首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ultracytochemical localization of amine oxidase (AO) activity is demonstrated with a new substrate, p-N,N-dimethylamino-beta-phenethylamine (DAPA). DAPA was designed to yield a stronger reducing agent on oxidation by monoamine oxidase (MAO) than is obtained from the MAO substrate, tryptamine, upon oxidation. Thus MAO and possibly other oxidase(s) can be demonstrated with DAPA and the tetrazolium salt, 2-(2'-benzothiazolyl)-5-styryl-3-(4'-phthalhydrazidyl) tetrazolium chloride (BSPT). The latter is a nonosmiophilic tetrazolium salt which is reduced to an osmiophilic formazan. In addition, DAPA itself demonstrates AO activity ultracytochemically with and without BSPT. We speculate that either oxidative polymerization of DAPA or Schiff's base formation with protein after aldehyde formation is responsible for the latter reaction, which is made permanent for ultracytochemical localization by osmication at a later step. DAPA oxidation reaction products are demonstrated in guinea pig kidney, specifically in the endoplasmic reticulum, nuclear envelope and mitochondrial outer compartments and cristae. Differences in reaction product characteristics and localization in relation to formaldehyde fixation and the localization of reaction product in mitochondrial cristae, as well as outer compartments, suggest that DAPA oxidation is mediated through one or more MAOs and possible other oxidases.  相似文献   

2.
A sensitive spectrophotometric assay for determining mitochondrial malate dehydrogenase activity is described. The assay measures NADH production by coupling it to the reduction of 2-(p-iodophenyl)-3(p-nitrophenyl)-5-phenyl tetrazolium chloride (INT). Via an intermediate electron carrier, either phenazine methosulfate or lipoamide dehydrogenase, INT accepts electrons and is reduced to a red-colored formazan, which can be quantified by spectrophotometer at 500 nm. This assay uses only commercial reagents but gives a 2-5 fold (with lipoamide dehydrogenase) or 5-20 fold (with phenazine methosulfate) activity increase over currently available assays for pure enzyme in mitochondria isolated from human neuroblastoma cells, rat brain and liver, and crude homogenates of rat brain and liver. The assay can be easily performed with 96-well plate and less than 2.5 microg protein of isolated mitochondria or crude tissue homogenate. These results suggest that this assay is a simple, sensitive, stable and inexpensive method with wide application.  相似文献   

3.
A Pataki 《Histochemistry》1975,43(4):323-332
In a histochemical test system with adrenaline as substrate and nitroblue tetrazolium (NBT) as electron acceptor, an increase of NBT reduction in rat liver sections was found microspectrophotometrically following short hypotonic treatment. Investigations with iproniazide, a monoamine oxidase inhibitor, and non-enzymatic NBT reduction showed that the increased formazan formation was related to the presence of monoamine oxidase. It is suggested that the reason for the observed increase of formazan formation is due to increased permeability of the inner mitochondrial membrane to NBT. Consequently, the increase of monoamine oxidase observed in the histochemical test system does not represent mobilization of a latent activity, but rather complete assessment of activity that is normally present.  相似文献   

4.
Summary In a histochemical test system with adrenaline as substrate and nitroblue tetrazolium (NBT) as electron acceptor, an increase of NBT reduction in rat liver sections was found microspectrophotometrically following short hypotonic treatment. Investigations with iproniazide, a monoamine oxidase inhibitor, and non-enzymatic NBT reduction showed that the increased formazan formation was related to the presence of monoamine oxidase. It is suggested that the reason for the observed increase of formazan formation is due to increased permeability of the inner mitochondrial membrane to NBT. Consequently, the increase of monoamine oxidase observed in the histochemical test system does not represent mobilization of a latent activity, but rather complete assessment of activity that is normally present.  相似文献   

5.
The tetrazolium salt 5-cyano-2,3-ditolyltetrazolium chloride (CTC) was used for the determination of metabolically active bacteria in active sludge. The method was adapted and optimized to the conditions of activated sludge. The colorless and nonfluorescent tetrazolium salt is readily reduced to a water-insoluble fluorescent formazan product via the microbial electron transport system and indicates mainly dehydrogenase activity. After more than 2 h incubation, no further formation of new formazan crystals was observed, although the existing crystals in active cells continued to grow at the optimal CTC-concentration of 4 mM. The dehydrogenase activity determined by direct epifluorescence microscopic enumeration did not correlate with cumulative measured activity as determined by formazan extraction. The addition of nutrients did not lead to an increase of CTC-active cells. Sample storage conditions such as low temperature or aeration resulted in a significant decrease in dehydrogenase activity within 30 min. The rapid and sensitive method is well suited for the detection and enumeration of metabolically active microorganisms in activated sludge. Extracellular redox activity was measured with the tetrazolium salt 3′-{1-[phenylamino-) carbonyl]-3,4-tetrazolium}-bis(4-methoxy-6-nitro)benzene-sulfonic acid hydrate (XTT), which remains soluble in its reduced state, after extraction of extracellular polymeric substances (EPS) with a cation exchange resin. Received 12 August 1996/ Accepted in revised form 29 May 1997  相似文献   

6.
The superior cervical ganglion (SCG), pineal body (PB), and liver (L) of the rat, rabbit and cat were stained for monoamine oxidase (MAO) A and B by the tetranitro blue tetrazolium (TNBT) and coupled peroxidase ( PerOx ) methods, using 5-hydroxytryptamine (5HT), tryptamine ( Tryp ), tyramine (Tyr), and benzylamine (Bz) as substrates, and clorgyline (Cl) and deprenyl (Dep), both at 10(-7) M, as selective inhibitors. The nodose ganglion (NG) and dorsal root ganglion (DRG) of the rabbit and cat were also studied. The results with rat tissues were consistent with published quantitative findings (SCG, MAO-A much greater than B; PB, MAO-A less than or equal to B; L, MAO-A = B). In the rabbit, the findings with the SCG were similar; the MAO activities of the PB were relatively resistant to both inhibitors; the MAO of the liver required 10(-4) M concentrations of both inhibitors to produce near total inhibition, suggesting that the liver contains an MAO distinct from MAO A and B. All cat tissues examined appeared to contain almost exclusively MAO-B. In this species 5HT, which is generally considered a selective substrate for MAO-A, was oxidized by MAO-B. The findings indicate that criteria for MAO-A, -B, and other subgroups must be defined for each species and tissue.  相似文献   

7.
Summary The activity of succinate tetrazolium reductase was investigated in liver and kidney from the rat and mouse. The results obtained were related to the cellular level of succinate dehydrogenase (SDH) as well as to the level of CoQ.It was concluded that the low activity in centrolobular areas of the liver lobules compared with the perilobular areas, exclusively is due to a naturally deprivation of CoQ.The level of SDH as well as of CoQ was very high in renal cortical tubules rich in mitochondria (proximal and distal convoluted tubules, the ascending thick limb of Henle). This was indicated by the facts that the initial reaction rate was high and no enhancement was obtained by the addition of CoQ10.In all experiments the activity of fresh frozen sections were compared with the activity of sections from briefly prefixed tissue. The influence of different fixatives, variation in Nitro BT concentration, cryoprotection (dimethyl sulfoxide, DMSO) and osmolar protection (sucrose) was investigated and discussed. Further, the substrate-carrying effect of DMSO was investigated and discussed.Brief (5 min) fixation at 0–4° C—especially with 1% buffered (pH=7.2) methanol-free formaldehyde (from paraformaldehyde) gave excellent preservation of morphology and caused no inhibition of SDH activity. Furthermore, the fixation caused an enhancement of Nitro BT penetration into the tissue and an enhancement of formazan substantivity.The incubation time needed for the appearance of both the red and blue formazan was recorded in order to follow the initial reaction rate. This procedure proved to be a sensitive indicator, when the influence of components added (CoQ10, DMSO, sucrose etc.) was studied.  相似文献   

8.
固氮鱼腥藻(Anabaena azotica Ley)细胞能还原无色的TTC和NBT分别成为红色或蓝色的甲(月朁)(formazan)沉淀。异形胞还原TTC的速率高于营养细胞。前异形胞及异形胞附近的营养细胞对NBT的还原作用最强。而异形胞对NBT不起还原作用。无论在异形胞形成红色甲(月朁)或在营养细胞形成蓝色甲(月朁)后都抑制固氮酶活性。NBT甲(月朁)对固氮酶活性的抑制作用大于TTC甲(月朁),因为NBT氧化还原电位低于TTC。 TTC和NBT两者都明显地抑制固氮鱼腥藻完整细胞的放氢。因鱼腥藻的放氢是由固氮酶催化的结果。四唑抑制放氢推想是由于它截取了固氮酶催化系统中的电子的缘故。固氮微生物(包括蓝色细菌和根瘤菌)对四唑还原与吸氢酶之间有无相关是一个争论的问题。一些学者认为分离豆科植物体的一些根瘤菌株培养于含有TTC的琼脂培养基,如还原,便可证明这些根瘤菌株能氧化氢;换言之,应用TTC的还原可作为一些根瘤菌的菌落具有吸氢酶的验证。相反,我们发现固氮鱼腥藻还原TTC和NBT之后,都没有影响吸氢的能力。因此,我们推想固氮鱼腥藻对四唑之还原与吸氢酶是没有直接的关系。  相似文献   

9.
10.
An improvement in the histochemical demonstration of soluble dehydrogenase enzymes has been obtained by preincubating frozen sections in a nitroblue tetrazolium (NBT)/ acetone solution, followed by routine incubation in polyvinyl alcohol (PVA) enriched media. Tissue binding properties of NBT were shown clearly to be decreased in histochemical media containing the colloid PVA for soluble enzymes, thus causing loss of the final reaction product (formazan) from the sections. The preincubation step in NBT/acetone allows tetrazolium salt to bind firmly to tissue lipoprotein (substantivity) and diminishes the loss of reduced formazan from heavily reacting tissue sections. The time course of NBT substantivity was examined and it was found that NBT binds rapidly to tissues (liver, kidney, heart) during preincubation, so that a preincubation of 30-60 seconds at room temperature is sufficient to improve the final morphological results greatly. Microspectrophotometric measurements of matched controls and NBT/acetone preincubated sections show that the preincubation step may slightly decrease lactate dehydrogenase (LDH) and glucose-6-phosphate dehydrogenase (G6PDH) activities. This decrease was probably due to increased binding efficiency of formazan to cell lipoproteins but was judged, however, to be irrelevant compared to the morphological advantages produced by the NBT/acetone preincubation procedure.  相似文献   

11.
Synopsis This article describes the use of a microdensitometer for the measurement of BPST formazan in tissue sections. BPST is a new tetrazolium salt, 2-(2-benzothiazolyl)-3-(4-phthalhydrazidyl)-5-styryl-tetrazolium chloride, which produces a single, well-defined formazan, and is thus easily quantified. The formazan gives an excellent localization, since BPST was originally designed for ultrastructural work. Activities are expressed in absolute units as n moles hydrogen/mm3, and are thus directly comparable with standard biochemical data.  相似文献   

12.
An improvement in the histochemical demonstration of soluble dehydrogenase enzymes has been obtained by preincubating frozen sections in a nitroblue tetrazolium (NBT)/acetone solution, followed by routine incubation in polyvinyl alcohol (PVA) enriched media. Tissue binding properties of NBT were shown clearly to be decreased in histochemical media containing the colloid PVA for soluble enzymes, thus causing loss of the final reaction product (formazan) from the sections. The preincubation step in NBT/acetone allows tetrazolium salt to bind firmly to tissue lipoprotein (substantivity) and diminishes the loss of reduced formazan from heavily reacting tissue sections. The time course of NBT substantivity was examined and it was found that NBT binds rapidly to tissues (liver, kidney, heart) during preincubation, so that a preincubation of 30-60 seconds at room temperature is sufficient to improve the final morphological results greatly. Microspectrophotometric measurements of matched controls and NBT/acetone preincubated sections show that the preincubation step may slightly decrease lactate dehydrogenase (LDH) and glucose-6-phosphate dehydrogenase (G6PDH) activities. This decrease was probably due to increased binding efficiency of formazan to cell lipoproteins but was judged, however, to be irrelevant compared to the morphological advantages produced by the NBT/acetone preincubation procedure.  相似文献   

13.
Summary The reaction rate of glucose-6-phosphate dehydrogenase activity in liver sections from fed and starved rats has been monitored by the continuous measurement at 37 C of the reaction product as it is formed using scanning and integrating microdensitometry. Control media lacked either substrate or both substrate and coenzyme. All reactions were nonlinear; however, subtraction of either of the controls from the test response produced linearity. Differing responses in sections of livers from fed and fasted rats indicate that the appropriate control medium for use in the assay of this dehydrogenase is one lacking both substrate and coenzyme rather than a medium containing coenzyme. The reaction rate was the same with each of the final acceptors. Problems with the diffusion of the formazan of BPST and with the failure to precipitate the formazan of Neotetrazolium make Tetranitro BT and Nitro BT the tetrazolium salts of choice in quantitative dehydrogenase assays.  相似文献   

14.
A monoclonal antibody has been generated to human liver monoamine oxidase (MAO) B by fusion of mouse myeloma cells with spleen cells from a mouse immunized with a mixture of semi-purified MAO A and MAO B. The antibody, 3F12/G10, an immunoglobulin G1, reacts with its antigen in cryostat sections of human liver, showing an intracellular particulate distribution as demonstrated by immunoperoxidase staining. The antibody indirectly precipitates [3H]pargyline-labelled human MAO B both from liver and platelet extracts but fails to precipitate MAO A from liver extracts. The antibody does not recognise rat liver MAO B, showing that the determinant is not universally expressed on MAO B. The antibody has no effect on the catalytic activity of MAO B. Other monoclonal antibodies were generated but they are directed to a protein with a subunit Mr of 54 000, a contaminant of the MAO preparation. One of these antibodies, A8/C2, an IgG2a, reacts with the same protein in both rat and human liver extracts.  相似文献   

15.
Colorimetric quantitation of filarial viability   总被引:4,自引:0,他引:4  
A simple three-step colorimetric assay based on the tetrazolium salt MTT (3-(4,5 dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) has been developed for quantifying filarial viability. Living (but not dead) filariae take up MTT and rapidly reduce it to formazan, so staining themselves dark blue. This colour change which is easily seen provides a rapid qualitative test for filarial viability. Quantitative data can be obtained by solubilizing formazan out of the worm with DMSO and measuring the absorbance of the resulting solution at 510 nm. To date the technique has been demonstrated in several species of filariae including Onchocerca volvulus. MTT reduction is thought to be selective for NADH-dependent dehydrogenase activity in viable worms. The reaction occurs readily in all developmental stages of Dipetalonema viteae including fragments of filarial tissue. Enzyme activity in viable intact D. viteae appears to be primarily associated with the hypodermis/muscle cells, with minimal formazan formation in the gut and reproductive tracts. The application of this MTT assay as a parameter for quantifying in vitro drugs effects is described. Assay procedures have been developed and optimized with D. viteae and Brugia pahangi for the assessment of effects of macrofilariae and microfilarial release, and the activity of a range of antifilarial standards reported. Several potential applications of the technique to studies on filarial biology are discussed.  相似文献   

16.
An assay for measuring the quantity of live articular chondrocytes attached to a substratum in microwell plates was established by measuring the absorbance of the blue formazan product generated from the dye 3-(4,5-dimethylthiazol-2-yl)-2,5-dypenyl tetrazolium bromide (MTT). Blue formazan production was optimal at an MTT concentration of 1 mg/ml (100 microliters per microwell) and an incubation period of 3 h. The absorbance of the dye was linearly related to the quantity of cells added per microwell. The number of live chondrocytes attached to adhesive proteins can be quantitated using this technique.  相似文献   

17.
Adenylosuccinase catalyses the conversion of adenylosuccinic acid to AMP and fumarate. We have developed a coupled enzyme staining procedure applicable to nitrocellulose blots after agarose gel isoelectrofocusing of rat muscle adenylosuccinase. The coupling enzymes, fumarase (fumarate to L-malate) and malic enzyme (L-malate to pyruvate and NADPH), are adsorbed to nitrocellulose prior to blotting. The NADPH, mediated by phenazine methosulfate, converts a tetrazolium salt to its blue formazan. This procedure demonstrated that rat muscle adenylosuccinase consists of three isomeric forms present in similar amounts.  相似文献   

18.
Summary The precise histochemical localization and quantification of the activity of soluble dehydrogenases in unfixed cryostat sections requires the use of tissue protectants. In this study, two protectants, polyvinyl alcohol (PVA) and agarose gel, were compared for assaying the activity of lactate dehydrogenase (LDH) and glucose-6-phosphate dehydrogenase (G6PDH) in normal female mouse liver. Quantification of enzyme activity was determined cytophotometrically in periportal (PP), pericentral (PC) and midzonal (MZ) areas. No coloured reaction product was present in PVA media after the incubation period. In contrast, the agarose gels appeared to be highly coloured after incubation. As a consequence, sections incubated with gel media were less intensely stained than those incubated in PVA-containing media. The specific G6PDH reaction (test minus control) yielded approximately 75% less formazan in sections incubated by the agarose gel method than with the PVA method. Further, the amount of formazan deposits attributable to G6PDH activity was highest in the midzonal and pericentral zones of the liver lobule with PVA media, and Kupffer cells could be discriminated easily because of their high G6PDH activity. Significant zonal differences or Kupffer cells could not be observed when agarose gel films were used for the detection of G6PDH activity. The LDH localization patterns appeared to be more uniform after incubation with both methods: no significant differences in specific test minus control reactions were seen between PP, PC and MZ. However, less formazan production (33%) was detected in sections incubated with agarose gels when compared with those incubated with PVA media. These results clearly show that the gel method is not suitable for the valid demonstration of activity of (partially) soluble enzymes. Furthermore, our results confirm that a greater proportion of G6PDH than of LDH is present in a soluble form in liver cells.  相似文献   

19.
Cytochemical methods involving metal chelation of the formazan of an N-thiazol-2-yl tetrazolium salt are described for the localization of diphosphopyridine nucleotide diaphorase (DPND) and triphosphopyridine nucleotide diaphorase (TPND) in mitochondria. These methods utilize the reduced coenzymes DPNH or TPNH as substrate. The reaction involves a direct transfer of electrons from reduced coenzyme to the respective diaphorase which in turn transfers the electrons to tetrazolium salt, reducing it to the insoluble formazan. Competition for electrons by preferential acceptors in the respiratory chain was prevented by various inhibitors. In the presence of respiratory inhibitors the rate of tetrazolium reduction was markedly increased. The greatest reduction was observed when amytal was used. Sites of diaphorase activity appeared as deposits of blue-black metal formazan chelate measuring 0.2 to 0.3 micro in diameter. Small mitochondria contained 2 deposits, while larger ones contained up to 6. Considerable differences were observed in the rate of tetrazolium reduction and cellular localization of diaphorase activity when DPNH was used as substrate as compared to TPNH. In each instance DPNH was oxidized more rapidly by tissues than TPNH. These findings support the concept that the oxidation of coenzymes I and II is mediated through separate diaphorases.  相似文献   

20.
Methods are presented for the intramitochondrial localization of various diphosphopyridine nucleotide and triphosphopyridine nucleotide-linked dehydrogenases in tissue sections. The cytochemical reactions studied involve the oxidation of the substrates by a specific pyridino-protein. The electron transfer of tetrazolium salt is mediated by the diaphorase system associated with the dehydrogenase. The final electron acceptor was either p-nitrophenyl substituted ditetrazole (nitro-BT) or N-thiazol-2-yl monotetrazole (MTT), the latter giving rise to metal formazan in the presence of cobaltous ions. Mitochondrial localization of the formazan precipitate could be achieved by using hypertonic incubating media containing high concentrations of substrate and co-enzyme. A fast reduction of tetrazolium salt was obtained by chemically blocking the respiratory chain enzymes beyond the flavoproteins. Although diaphorase systems are implicated in the reduction of tetrazolium salts, specific dehydrogenases are solely responsible for the distinct distribution pattern obtained in tissues with various substrates. The present findings in tissue sections are discussed in conjunction with existing biochemical evidence from differential centrifugation experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号