首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Soybean (Glycine max L. Merr.) is presumed to be an ancient polyploid based on chromosome number and multiple RFLP fragments in genetic mapping. Direct cytogenetic observation of duplicated regions within the soybean genome has not heretofore been reported. Employing fluorescence in situ hybridization (FISH) of genetically anchored bacterial artificial chromosomes (BACs) in soybean, we were able to observe that the distal ends of molecular linkage group E had duplicated regions on linkage groups A2 and B2. Further, using fiber-FISH, it was possible to measure the molecular size and organization of one of the duplicated regions. As FISH did not require repetitive DNA for blocking fluorescence signals, we assume that the 200-kb genome region is relatively low in repetitive sequences. This observation, along with the observation that the BACs are located in distal euchromatin regions, has implications for genome structure/evolution and the approach used to sequence the soybean genome.  相似文献   

2.
Brassica napus (AACC genome) is an important oilseed crop that was formed by the fusion of the diploids B. rapa (AA) and B. oleracea (CC). The complete genomic sequence of the Brassica A genome will be available soon from the B. rapa genome sequencing project, but it is not clear how informative the A genome sequence in B. rapa (A(r)) will be for predicting the structure and function of the A subgenome in the allotetraploid Brassica species B. napus (A(n)). In this paper, we report the results of structural and functional comparative mapping between the A subgenomes of B. napus and B. rapa based on genetic maps that were anchored with bacterial artificial chromosomes (BACs)-sequence of B. rapa. We identified segmental conservation that represented by syntenic blocks in over one third of the A genome; meanwhile, comparative mapping of quantitative trait loci for seed quality traits identified a dozen homologous regions with conserved function in the A genome of the two species. However, several genomic rearrangement events, such as inversions, intra- and inter-chromosomal translocations, were also observed, covering totally at least 5% of the A genome, between allotetraploid B. napus and diploid B. rapa. Based on these results, the A genomes of B. rapa and B. napus are mostly functionally conserved, but caution will be necessary in applying the full sequence data from B. rapa to the B. napus as a result of genomic rearrangements in the A genome between the two species.  相似文献   

3.
Strong evidence exists for polyploidy having occurred during the evolution of the tribe Brassiceae. We show evidence for the dynamic and ongoing diploidization process by comparative analysis of the sequences of four paralogous Brassica rapa BAC clones and the homologous 124-kb segment of Arabidopsis thaliana chromosome 5. We estimated the times since divergence of the paralogous and homologous lineages. The three paralogous subgenomes of B. rapa triplicated 13 to 17 million years ago (MYA), very soon after the Arabidopsis and Brassica divergence occurred at 17 to 18 MYA. In addition, a pair of BACs represents a more recent segmental duplication, which occurred approximately 0.8 MYA, and provides an exception to the general expectation of three paralogous segments within the B. rapa genome. The Brassica genome segments show extensive interspersed gene loss relative to the inferred structure of the ancestral genome, whereas the Arabidopsis genome segment appears little changed. Representatives of all 32 genes in the Arabidopsis genome segment are represented in Brassica, but the hexaploid complement of 96 has been reduced to 54 in the three subgenomes, with compression of the genomic region lengths they occupy to between 52 and 110 kb. The gene content of the recently duplicated B. rapa genome segments is identical, but intergenic sequences differ.  相似文献   

4.
To improve resolution of physical mapping on Brassica chromosomes, we have chosen the pachytene stage of meiosis where incompletely condensed bivalents are much longer than their counterparts at mitotic metaphase. Mapping with 5S and 45S rDNA sequences demonstrated the advantage of pachytene chromosomes in efficient physical mapping and confirmed the presence of a novel 5S rDNA locus in Brassica oleracea, initially identified by genetic mapping using restriction fragment length polymorphism (RFLP). Fluorescence in situ hybridization (FISH) analysis visualized the presence of the third 5S rDNA locus on the long arm of chromosome C2 and confirmed the earlier reports of two 45S rDNA loci in the B. oleracea genome. FISH mapping of low-copy sequences from the Arabidopsis thaliana bacterial artificial chromosome (BAC) clones on the B. oleracea chromosomes confirmed the expectation of efficient and precise physical mapping of meiotic bivalents based on data available from A. thaliana and indicated conserved organization of these two BAC sequences on two B. oleracea chromosomes. Based on the heterologous in situ hybridization with BACs and their mapping applied to long pachytene bivalents, a new approach in comparative analysis of Brassica and A. thaliana genomes is discussed.  相似文献   

5.
Xiong Z  Pires JC 《Genetics》2011,187(1):37-49
Investigating recombination of homoeologous chromosomes in allopolyploid species is central to understanding plant breeding and evolution. However, examining chromosome pairing in the allotetraploid Brassica napus has been hampered by the lack of chromosome-specific molecular probes. In this study, we establish the identification of all homoeologous chromosomes of allopolyploid B. napus by using robust molecular cytogenetic karyotypes developed for the progenitor species Brassica rapa (A genome) and Brassica oleracea (C genome). The identification of every chromosome among these three Brassica species utilized genetically mapped bacterial artificial chromosomes (BACs) from B. rapa as probes for fluorescent in situ hybridization (FISH). With this BAC-FISH data, a second karyotype was developed using two BACs that contained repetitive DNA sequences and the ubiquitous ribosomal and pericentromere repeats. Using this diagnostic probe mix and a BAC that contained a C-genome repeat in two successive hybridizations allowed for routine identification of the corresponding homoeologous chromosomes between the A and C genomes of B. napus. When applied to the B. napus cultivar Stellar, we detected one chromosomal rearrangement relative to the parental karyotypes. This robust novel chromosomal painting technique will have biological applications for the understanding of chromosome pairing, homoeologous recombination, and genome evolution in the genus Brassica and will facilitate new applied breeding technologies that rely upon identification of chromosomes.  相似文献   

6.
Evolution of genome size in Brassicaceae   总被引:25,自引:0,他引:25  
BACKGROUND AND AIMS: Brassicaceae, with nearly 340 genera and more than 3350 species, anchors the low range of angiosperm genome sizes. The relatively narrow range of DNA content (0.16 pg < 1C < 1.95 pg) was maintained in spite of extensive chromosomal change. The aim of this study was to erect a cytological and molecular phylogenetic framework for a selected subset of the Brassicacae, and use this as a template to examine genome size evolution in Brassicaceae. METHODS: DNA contents were determined by flow cytometry and chromosomes were counted for 34 species of the family Brassicaceae and for ten Arabidopsis thaliana ecotypes. The amplified and sequenced ITS region for 23 taxa (plus six other taxa with known ITS sequences) were aligned and used to infer evolutionary relationship by parsimony analysis. KEY RESULTS: DNA content in the species studied ranged over 8-fold (1C = 0.16-1.31 pg), and 4.4-fold (1C = 0.16-0.71 pg) excluding allotetraploid Brassica species. The 1C DNA contents of ten Arabidopsis thaliana ecotypes showed little variation, ranging from 0.16 pg to 0.17 pg. CONCLUSIONS: The tree roots at an ancestral genome size of approximately 1x = 0.2 pg. Arabidopsis thaliana (1C = 0.16 pg; approximately 157 Mbp) has the smallest genome size in Brassicaceae studied here and apparently represents an evolutionary decrease in genome size. Two other branches that represent probable evolutionary decreases in genome size terminate in Lepidium virginicum and Brassica rapa. Branches in the phylogenetic tree that represent probable evolutionary increases in genome size terminate in Arabidopsis halleri, A. lyrata, Arabis hirsuta, Capsella rubella, Caulanthus heterophyllus, Crucihimalaya, Lepidium sativum, Sisymbrium and Thlaspi arvense. Branches within one clade containing Brassica were identified that represent two ancient ploidy events (2x to 4x and 4x to 6x) that were predicted from published comparative mapping studies.  相似文献   

7.
U Lagercrantz 《Genetics》1998,150(3):1217-1228
Chromosome organization and evolution in the Brassicaceae family was studied using comparative linkage mapping. A total of 160 mapped Arabidopsis thaliana DNA fragments identified 284 homologous loci covering 751 cM in Brassica nigra. The data support that modern diploid Brassica species are descended from a hexaploid ancestor, and that the A. thaliana genome is similar in structure and complexity to those of each of the hypothetical diploid progenitors of the proposed hexaploid. Thus, the Brassica lineage probably went through a triplication after the divergence of the lineages leading to A. thaliana and B. nigra. These duplications were also accompanied by an exceptionally high rate of chromosomal rearrangements. The average length of conserved segments between A. thaliana and B. nigra was estimated at 8 cM. This estimate corresponds to approximately 90 rearrangements since the divergence of the two species. The estimated rate of chromosomal rearrangements is higher than any previously reported data based on comparative mapping. Despite the large number of rearrangements, fine-scale comparative mapping between model plant A. thaliana and Brassica crops is likely to result in the identification of a large number of genes that affect important traits in Brassica crops.  相似文献   

8.
Genomic research in any organism encompasses understanding structure of the target genome and genes, their function, and evolution. Brassica rapa , which is phylogenetically related to Arabidopsis thaliana , is an important species with respect to its uses as vegetable, oil, and fodder. The availability of suitable genetic and genomic resources is a prerequisite to undertake genomic research in B. rapa . We have developed reference mapping populations of Chinese cabbage ( B. rapa ssp. pekinensis ) comprising 78 doubled haploid lines and over 250 recombinant inbred lines. Two Bacterial Artificial Chromosome (BAC) libraries, generated by restriction enzymes Hin dIII (KBrH) and Bam HI (KBrB), comprise 56 592 and 50 688 clones, respectively. We have also constructed 22 cDNA libraries from different plant tissues consisting of 104 914 clones with an average length of 575 bp. Initial BAC-end sequence analysis of 1473 clones of the KBrH library led us to understand the structure of B. rapa genome with respect to extent of genic sequences and their annotation, and relative abundance of different types of repetitive DNAs. Full-length sequence analysis of BAC clones revealed extensive triplication of B. rapa DNA segments coupled with variable gene losses within the segments. The formulation of the 'Multinational Brassica Genome Project' has laid the foundation to sequence the complete genome of B. rapa ssp. pekinensis by the international Brassica research community. It has been proposed to undertake BAC-to-BAC sequencing of genetically mapped seed BACs. In recent years, development of bioinformatics tools in Brassica has given a boost to structural genomics research in Brassica species. The research undertaken with the availability of various genomic resources in the public domain has added to our understanding of the structure of B. rapa .  相似文献   

9.
S Mao  Y Han  X Wu  T An  J Tang  J Shen  Z Li 《Hereditas》2012,149(3):86-90
To further understand the relationships between the SS genome of Sinapis arvensis and the AA, BB genomes in Brassica, genomic DNA of Sinapis arvensis was hybridized to the metaphase chromosomes of Brassica nigra (BB genome), and the metaphase chromosomes and interphase nucleus of Brassica rapa (AA genome) by comparative genomic in situ hybridization (cGISH). As a result, every chromosome of B. nigra had signals along the whole chromosomal length. However, only half of the condensed heterochromatic areas in the interphase nucleus and the chromosomes showed rich signals in Brassica rapa. Interphase nucleus and the metaphase chromosomes of S. arvensis were simultaneously hybridized with digoxigenin-labeled genomic DNA of B. nigra and biotin-labeled genomic DNA of B. rapa. Signals of genomic DNA of B. nigra hybridized throughout the length of all chromosomes and all the condensed heterochromatic areas in the interphase nucleus, except chromosome 4, of which signals were weak in centromeric regions. Signals of the genomic DNA of B. rapa patterned the most areas of ten chromosomes and ten condensed heterochromatic areas, others had less signals. The results showed that the SS genome had homology with AA and BB genomes, but the homology between SS genome and AA genome was clearly lower than that between the SS genome and BB genome.  相似文献   

10.
The aim of this work was to find C genome specific repetitive DNA sequences able to differentiate the homeologous A (B. rapa) and C (B. oleracea) genomes of Brassica, in order to assist in the physical identification of B. napus chromosomes. A repetitive sequence (pBo1.6) highly enriched in the C genome of Brassica was cloned from B. oleracea and its chromosomal organisation was investigated through fluorescent in situ hybridisation (FISH) in B. oleracea (2n = 18, CC), B. rapa (2n = 20, AA) and B. napus (2n = 38, AACC) genomes. The sequence was 203 bp long with a GC content of 48.3%. It showed up to 89% sequence identity with telomere-like DNA from many plant species. This repeat was clearly underrepresented in the A genome and the in situ hybridisation showed its B. oleracea specificity at the chromosomal level. Sequence pBo1.6 was localised at interstitial and/or telomeric/subtelomeric regions of all chromosomes from B. oleracea, whereas in B. rapa no signal was detected in most of the cells. In B. napus 18 to 24 chromosomes hybridised with pBo1.6. The discovery of a sequence highly enriched in the C genome of Brassica opens the opportunity for detailed studies regarding the subsequent evolution of DNA sequences in polyploid genomes. Moreover, pBo1.6 may be useful for the determination of the chromosomal location of transgenic DNA in genetically modified oilseed rape.  相似文献   

11.
In spite of the importance of Citrus in agriculture and recent progress in genetic mapping and cytogenetics of this group, chromosome mapping of Citrus species is still limited to rDNA probes. In order to obtain a better chromosome characterization of one species from this group, CMA/DAPI double staining followed by in situ hybridization using 45S rDNA and 24 BACs (BAC-FISH) were used on Poncirus trifoliata. The BACs used were obtained from a genomic library of this species and were selected by membrane hybridization using genomic DNA. Four of them were isolated from the Citrus tristeza virus (Ctv) resistance gene region. The P. trifoliata karyotype is composed of two chromosome pairs with one terminal and one proximal CMA(+) band (B type chromosomes), four chromosome pairs with a single CMA(+) band (D type) and three chromosome pairs without bands (F type). In situ hybridization with 13 of the BACs gave single copy signals on seven chromosome pairs. At least one BAC was mapped on each arm of the two B chromosome pairs. Among the four D chromosome pairs, two were identified by BACs mapped on the long arms, one has a 45S rDNA site and the other had no signal. Six BACs allowed identification of the three F chromosome pairs, with one pair hybridizing with four BACs from the Ctv resistance gene region. In summary, all nine chromosome pairs could be differentiated, seven of them by BAC-FISH, while the other two chromosomes could be recognized by the CMA(+) band pattern and 45S rDNA sites. This first BAC-FISH map gives a general framework for comparative genome structure and evolutionary studies in Citrus and Poncirus, allowing the integration of genetic and physical maps when these BACs are included.  相似文献   

12.
Quantitative trait locus (QTL) analysis was used to study the evolution of genes controlling the timing of flowering in four Brassica genomes that are all extensively replicated. Comparative mapping showed that a chromosomal region from the top of Arabidopsis thaliana chromosome 5 corresponded to three homoeologous copies in each of the diploid species Brassica nigra, B. oleracea, and B. rapa and six copies in the amphidiploid B. juncea. QTLs were detected in two of the three replicated segments in each diploid genome and in three of the six replicated segments in B. juncea. These results indicate that, for the studied trait, multiple QTLs resulting from genome duplication is the rule rather than the exception. Brassica homologues to two candidate genes (CO and FLC) identified from the corresponding A. thaliana region were mapped. CO homologues mapped close to the QTL peaks in eight of nine QTLs, while FLC homologues mapped farther away in those cases where the mapping resolution allowed a comparison. Thus, our data are consistent with the hypothesis that all the major QTLs we detected in the different species of Brassica could be the result of duplicated copies of the same ancestral gene, possibly the ancestor of CO.  相似文献   

13.
Brassica rapa ssp. pekinensis (Chinese cabbage) is an economically important crop and a model plant for studies on polyploidization and phenotypic evolution. To gain an insight into the structure of the B. rapa genome we analyzed 12,017 BAC-end sequences for the presence of transposable elements (TEs), SSRs, centromeric satellite repeats and genes, and similarity to the closely related genome of Arabidopsis thaliana. TEs were estimated to occupy 14% of the genome, with 12.3% of the genome represented by retrotransposons. It was estimated that the B. rapa genome contains 43,000 genes, 1.6 times greater than the genome of A. thaliana. A number of centromeric satellite sequences, representing variations of a 176-bp consensus sequence, were identified. This sequence has undergone rapid evolution within the B. rapa genome and has diverged among the related species of Brassicaceae. A study of SSRs demonstrated a non-random distribution with a greater abundance within predicted intergenic regions. Our results provide an initial characterization of the genome of B. rapa and provide the basis for detailed analysis through whole-genome sequencing.  相似文献   

14.
A sequence-tagged linkage map of Brassica rapa   总被引:4,自引:0,他引:4       下载免费PDF全文
Kim JS  Chung TY  King GJ  Jin M  Yang TJ  Jin YM  Kim HI  Park BS 《Genetics》2006,174(1):29-39
A detailed genetic linkage map of Brassica rapa has been constructed containing 545 sequence-tagged loci covering 1287 cM, with an average mapping interval of 2.4 cM. The loci were identified using a combination of 520 RFLP and 25 PCR-based markers. RFLP probes were derived from 359 B. rapa EST clones and amplification products of 11 B. rapa and 26 Arabidopsis. Including 21 SSR markers provided anchors to previously published linkage maps for B. rapa and B. napus and is followed as the referenced mapping of R1-R10. The sequence-tagged markers allowed interpretation of the pattern of chromosome duplications within the B. rapa genome and comparison with Arabidopsis. A total of 62 EST markers showing a single RFLP band were mapped through 10 linkage groups, indicating that these can be valuable anchoring markers for chromosome-based genome sequencing of B. rapa. Other RFLP probes gave rise to 2-5 loci, inferring that B. rapa genome duplication is a general phenomenon through 10 chromosomes. The map includes five loci of FLC paralogues, which represent the previously reported BrFLC-1, -2, -3, and -5 and additionally identified BrFLC3 paralogues derived from local segmental duplication on R3.  相似文献   

15.
An SSR-based linkage map was constructed in Brassica rapa. It includes 113 SSR, 87 RFLP, and 62 RAPD markers. It consists of 10 linkage groups with a total distance of 1005.5 cM and an average distance of 3.7 cM. SSRs are distributed throughout the linkage groups at an average of 8.7 cM. Synteny between B. rapa and a model plant, Arabidopsis thaliana, was analyzed. A number of small genomic segments of A. thaliana were scattered throughout an entire B. rapa linkage map. This points out the complex genomic rearrangements during the course of evolution in Cruciferae. A 282.5-cM region in the B. rapa map was in synteny with A. thaliana. Of the three QTL (Crr1, Crr2, and Crr4) for clubroot resistance identified, synteny analysis revealed that two major QTL regions, Crr1 and Crr2, overlapped in a small region of Arabidopsis chromosome 4. This region belongs to one of the disease-resistance gene clusters (MRCs) in the A. thaliana genome. These results suggest that the resistance genes for clubroot originated from a member of the MRCs in a common ancestral genome and subsequently were distributed to the different regions they now inhabit in the process of evolution.  相似文献   

16.
Since the tetraploidization of the Arabidopsis thaliana ancestor 30-35 million years ago (Mya), a wave of chromosomal rearrangements have modified its genome architecture. The dynamics of this process is unknown, as it has so far been impossible to date individual rearrangement events. In this paper, we present evidence demonstrating that the majority of rearrangements occurred before the Arabidopsis-Brassica split 20-24 Mya, and that the segmental architecture of the A. thaliana genome is predominantly conserved in Brassica. This finding is based on the conservation of four rearrangement breakpoints analysed by fluorescence in situ hybridization (FISH) and RFLP mapping of three A. thaliana chromosomal regions. For this purpose, 95 Arabidopsis bacterial artificial chromosomes (BACs) spanning a total of 8.25 Mb and 81 genetic loci for 36 marker genes were studied in the Brassica oleracea genome. All the regions under study were triplicated in the B. oleracea genome, confirming the hypothesis of Brassica ancestral genome triplication. However, whilst one of the breakpoints was conserved at one locus, it was not at the two others. Further comparison of their organization may indicate that the evolution of the hexaploid Brassica progenitor proceeded by several events, separated in time. Genetic mapping and reprobing with rDNA allowed assignment of the regions to particular Brassica chromosomes. Based on this study of regional organization and evolution, a new insight into polyploidization/diploidization cycles is proposed.  相似文献   

17.
The cultivated Brassica species are the group of crops most closely related to Arabidopsis thaliana (Arabidopsis). They represent models for the application in crops of genomic information gained in Arabidopsis and provide an opportunity for the investigation of polyploid genome formation and evolution. The scientific literature contains contradictory evidence for the dynamics of the evolution of polyploid genomes. We aimed at overcoming the inherent complexity of Brassica genomes and clarify the effects of polyploidy on the evolution of genome microstructure in specific segments of the genome. To do this, we have constructed bacterial artificial chromosome (BAC) libraries from genomic DNA of B. rapa subspecies trilocularis (JBr) and B. napus var Tapidor (JBnB) to supplement an existing BAC library from B. oleracea. These allowed us to analyse both recent polyploidization (under 10,000 years in B. napus) and more ancient polyploidization events (ca. 20 Myr for B. rapa and B. oleracea relative to Arabidopsis), with an analysis of the events occurring on an intermediate time scale (over the ca. 4 Myr since the divergence of the B. rapa and B. oleracea lineages). Using the Arabidopsis genome sequence and clones from the JBr library, we have analysed aspects of gene conservation and microsynteny between six regions of the genome of B. rapa with the homoeologous regions of the genomes of B. oleracea and Arabidopsis. Extensive divergence of gene content was observed between the B. rapa paralogous segments and their homoeologous segments within the genome of Arabidopsis. A pattern of interspersed gene loss was identified that is similar, but not identical, to that observed in B. oleracea. The conserved genes show highly conserved collinearity with their orthologues across genomes, but a small number of species-specific rearrangements were identified. Thus the evolution of genome microstructure is an ongoing process. Brassica napus is a recently formed polyploid resulting from the hybridization of B. rapa (containing the Brassica A genome) and B. oleracea (containing the Brassica C genome). Using clones from the JBnB library, we have analysed the microstructure of the corresponding segments of the B. napus genome. The results show that there has been little or no change to the microstructure of the analysed segments of the Brassica A and C genomes as a consequence of the hybridization event forming natural B. napus. The observations indicate that, upon polyploid formation, these segments of the genome did not undergo a burst of evolution discernible at the scale of microstructure.  相似文献   

18.
Howell EC  Kearsey MJ  Jones GH  King GJ  Armstrong SJ 《Genetics》2008,180(4):1849-1857
The two genomes (A and C) of the allopolyploid Brassica napus have been clearly distinguished using genomic in situ hybridization (GISH) despite the fact that the two extant diploids, B. rapa (A, n = 10) and B. oleracea (C, n = 9), representing the progenitor genomes, are closely related. Using DNA from B. oleracea as the probe, with B. rapa DNA and the intergenic spacer of the B. oleracea 45S rDNA as the block, hybridization occurred on 9 of the 19 chromosome pairs along the majority of their length. The pattern of hybridization confirms that the two genomes have remained distinct in B. napus line DH12075, with no significant genome homogenization and no large-scale translocations between the genomes. Fluorescence in situ hybridization (FISH)-with 45S rDNA and a BAC that hybridizes to the pericentromeric heterochromatin of several chromosomes-followed by GISH allowed identification of six chromosomes and also three chromosome groups. Our procedure was used on the B. napus cultivar Westar, which has an interstitial reciprocal translocation. Two translocated segments were detected in pollen mother cells at the pachytene stage of meiosis. Using B. oleracea chromosome-specific BACs as FISH probes followed by GISH, the chromosomes involved were confirmed to be A7 and C6.  相似文献   

19.
Simple Sequence Repeats (SSRs) represent short tandem duplications found within all eukaryotic organisms. To examine the distribution of SSRs in the genome of Brassica rapa ssp. pekinensis, SSRs from different genomic regions representing 17.7 Mb of genomic sequence were surveyed. SSRs appear more abundant in non-coding regions (86.6%) than in coding regions (13.4%). Comparison of SSR densities in different genomic regions demonstrated that SSR density was greatest within the 5'-flanking regions of the predicted genes. The proportion of different repeat motifs varied between genomic regions, with trinucleotide SSRs more prevalent in predicted coding regions, reflecting the codon structure in these regions. SSRs were also preferentially associated with gene-rich regions, with peri-centromeric heterochromatin SSRs mostly associated with retrotransposons. These results indicate that the distribution of SSRs in the genome is non-random. Comparison of SSR abundance between B. rapa and the closely related species Arabidopsis thaliana suggests a greater abundance of SSRs in B. rapa, which may be due to the proposed genome triplication. Our results provide a comprehensive view of SSR genomic distribution and evolution in Brassica for comparison with the sequenced genomes of A. thaliana and Oryza sativa.  相似文献   

20.
Sex chromosomes in flowering plants evolved recently and many of them remain homomorphic, including those in papaya. We investigated the chromosomal location of papaya’s small male specific region of the hermaphrodite Y (Yh) chromosome (MSY) and its genomic features. We conducted chromosome fluorescence in situ hybridization mapping of Yh-specific bacterial artificial chromosomes (BACs) and placed the MSY near the centromere of the papaya Y chromosome. Then we sequenced five MSY BACs to examine the genomic features of this specialized region, which resulted in the largest collection of contiguous genomic DNA sequences of a Y chromosome in flowering plants. Extreme gene paucity was observed in the papaya MSY with no functional gene identified in 715 kb MSY sequences. A high density of retroelements and local sequence duplications were detected in the MSY that is suppressed for recombination. Location of the papaya MSY near the centromere might have provided recombination suppression and fostered paucity of genes in the male specific region of the Y chromosome. Our findings provide critical information for deciphering the sex chromosomes in papaya and reference information for comparative studies of other sex chromosomes in animals and plants. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号