首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 250 毫秒
1.
辣根过氧化物酶在一种新型有机介质中的催化反应   总被引:4,自引:0,他引:4  
选择合适的酶反应介质体系,是酶应用于有机合成的一个重要环节。利用适宜分子量的聚乙二醇(PEG)可以将辣根过氧化物酶(HRP)分散在甲苯中,摸索了HRP在聚乙二醇(PEG)-甲苯互溶体系反应的适宜条件,即PEG/甲苯的比例、含水量、pH值、底物浓度等对酶活性影响,结果发现PEG含量越低,含水量越高,酶的活力越高;酶在此体系中的最适pH值为7.0,最适过氧化氢浓度为20mmol/L,愈创木酚的浓度为0  相似文献   

2.
BSA和PEG可以有效地提高固定化辣根过氧化物酶(HRP)在有机相中的活力。固定化酶活力的提高与试剂加入的顺序有密切的联系;不同载体对酶的影响不同,Gelite,alumina,XAD-7,Kiselgel和Florisil为载体,分别以吸附法制备固定化酶。实验表明固定化过程中保护剂和酶的加入顺序与国家化酶活力密切相关,而这些载体的固定化效果又以Celite最佳,Florisil最差。Floris  相似文献   

3.
反相胶束体系对辣根过氧化物酶结构与功能的影响   总被引:7,自引:1,他引:6  
在十六烷基三甲基溴化铵(CTAB)/异辛烷-正戊醇反相胶束中,研究了含水量(W0)和表面活性剂对辣根过氧化物酶(HRP)和活力的影响机制。在测定不同含水量(W0)和CTAB不同浓度下的UV-Vis光谱(即Soret吸收光谱)及活力的变化的基础上,发现含水量不同时,反相胶束主要通过影响HRP的活性中心而影响酶的活力,但CTAB对酶活性中心没有明显影响。此外通过反相胶束与水相中的HRP与H2O2复合物  相似文献   

4.
产碱菌麦芽四糖淀粉酶的化学修饰   总被引:7,自引:0,他引:7  
不同蛋白质侧链修饰剂对麦芽四糖淀粉酶进行修饰。在一定条件下,分别用IAA、NEM、EDC和NAI处理后,酶活力不受影响,仍为100%,说明巯基、羧基和酪氨酸残基与酶活力无关。用DEP、NBS和HNBB修饰后,酶活力大幅度下降,说明组氨酸和色氨酸基为酶活力所必需。  相似文献   

5.
本文应用明胶、肝素亲和层析二步法首先纯化了人胚肺成纤维细胞培养液的纤连蛋白(Fibroneothe,Fn),经SDS-PAGE鉴定为一条带,然后用胰糜蛋白酶消化纯化的Fn所获得的酶解波,经分离分别得到明胶结合片段和肝素结合片段,再应用凝集素-HRP染色的Westen转移电泳法研究糖链结构,结果证实:1.Fn中明胶结合片段(44kd)中含有二天线和多天线复杂型糖链,并接有平分型glcNAc糖基、核心力Fuc。2肝素结合片段(30kd)只含有二天线复杂型糖链,不含平分型GlcNAc糖基及核心Fuc.  相似文献   

6.
蚯蚓纤溶酶的纯化及稳定性研究   总被引:4,自引:0,他引:4  
蚯蚓纤溶酶(EPA)抽提液经30% ~70% 饱和度的(NH4)2SO4 盐析、DEAE—纤维素柱层析、Sephadex G-75葡聚糖凝胶过滤等纯化步骤,得到了具有纤溶活性的洗脱峰,置凝胶电泳后,得到四个活性组分,它们经50℃保温6h,活力上升64% ;在2 m ol/L盐酸胍存在时,活力仅保存7.2% ,当其浓度降低时,活力可恢复至90% ;在1% SDS存在时,活力仅保存12.1% ,但当SDS除去时,活力又可恢复。因此,盐酸胍、SDS均为EPA 可逆性抑制剂。另外,EPA 中含有较高的糖链(占总量的45% ),具有良好的抵抗自水解作用。  相似文献   

7.
PEG修饰牛血红蛋白的计算机模拟研究   总被引:9,自引:0,他引:9  
对αβ二聚牛血红蛋白晶体结构的分析和氨基酸钱基溶剂可及表面积的计算表明,牛血红蛋白表面Lys上的氨基适合进行聚乙二醇(PEG)修饰,对其修饰不会影响携氧能力,在此基础上设计了连接物连接PEG和牛血红蛋白。分子模拟研究结果显示PEG修饰牛血红蛋白产物是无免疫原性的。  相似文献   

8.
夏威环毛蚓纤溶酶的分离纯化及部分性质研究   总被引:6,自引:0,他引:6  
宋关斌  李清漪 《动物学报》1996,42(2):146-153
以夏威环毛蚓(Pheretima hawayana)为材料,采用磷酸盐缓冲液抽提、(NH4)2SO4分段盐析,离子交换树脂 D290、 Sephadex G-100和 DEAE-sephadex A-50三种连续柱层析方法得到一种在 PAGE上显示单一区带的纤溶酶组份。采用凝胶柱层析和 SDS-PAGE测其分子量为 12 000和 12300,由一条肽链组成。该酶具有强烈的纤溶活力和水解BAEE的活力,能直接作用纤维蛋白和间接激活纤溶酶原。其最适反应温度为45℃,最适反应pH为8.0。该酶水解BAEE的活力可被Na+、K+、Mg2+、Hg2+、金属离子和EDTA、巯基乙醇抑制,Ca+则有激活作用。该酶中性糖含量为5%,氨基酸组成中Arg、Len含量较多.  相似文献   

9.
以对硝基苯糖苷基为底物,测定了慈菇的12种糖苷酶,其中α-甘露糖苷酶、α-和β-半乳糖苷酶活力较高;经硫酸铵分级沉淀,SephadexG-150分子筛层析,ConASepharose4B亲和层析,DEAE-SepharoseCL-6B离子交换层析,从慈菇抽提液纯化了α-半乳糖苷酶。纯化酶的比活提高1072倍,活力回收15.6%,在圆盘聚丙烯酰胺凝胶电泳和SDS-PAGE上均显示1条蛋白质带,在α-半乳糖苷酶浓度为150mU/ml的溶液中测不到其他糖苷酶的活力。慈菇α-半乳糖苷酶的分子量用SephadexG-100凝胶过滤柱测定或在SDS-PAGE上测定均为60kD,酶反应的最适pH在5.8附近,最适温度为60℃。该酶分解对硝基苯基-α-半乳糖苷的K_m值为3.7×10 ̄(-4)mol/L,V_m值为2.1×10 ̄(-4)mol/L。银离子、汞离子显著抑制酶活力,D-半乳糖和密二糖均竞争性地抑制该酶水解对硝基苯基α-D-半乳糖苷的活力,根据Dixon作图求得其K_i值分别为0.92×10 ̄(-3)mol/L和1.98×10 ̄(-3)mol/L。2-脱氧-D-半乳糖和L-岩藻糖为酶活力的非竞争性抑制剂。化学修饰  相似文献   

10.
用生物膜的拆离与重建方法将从牛脑皮层膜中纯化的激活型GTP结合蛋白(Gs)和腺苷酸环化酶(AC)在含有不同极性头部或不同脂肪酸侧链的磷脂组成的脂质体上重建形成脂酶体,测定脂酶体中AC的基础活力及Gs激活AC的活力。实验结果表明,磷脂影响AC的基础活力和Gs激活AC活力的顺序依次为:PE>PS>PC;含不同脂肪酸侧链的混合磷脂对Gs的激活活力的影响大于含单一脂肪酸侧链的纯磷脂,如PEDPPE,PSDPPS,PCDPPC。含不同脂肪酸侧链的磷脂影响Gs的活力的顺序为DLPC>DMPC>DPPC。用反映磷脂分子的堆积程度的荧光探剂MC540和脂双层的流动性变化的DPH以及专一性标记蛋白质巯基(-SH)基团的荧光探剂acrylodan的测定结果表明,不同磷脂影响Gs的活力的差异主要是由于脂质物理状态的不同所致。  相似文献   

11.
The transesterification activity, autolysis, thermal stability and conformation of subtilisin Carlsberg, made soluble in dioxane by covalent linking to methoxypoly(ethylene glycol) (PEG), were investigated as a function of the concentration of water in the medium. Electrospray mass spectrometry showed that the modified enzyme preparation was a mixture of proteins containing from 2 to 5 covalently linked PEG chains per subtilisin molecule. PEG-subtilisin catalyzed transesterification between vinyl butyrate and 1-hexanol was optimum at 0.55 MH(2)O, while hydrolysis prevailed above 2 MH(2)O. There was a decrease in the overall enzyme activity with increasing water concentration because of autolysis and denaturation of the enzyme. Subtilisin powder and celite-immobilized subtilisin were more stable and less susceptible to autolysis than the PEG-modified enzyme. Circular dichroism and intrinsic protein-fluorescence studies showed that the conformation of PEG-subtilisin did not change as a function of water concentrations between 0 and 9 M. The K(m,app) value of PEG-subtilisin for 1-hexanol was highly influenced by water, which behaved as a competitive inhibitor in the transesterification reaction with an affinity for the enzyme similar to that of the alcohol. The K(m,app) for the acylating agent was not significantly modified by water. Lyoprotectants such as sorbitol and free PEG did not influence the activity of PEG-subtilisin but notably increased the activity of subtilisin powder and celite-immobilized subtilisin. The addition of 1.7-5.5 M water, however, rendered enzyme preparations containing no additives as active as those containing the lyoprotectants. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 54: 50-57, 1997.  相似文献   

12.
Hydrogenase from the hyperthermophilic archaeon, Pyrococcus furiosus, catalyzes the reversible activation of H(2) gas and the reduction of elemental sulfur (S degrees ) at 90 degrees C and above. The pure enzyme, modified with polyethylene glycol (PEG), was soluble (> 5 mg/mL) in toluene and benzene with t(1/2) values of more than 6 h at 25 degrees C. At 100 degrees C the PEG-modified enzyme was less stable in aqueous solution (t(1/2) approximately 10 min) than the native (unmodified) enzyme (t(1/2) approximately 1 h), but they exhibited comparable H(2) evolution, H(2) oxidation, and S degrees reduction activities at 80 degrees C. The H(2) evolution activity of the modified enzyme was twice that of the unmodified enzyme at 25 degrees C. The PEG-modified enzyme did not catalyze S degrees reduction (at 80 degrees C) in pure toluene unless H(2)O was added. The mechanism by which hydrogenase produces H(2)S appears to involve H(2)O as the proton source and H(2) as the electron source. The inability of the modified hydrogenase to catalyze S degrees reduction in a homogeneous non-aqueous phase complicates potential applications of this enzyme.  相似文献   

13.
Organophosphorous hydrolase (OPH) was physically and covalently immobilized within photosensitive polyethylene glycol (PEG)-based hydrogels. The hydroxyl ends of branched polyethylene glycol (b-PEG, four arms, MW = 20,000) were modified with cinnamylidene acetate groups to give water-soluble, photosensitive PEG macromers (b-PEG-CA). The b-PEG-CA macromers underwent photocrosslinking reaction and formed gels upon UV irradiation (>300 nm) in the presence of erythrosin B. Native OPH was pegylated with cinnamylidene-terminated PEG chains (MW = 3400) to be covalently linked with the b-PEG-CA macromers during photogelation. The effect of pegylation on the stability of the enzyme was determined. Furthermore, the effect of enzyme concentration, wavelength of irradiation, and photosensitizer on the stability of the entrapped enzyme was also investigated. The pegylated OPH was more stable than the native enzyme, and the OPH-containing gels exhibited superior stability than the soluble enzyme preparations.  相似文献   

14.
Naturally occurring enzymes may be modified by covalently attaching hydrophobic groups that render the enzyme soluble and active in organic solvents, and have the potential to greatly expand applications of enzymatic catalysis. The reduction of elemental sulfur to hydrogen sulfide by a hydrogenase isolated from Pyrococcus furiosus has been investigated as a model system for organic biocatalysis. While the native hydrogenase catalyzed the reduction of sulfur to H(2)S in aqueous solution, no activity was observed when the aqueous solvent was replaced with anhydrous toluene. Hydrogenase modified with PEG p-nitrophenyl carbonate demonstrated its native biocatalytic ability in toluene when the reducing dye, benzyl viologen, was also present. Neither benzyl viologen nor PEG p-nitrophenyl carbonate alone demonstrated reducing capability. PEG modified cellulase and benzyl viologen were also incapable of reducing sulfur to H(2)S, indicating that the enzyme itself, and not the modification procedure, is responsible for the conversion in the nonpolar organic solvent. Sulfide production in toluene was tenfold higher than that produced in an aqueous system with equal enzyme activity, demonstrating the advantages of organic biocatalysis. Applications of bio-processing in nonaqueous media are expected to provide significant advances in the areas of fossil fuels, renewable feedstocks, organic synthesis, and environmental control technology. (c) 1996 John Wiley & Sons, Inc.  相似文献   

15.
The accessibility of the asparagine-linked carbohydrate chains of human thyrotropin (hTSH) and free alpha and beta subunits was investigated by their susceptibility to endoglycosidases H and F as well as to peptide:N-glycosidase F. Iodinated hTSH or subunits were incubated with a commercial enzyme preparation containing both endoglycosidase F and N-glycosidase F activities and further analyzed by sodium dodecyl sulfate gel electrophoresis followed by quantitative autoradiography. We show that, working at the optimum of the N-glycosidase activity, the relative amount of endoglycosidase required for half-deglycosylation was 20-fold higher for native hTSH than for the reduced and dissociated subunits. Under nondenaturing conditions, the 18K beta subunit of hTSH could be readily deglycosylated to a 14K species while the 22K alpha subunit was largely resistant. However, both subunits were converted to an apoprotein of similar apparent molecular weight of 14K following reduction of disulfide bonds. In contrast, the free alpha subunit of human choriogonadotropin appeared fully sensitive to carbohydrate removal under nonreducing conditions despite the presence of a partially deglycosylated 18K intermediate at low concentration of endoglycosidase. Similarly, both hTSH-alpha and hTSH-beta could be completely deglycosylated after acid dissociation of the native hormone. While all three carbohydrate chains of hTSH are sensitive to pure peptide:N-glycosidase F, only one on alpha and the single oligosaccharide present on beta in hTSH appeared to be cleaved by pure endoglycosidase F. Interestingly, one of the two carbohydrate chains present on alpha was also found to be susceptible to endoglycosidase H.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Summary The properties of various forms of lipoprotein lipase (powder, adsorbed onto Celite, covalently linked to PEG, with additives) in toluene were investigated. The form of the enzyme dramatically influenced the activity and stability of the enzyme with the highest activity obtained with PEG-lipase and the highest stability with Celite-immobilized lipase. By contrast, the enantioselectivity was only marginally affected.  相似文献   

17.
Factor I (fI) is a key serine protease that modulates the complement cascade by regulating the levels of C3 convertases. Human fI circulates in plasma as a heavily N-glycosylated (25-27% w/w) heterodimer composed of two disulphide linked chains, each carrying three N-linked oligosaccharide chains. It had been suggested that the oligosaccharides may have both structural and functional roles in the interactions with the natural substrate and the cofactor during a catalysis. The N-linked glycans of each fI chain were characterised in detail and the analysis revealed a similar composition of the glycan pools with both chains heavily sialylated. Disialylated structures were in excess over monosialylated ones: 55% over 40% for the heavy chain and 62% over 35% for the light chain. The dominant type of glycan identified on both chains was A(2)G(2)S(2), a biantennary structure with chains terminating in sialic acid linked to galactose. The glycan characterisation facilitated a strategy for the partial deglycosylation of the enzyme. Assessment of the proteolytic activities of the native and partially deglycosylated forms of fI showed that both forms of the enzyme have very similar proteolytic activities against C3(NH(3)) indicating that the charged glycans of fI do not influence the fI-cofactor-substrate interactions.  相似文献   

18.
Permeable resins cross-linked with long PEG chains were synthesized for use in solid-phase enzyme library assays. High molecular weight bis-amino-polyethylene glycol (PEG) 4000, 6000, 8000 were synthesized by a three-step reaction starting from PEG-bis-OH. Macromonomers were synthesized by partial or di-acryloylation of bis-amino-PEG derivatives. Bis/mono-acrylamido–PEG were copolymerized along with acrylamide by inverse suspension copolymerization to yield a less cross-linked resin (Type I, compounds 6–9 ). Furthermore, acryloyl–sarcosin ethyl ester was co-polymerized along with bis-acrylamido PEG to obtain more crosslinked capacity resin (Type II, compounds 13–19 ). N,N-Dimethylacrylamide was used as a co-monomer in some cases. The polymer was usually obtained in a well-defined beaded form and was easy to handle under both wet and dry conditions. The supports showed good mechanical properties and were characterized by studying the swelling properties, size distribution of beads, and by estimating the amino group capacity. Depending on the PEG chain length, the monomer composition and the degree of cross-linking the PEGA supports showed a high degree of swelling in a broad range of solvents, including water, dichloromethane, DMF, acetonitril, THF and toluene; no swelling was observed in diethyl ether. The PEGA resins (Type I ) with an amino acid group capacity between 0.07 and 1.0 mmol/g could be obtained by variation of the monomer composition in the polymerization mixture. Fluorescent quenched peptide libraries were synthesized on the new polymer using a multiple column library synthesizer and incubated with the matrix metalloproteinase MMP-9 after it had been activated by 4-aminophenyl mercuric acetate resulting in 67/83 kDa active enzyme. The bright beads were separated manually under a fluorescence microscope and sequenced to obtain peptide substrates for MMP-9. After treatment with ethylene diamine, high-loaded resins (Type II ) have been employed in continuous flow peptide synthesis to yield peptides in excellent yield and purity. © 1998 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

19.
Two types of phospholipase B from Penicillium notatum—the native enzyme and enzyme modified by endogenous protease (T. Okumura, S. Kimura, and K. Saito (1980) Biochim. Biophys. Acta, 617, 264–273)—were treated with endoglycosidase H (endo-β-N-acetylglucosaminidase H, Streptomyces griseus) to investigate the orientational change of the sugar chains associated with the lower activity of the modified enzyme. On measurement of release of sugar chains, by periodic acid-Schiff staining of endoglycosidase H-treated phospholipase B on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and by direct sugar analysis of the isolated endoglycosidase H-treated phospholipase B, distinct curves were obtained for release of sugar chains from the native and modified enzymes with ultimately loss of about 30 and 55%, respectively, of the carbohydrate. Removal of sugar chains from the two enzymes resulted in similar increases in phospholipase B activity (phosphatidylcholine hydrolysis) and their phospholipase A1 and A2 activities in the presence of Triton X-100, but no change of lysophospholipase activity (lysophosphatidylcholine hydrolysis). The three former activities of the native and modified enzymes increased to almost 170 and 350%, respectively, of their initial values. However, little increase in phospholipase B activity was observed when the activity was assayed in the absence of Triton X-100, and none when it was assayed in the presence of sodium taurocholate. These findings suggest that the carbohydrate moiety of phospholipase B greatly influence the phospholipase B activity, especially in the presence of Triton X-100, and that the low phospholipase B activity of the modified enzyme is due to excess exposure of sugar chains on the surface of the molecule as a result of protease attack.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号