CLX-SNEDDS before oedema induction and then noticed for narrow periods (2?h) followed by histopathological studies to determine the efficacy of treatment. The selected formulations (F3 and F5) showed spherical morphologies under transmission electron microscopy, mean droplet sizes of 116.9?±?1.78 and 124?±?1.87?nm, respectively, complete in vitro drug release, and high cumulative amounts of drug permeation in 8?h. They also showed significant remarkable cheek oedema inhibition in comparison with the control groups (p?<?0.05). CLX-SNEDDS was found to achieve effective local therapeutic concentration and intended to reduce cheek oedema, congestive capillary, inflammatory cells, and side effects due to lower dose size.  相似文献   

17.
Abstract

Melanoma is the most deadly and life-threatening form of skin cancer with progressively higher rates of incidence worldwide. The objective of the present investigation is to develop and to statistically optimize and characterize curcumin (CUR) loaded ethosomes for treatment of melanoma. A two factor, three level (32) factorial design approach was employed for the optimization of ethosomes. The prepared ethosomes were evaluated for size, zeta potential, entrapment efficiency, in vitro skin permeation and deposition ability. The optimized ethosomal formulation was evaluated for in vitro cytotoxicity and cellular uptake studies using A375 human melanoma cells. The optimized formulation has imperfect round shaped unilamellar structures with a mean vesicle size of 247?±?5.25?nm and an entrapment efficiency of 92.24?±?0.20%. The in vitro skin permeation studies proved the superiority of ethosomes over the traditional liposomes in terms of the amount of drug permeated and deposited in skin layers. Fluorescence microscopy showed the enhanced penetration of ethosomes into the deeper layers of the skin. In vitro cytotoxicity and cellular uptake studies revealed that curcumin ethosomes have significantly improved cytotoxicity and cellular uptake in A375 human melanoma cell lines. The colony formation assay results showed that curcumin ethosomes have a superior antiproliferative effect as they effectively inhibit the clonogenic ability of A375 cells. The flow cytometry results indicate that curcumin ethosomes induce cell death in A375 cells by apoptosis mechanism. The present study provides a strong rationale and motivation for further investigation of newly developed curcumin ethosomes as a potential therapeutic strategy for melanoma treatment.  相似文献   

18.
An original ligand (Lac-10-Chol) designed to interact with asialoglycoprotein receptors to potentially target hepatocyte was synthesised by grafting a lactose head to a cholesteryl structure, which was then included in liposomes. Preliminary formulation tests led to the selection of conventional formulations based on soybean phosphatidylcholine/cholesterol/DOTAP (± DOPE) (± Lac-10-Chol) that present reproducible absolute entrapment value (1.45?±?0.10%), with a size of 109?±?7?nm and a slight positive charge (3.77?±?1.59?mV). Cell viability (via the MTT test), expressed as the percentage of nontreated cells in HepG2 cells, was very close to the control. Internalization tests evidenced an intracellular penetration of fluorescent liposomes, but no specific ligand effect was demonstrated (P?>?0.05). Nevertheless, regarding the adenosine triphosphate (ATP) assay, a slight increase was obtained with liposome loaded with ATP incorporating Lac-10-chol after 24 hours (P?<?0.05).  相似文献   

19.
Tamoxifen (TAM) is frequently prescribed for the management breast cancer, but is associated with the challenges like compromised aqueous solubility and poor bioavailability to the target site. It was envisioned to develop phospholipid-based mixed micelles to explore the promises offered by the biocompatible carriers. Various compositions were prepared, employing soya lecithin, polysorbate 80, sodium chloride/dextrose, and water, by self-assembled technique. The formulations were characterized for micromeritics and evaluated for in vitro drug release, hemolysis study, dermatokinetic studies on rodents, and cytotoxicity on MCF-7 cell lines. Cellular uptake of the system was also studied using confocal laser scanning microscopy. The selected composition was of sub-micron range (28.81?±?2.1 nm), with spherical morphology. During in-vitro studies, the mixed micelles offered controlled drug release than that of conventional gel. Cytotoxicity was significantly enhanced and IC50 value was reduced that of the naïve drug. The bioavailability in epidermis and dermis skin layers was enhanced approx. fivefold and threefold, respectively. The developed nanosystem not only enhanced the efficacy of the drug but also maintained the integrity of skin, as revealed by histological studies. The developed TAM-nanocarrier possesses potential promises for safe and better delivery of TAM.  相似文献   

20.
Serious adverse effects and low selectivity to cancer cells are the main obstacles of long term therapy with Tamoxifen (Tmx). This study aimed to develop Tmx-loaded span-based nano-vesicles for delivery to malignant tissues with maximum efficacy. The effect of three variables on vesicle size (Y1), zeta potential (Y2), entrapment efficiency (Y3) and the cumulative percent release after 24 h (Y4) were optimized using Box-Behnken design. The optimized formula was prepared and tested for its stability in different storage conditions. The observed values for the optimized formula were 310.2 nm, ??42.09 mV, 75.45 and 71.70% for Y1, Y2, Y3, and Y4, respectively. The examination using electron microscopy confirmed the formation of rounded vesicles with distinctive bilayer structure. Moreover, the cytotoxic activity of the optimized formula on both breast cancer cells (MCF-7) and normal cells (BHK) showed enhanced selectivity (9.4 folds) on cancerous cells with IC50 values 4.7?±?1.5 and 44.3?±?1.3 μg/ml on cancer and normal cells, respectively. While, free Tmx exhibited lower selectivity (2.5 folds) than optimized nano-vesicles on cancer cells with IC50 values of 9.0?±?1.1 μg/ml and 22.5?±?5.3 μg/ml on MCF-7 and BHK cells, respectively. The promising prepared vesicular system, with greater efficacy and selectivity, provides a marvelous tool to overcome breast cancer treatment challenges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号