首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The marine red algaErythrocladia subintegra synthesizes cellulose microfibrils as determined by CBH I-gold labelling, X-ray and electron diffraction analyses. The cellulose microfibrils are quite thin, ribbon-like structures, 1–1.5 nm in thickness (constant), and 10–33 nm in width (variable). Several laterally associated minicrystal components contribute to the variation in microfibrillar width. Electron diffraction analysis suggested a uniplanar orientation of the microfibrils with their (101) lattice planes parallel to the plasma membrane surface of the cell. The linear particle arrays bound in the plasma membrane and associated with microfibril impressions recently demonstrated inErythrocladia have been shown in this study to be the cellulose-synthesizing terminal complexes (TCs). The TCs appear to be organized by a repetition of transverse rows consisting of four TC subunits, rather than by four rows of longitudinallyarranged TC subunits. The number of transverse rows varied between 8–26, corresponding with variation in the length of the TCs and the width of the microfibrils. The spacings between the neighboring transverse rows are almost constant being 10.5–11.5 nm. Based on the knowledge thatAcetobacter, Vaucheria, andErythrocladia synthesize similar thin, ribbon-like cellulose microfibrils, the structural characteristics common to the organization of distinctive TCs occurring in these three organisms has been discussed, so that the mode of cellulose microfibril assembly patterns may be deciphered.  相似文献   

2.
The assembly of cellulose microfibrils was investigated in artificially induced protoplasts of the alga, Valonia macrophysa (Siphonocladales). Primary-wall microfibrills, formed within 72 h of protoplast induction, are randomly oriented. Secondary-wall lamellae, which are produced within 96 h after protoplast induction, have more than three orientations of highly ordered microfibrils. The innermost, recently deposited micofibrils are not parallel with the cortical microtubules, thus indicating a more indirect role of microtubules in the orientation of microfibrils. Fine filamentous structures with a periodicity of 5.0–5.5 nm and the dimensions of actin were observed adjacent to the plasma membrane. Linear cellulose-terminal synthesizing complexes (TCs) consisting of three rows, each with 30–40 particles, were observed not only on the E fracture (EF) but also on P fracture (PF) faces of the plasma membrane. The TC appears to span both faces of the bimolecular leaflet. The average length of the TC is 350 nm, and the number of TCs per unit area during primary-wall synthesis is 1 per m2. Neither paired TCs nor granule bands characteristic of Oocystis were observed. Changes in TC structure and distribution during the conversion from primary- to secondary-wall formation have been described. Cellulose microfibril assembly in Valonia is discussed in relation to the process among other eukaryotic systems.Abbreviations TC terminal complex - EF E (outer leaflet) fracture face of the plasma membrane - PF P (inner leaflet) fracture face of the plasma membrane - MT microtubule - PS protoplasmic surface of the membrane  相似文献   

3.
Summary The formation and development of linear terminal complexes (TCs), the putative cellulose synthesizing units of the red algaErythrocladia subintegra Rosenv., were investigated by a freeze etching technique using both rotary and unidirectional shadowing. The ribbon-like cellulose fibrils ofE. subintegra are 27.6 ± 0.8 nm wide and only 1–1.5 nm thick. They are synthesized by TCs which are composed of repeating transverse rows formed of four particles, the TC subunits. About 50.4 ± 1.7 subunits constitute a TC. They are apparently more strongly interconnected in transverse than in longitudinal directions. Some TC subunits can be resolved as doublets by Fourier analysis. Large globular particles (globules) seem to function as precursor units in the assembly and maturation of the TCs. They are composed of a central hole (the core) with small subunits forming a peripheral ridge and seem to represent zymogenic precursors. TC assembly is initiated after two or three gobules come into close contact with each other, swell and unfold to a nucleation unit resembling the first 2–3 transverse rows of a TC. Longitudinal elongation of the TC occurs by the unfolding of globules attached to both ends of the TC nucleation unit until the TC is completed. The typical intramembranous particles observed inErythrocladia (unidirectional shadowing) are 9.15 ± 0.13 nm in diameter, whereas those of a TC have an average diameter of 8.77 ± 0.11 nm. During cell wall synthesis membranes of vesicles originating from the Golgi apparatus and which seem to fuse with the plasma membrane contain large globules, 15–22 nm in diameter, as well as tetrads with a particle diameter of about 8 nm. The latter are assumed to be involved in the synthesis of the amorphous extracellular matrix cell wall polysaccharides. The following working model for cellulose fibril assembly inE. subintegra is suggested: (1) the ribbon-like cellulose fibril is synthesized by a single linear TC; (2) the number of glucan chains per microfibril correlates with the number of TC subunits; (3) a single subunit synthesizes 3 glucan chains which appear to stack along the 0.6 nm lattice plane; (4) lateral aggregation of the 3-mer stacks leads to the crystalline microfibril.Dedicated to Prof. Dr. Dr. h.c. Eberhard Schnepf on the occasion of his retirement  相似文献   

4.
The brown alga Sphacelaria rigidula Kützing synthesizes cellulose microfibrils as determined by CBH I-gold labeling. The cellulose microfibrils are thin, ribbon-like structures with a uniform thickness of about 2.6 nm and a variable width in the range of 2.6-30 nm. Some striations appear along the longitudinal axis of the microfibrils. The developed cell wall in Sphacelaria is composed of three to four layers, and cellulose micro-fibrils are deposited in the third layer from the outside of the wall. A freeze fracture investigation of this alga revealed cellulose-synthesizing terminal complexes (TCs), which are associated with the tip of microfibril impressions in the plasmatic fracture face of the plasma membrane. The TCs consist of subunits arranged in a single linear row. The average diameter of the sub-units is about 6 nm, and the intervals between the neighboring subunits, about 9 nm, are relatively constant. The number of subunits constituting the TC varies between 10 and 100, so that the length of the whole TC varies widely. A model that has been proposed for the assembly of thin, ribbon-like microfibrils was applied to microfibril assembly in Sphacelaria.  相似文献   

5.
The supramolecular organization of the plasma membrane of apical cells in shoot filaments of the marine red alga Porphyra yezoensis Ueda (conchocelis stage) was studied in replicas of rapidly frozen and fractured cells. The protoplasmic fracture (PF) face of the plasma membrane exhibited both randomly distributed single particles (with a mean diameter of 9.2 ± 0.2 nm) and distinct linear cellulose microfibril-synthesizing terminal complexes (TCs) consisting of two or three rows of linearly arranged particles (average diameter of TC particles 9.4 plusmn; 0.3 nm). The density of the single particles of the PF face of the plasma membrane was 3000 μm?2, whereas that of the exoplasmic fracture face was 325 μm?2. TCs were observed only on the PF face. The highest density of TCs was at the apex of the cell (mean density 23.0 plusmn; 7.4 TCs μm?2 within 5 μm from the tip) and decreased rapidly from the apex to the more basal regions of the cell, dropping to near zero at 20 μm. The number of particle subunits of TCs per μm2 of the plasma membrane also decreased from the tip to the basal regions following the same gradient as that of the TC density. The length of TCs increased gradually from the tip (mean length 46.0 plusmn; 1.4 nm in the area at 0–5 μm from the tip) to the cell base (mean length 60.0 plusmn; 7.0 μm in the area at 15–20 μm). In the very tip region (0–4 μm from the apex), randomly distributed TCs but no microfibril imprints were observed, while in the region 4–9 μm from the tip microfibril imprints and TCs, both randomly distributed, occurred. Many TCs involved in the synthesis of cellulose microfibrils were associated with the ends of microfibril imprints. Our results indicate that TCs are involved in the biosynthesis, assembly, and orientation of cellulose microfibrils and that the frequency and distribution of TCs reflect tip growth (polar growth) in the apical shoot cell of Porphyra yezoensis. Polar distribution of linear TCs as “cellulose synthase” complexes within the plasma membrane of a tip cell was recorded for the first time in plants.  相似文献   

6.
Summary Wounding cells ofBoergesenia forbesii (Harvey) Feldmann induces the synchronous formation of numerous protoplasts which synthesize large cellulose microfibrils within 2–3 hours after wounding. The microfibrils appear to be assembled by linear terminal synthesizing complexes (TCs). TC subunits appear on both E- and P-faces of the plasma membrane, thus suggesting the occurrence of a transmembrane complex. The direction of microfibril synthesis is random during primary wall assembly and becomes ordered during secondary wall assembly. The average density of TCs during secondary wall deposition is 1.7/m2, and the average length of the TC is 510 nm. TC organization is similar to that ofValonia macrophysa; however, the larger TCs ofBoergesenia (510 nm vs. 350 nm) produce correspondingly larger microfibrils (30 nm vs. 20 nm).The effects of a fluorescent brightening agent (FBA), Tinopal LPW, on cell wall regeneration ofBoergesenia protoplasts was investigated. The threshold level of Tinopal LPW for interfering with microfibril assembly is 1.5 M. At 95 M Tinopal (for short periods up to 15 minutes), microfibril impressions have atypical spherical impressions at their termini. At longer incubations (24 hours), TCs and microfibril impressions are absent. When washed free of Tinopal, the protoplasts eventually resume normal wall assembly; however, TCs do not reappear until at least 30 minutes after the removal of Tinopal. In consideration of the presence of ordered TCs before FBA treatment, their random distribution upon recovery implies an intermediate stage of assembly or possiblyde novo synthesis.  相似文献   

7.
The intramembrane particles and cellulose synthesis of the brown alga Syringoderma phinneyi Henry et Müller were examined using replicas of freeze‐fractured apical cells. Like in other brown algae, linear terminal complexes (TCs) were found in the plasmatic fracture face (PF) of the plasmalemma, which are the putative cellulose synthases. Terminal complexes consist of a single row of particles, each particle composed of two sub‐units, and are found in close relationship with cellulose microfibril imprints. Examination of the distribution of TCs revealed a clear apico‐basal gradient, with a higher density of TCs in the apical part. This seems to reflect the tip growth of the apical cells. The rate of cellulose synthesis per TC subunit was calculated based on the dimensions of the TCs and cellulose microfibrils.  相似文献   

8.
Summary Microfibrillar textures and orientation of cellulose microfibrils (MFs) in the coenocytic green alga,Boergesenia forbesii, were investigated by fluorescence and electron microscopy. Newly formed aplanosporic spherical cells inBoergesenia start to form cellulose MFs on their surfaces after 2 h of culture at 25°C. Microfibrillar orientation becomes random, fountain-shaped, and helicoidal after 2, 4, and 5 h, respectively. The fountain orientation of MFs is usually apparent prior to helicoidal MF orientation and thus may be considered to initiate helicoid formation. Microfibrils continue to take on the helicoidal arrangement during the growth ofBoergesenia thallus. The helicoidal orientation of MFs occurs through gradual counterclockwise change in MF deposition by terminal complexes (TCs) viewed from inside the cell. On the dorsal side of curving TC impressions in helicoidal texture formation on a freeze-fractured plasma membrane, the aggregation of intramembranous particles (IMPs) occurs. Membrane flow may thus possibly affect the regulation of helicoidal orientation inBoergesenia. Following treatment with 3 M amiprophos-methyl (APM) or 1 mM colchicine, cortical microtubules (MTs) completely disappear within 24 h but helicoidal textures formation is not affected. With 15 M cytochalasin B or 30 M phalloidin, however, the helicoidal orientation of MFs becomes random. Treatment with CaCl2 (10 mM) causes the helicoidal MF orientation of cells to become random, but co-treatment with N-(6-aminohexyl)-5-chloro-1-naphthalene sulfonamide (W-7) (100 mM) prevents this effect, though W-7 has no effect on the helicoidal MF formation. It thus follows that MF orientation inBoergesenia possibly involves actin whose action may be regulated by calmodulin.Abbreviations APM amiprophos-methyl - DMSO dimethylsulfoxide - IMP intramembranous particle - MF microfibril - MT microtubule - TC terminal complex; W-7 N-(6-aminohexyl)-5-chloro-1-naphthalene sulfonamide  相似文献   

9.
Quader H 《Plant physiology》1984,75(3):534-538
The effect of tunicamycin (TM) on the development of the cell wall in Oocystis solitaria has been investigated. It was found that 10 micromolar TM completely stops the assembly of new microfibrils as observed at the ultrastructural level. During cell wall formation, freeze fracture replicas of the E-face of the plasma membrane reveal two major substructures: the terminal complexes (TC), paired and unpaired, and the microfibril imprints extending from unpaired TCs. In cells treated for 3 hours or longer with TM, the TCs are no longer visible, whereas microfibril imprints are still present. Because of the reported highly selective mode of action of TM, our results implicate a role for lipid-intermediates in cellulose synthesis in O. solitaria. It is assumed that TM prevents the formation of a glycoprotein which probably is a fundamental part of the TCs and may act as a primer for the assembly of the microfibrils.  相似文献   

10.
S. Mizuta  R. M. Brown Jr. 《Protoplasma》1992,166(3-4):187-199
Summary Ultrastructure and assembly of cellulose terminal synthesizing complexes (terminal complexes, TCs) in the algaVaucheria hamata (Waltz) were investigated by high resolution analytical techniques for freeze-fracture replication.Vaucheria TCs consist of many diagonal rows of subunits located on the inner leaflet of the plasma membrane. Each row contains about 10–18 subunits. The subunits themselves are rectangular, approx. 7×3.5 nm, and each has a single elliptical hole which may be the site of a single glucan chain polymerization. The subunits are connected with extremely small filaments (0.3–0.5 nm). Connections are more extensive in a direction parallel to the subunit rows and less extensive perpendicular to them. Nascent TC subunits are found to be packed within globules (15–20 nm in diameter) which are larger than typical intramembranous particles (IMPS are 10–11 nm in diameter) distributed in the plasma membrane. The subunits in the globule, which may be a zymogenic precursor of the TC, are generally exhibited in the form of doublets. Approximately 6 doublets are connected to a center core with small filaments. The globules are inserted into the plasma membrane together with IMPS by the fusion of cytoplasmic (Golgi derived) vesicles. Two or three globules attach to each other, unfold, and expand to form the first subunit rows of the TC on the inner leaflet of the plasma membrane. More globules attach to the structure and unfold until the nascent TC consists of a few rows of subunits. These rows are arranged almost parallel to each other. Two formation centers of subunits appear at both ends of an elongating TC. New subunits carried by the globules are added at each of these centers to create new rows until the elongating TC structure is completed. On the basis of this study, a model of TC assembly and early initiation of microfibril formation inVaucheria is proposed.Abbreviations IMPS intramembranous particles - MF microfibril - TC terminal complex  相似文献   

11.
I. Tsekos  H. -D. Reiss 《Protoplasma》1992,169(1-2):57-67
Summary Cells of thalli at different developmental stages of the epiphytic marine red algaErythrocladia subintegra have been studied by freeze-etching. It was found that the plasma membrane exhibits linear microfibril-termnal synthesizing complexes (TCs), randomly distributed consisting of four rows of linearly-arranged particles (average diameter of particles 8.6 nm); each row of TCs consists of 5–33 particles (average 15). The TCs were observed on both fracture faces (PF and EF) but more clearly on the PF face. These structures appear to span both the outer and inner leaflets of the plasma membrane (transmembrane complexes)-The TCs have stable width (35 nm) and vary in length (41–311 nm, average 181 nm). The TCs subunits are highly ordered arrays forming a semicylinder. The average density of TCs on the PF face is 5.5TC/m2. The microfibrils are randomly distributed and have a mean width of 39.4 nm (ranging from 16 to 70 nm). Many TCs are associated with the ends of microfibrils and microfibril imprints. The structural characteristics of linear TCs in the red algaErythrocladia are compared with those of the so far investigated Chlorophyta spp. All results favour the suggestion that TCs in the plasma membrane ofErythrocladia cells are involved in the biosynthesis, assembly and orientation of microfibrils.  相似文献   

12.
Summary Cells of the charophycean alga,Coleochaete scutata active in cell wall formation were freeze fractured in the search for cellulose synthesizing complexes (TCs) since this alga is considered to be among the most advanced and a progenitor to land plant evolution. We have found a new TC which consists of two geometrically distinctive particle complexes complementary to one another in the plasma membrane and occasionally associated with microfibril impressions. In the E-fracture face is found a cluster of 8–50 closely packed particles, each with a diameter of 5–17 nm. Most of these particles are confined within an 80 nm circle. In the P-fracture face is found an 8-fold symmetrical arrangement of 10 nm particles circumferentially arranged around a 28 nm central particle. The TCs ofC. scutata are quite distinctive from the rosette/globule TCs of land plants. The 5.5×3.1 nm microfibril inC. scutata is also distinctive from the 3.5×3.5 nm microfibril typical of land plants. The phylogenetic implications of this unique TC in land plant evolution are discussed.  相似文献   

13.
Information on the sites of cellulose synthesis and the diversity and evolution of cellulose-synthesizing enzyme complexes (terminal complexes) in algae is reviewed. There is now ample evidence that cellulose synthesis occurs at the plasma membrane-bound cellulose synthase, with the exception of some algae that produce cellulosic scales in the Golgi apparatus. Freeze-fracture studies of the supramolecular organization of the plasma membrane support the view that the rosettes (a six-subunit complex) in higher plants and both the rosettes and the linear terminal complexes (TCs) in algae are the structures that synthesize cellulose and secrete cellulose microfibrils. In the Zygnemataceae, each single rosette forms a 5-nm or 3-nm single “elementary” microfibril (primary wall), whereas rosettes arranged in rows of hexagonal arrays synthesize criss-crossed bands of parallel cellulose microfibrils (secondary wall). In Spirogyra, it is proposed that each of the six subunits of a rosette might synthesize six β-1,4-glucan chains that cocrystallize into a 36-glucan chain “elementary” microfibril, as is the case in higher plants. One typical feature of the linear terminal complexes in red algae is the periodic arrangement of the particle rows transverse to the longitudinal axis of the TCs. In bangiophyte red algae and in Vaucheria hamata, cellulose microfibrils are thin, ribbon-shaped structures, 1–1.5 nm thick and 5–70 nm wide; details of their synthesis are reviewed. Terminal complexes appear to be made in the endoplasmic reticulum and are transferred to Golgi cisternae, where the cellulose synthases are activated and may be transported to the plasma membrane. In algae with linear TCs, deposition follows a precise pattern directed by the movement and the orientation of the TCs (membrane flow). A principal underlying theme is that the architecture of cellulose microfibrils (size, shape, crystallinity, and intramicrofibrillar associations) is directly related to the geometry of TCs. The effects of inhibitors on the structure of cellulose-synthetizing complexes and the relationship between the deposition of the cellulose microfibrils with cortical microtubules and with the membrane-embedded TCs is reviewed In Porphyra yezoensis, the frequency and distribution of TCs reflect polar tip growth in the apical shoot cell.The evolution of TCs in algae is reviewed. The evidence gathered to date illustrates the utility of terminal complex organization in addressing plant phylogenetic relationships.  相似文献   

14.
J. Ross Colvin 《Planta》1980,149(2):97-107
The mechanism of formation of cellulose-like microfibrils by a non-soluble, particulate enzyme and uridine diphosphoglucose (UDPG) in a cell-free system from Acetobacter xylinum was studied by transmission electron microscopy and X-ray diffraction. The suspension of particles to which the enzyme is adsorbed is composed of whole, dense ovoids, 50–250 nm long when wet, of fragments of the ovoids, and amorphous substance. There is a typical unit membrane around each ovoid but initially there is no trace of fibrillar material in the suspension. When the suspension of particles is incubated with UDPG, linear wisps of fibrils are produced which associate rapidly to form longer and wider threads, especially in 0.01 M NaCl. There is no visible attachment of the wisps to the particles. After 20 min incubation, threads with the typical morphology of cellulose microfibrils are formed that later tend to become entangled in clumps. The microfibrils are insoluble in hot, aqueous, alkaline solutions and resistant to the action of trypsin, but may be degraded by glusulase. After treatment with 1 M NaOH at 100° C or with cold 18% NaOH they show an X-ray diffraction pattern which resembles that of Cellulose II from mercerized, authentic bacterial cellulose. Incorporation of radioactive glucose into the insoluble residue is enhanced by drying of the cellulose microfibrils before alkaline digestion and especially by the addition of a gross excess of carrier cellulose after incubation. In this system there is no evidence for participation of linear, axial, synthesizing sites on the cell wall of the bacterium or for ordered, organized granules in the assembly of the microfibrils. That is, cellulose-like microfibrils may be formed in a cell-free system without the action of any of the previously suggested cell organelles. In addition, these observations are consistent with a previously described notion of a transient, hydrated, nascent, bacterial cellulose microfibril. The possibility that cellulose microfibrils of green plants may be formed in the same way is considered.N.R.C.C. 18314  相似文献   

15.
Summary Transmembrane linear terminal complexes considered to be involved in the synthesis of cellulose microfibrils have been described in the plasma membrane ofBoergesenia forbesii. Evidence for the existence of these structures has been obtained almost exlusively using the freeze etching technique. In the present study an attempt has been made to complete these studies using conventional fixation, staining, and sectioning procedures. In developing cells ofBoergesenia forbesii, strongly stained structures traversing the plasma membrane and averaging 598.9 nm ± 171.3 nm in length, 28.7 nm ± 4.2 nm in width, and 35.2 nm ± 6.6 nm in depth have been demonstrated. These structures are considered to be linear terminal complexes. At their distal (cell wall) surface, they appear to be closely associated with cellulose microfibrils. At the proximal (cytoplasmic) surface, they are associated with microtubules and polysomes. A model of the possible interrelation of the terminal complexes and microtubules leading to the generation of cell wall microfibrils is proposed.  相似文献   

16.
S. Mizuta  R. M. Brown Jr. 《Protoplasma》1992,166(3-4):200-207
Summary The effects of 2,6-dichlorobenzonitrile (DCB, a known inhibitor of cellulose synthesis) and Tinopal LPW (TPL, an agent which disrupts glucan crystallization) on the structure of cellulose synthesizing complexes (terminal complexes, TCs) in the xanthophycean algaVaucheria hamata were investigated. DCB (10 M) inhibits nascent fibril formation from the TC subunit (based on the absence of impressions) although it does not alter the overall shape of the rectangular TC during the short treatment of 20 min. With a prolonged treatment (60 min), the arrangement of TC subunits becomes disordered, and particles generally exhibited as doublets of subunits are released from each other. DCB also interferes with the formation of the overall shape of the TC although it does not disturb the conversion into TC rows of the subunits (the zymogenic precursor of the TC) packed in the globules. A 15 min treatment with TPL (1 mM) destroys the TC integrity by reducing the subunits into small fragments or particulate aggregates. The particulate rows of the TC are interrupted at many points, and fragments and particulate aggregates are dispersed by prolonged treatment (45 min) with TPL. Unlike DCB, TPL inhibits the conversion of globule subunits into TC rows. New insights on the structural characteristics necessary for cellulose microfibril assembly and possible mechanisms for the biogenesis of theVaucheria TC come from these data.Abbreviations DCB 2,6-dichlorobenzonitrile - TPL Tinopal LPW - TC terminal complex  相似文献   

17.
Summary The investigation of the formation of cell wall appendages inAcanthosphaera by means of light and electron microscopy and by the use of dyes which interfere with microfibril assembly resulted in several observations which are helpful to an understanding of the formation of normal cell walls. The barbs are built up in the ER, pass through the Golgi apparatus, and are extruded exocytotically after cytokinesis, a remarkable example of the secretion of a structured product. Each cellulose microfibril in a spike develops in a distinct pit of the plasmalemma. The pits are aggregated in a pit field, generating one spike, and are closely adjacent to a basal vesicle which might have morphogenetic and/or regulatory functions. The pits are the site of cellulose synthesis; here the plasmalemma is conspicuously thickened. As shown directly and by the application of Calcofluor white and Congo red, the microfibrils assemble at a certain distance from the plasma membrane,i.e. cellulose synthesis and microfibril assembly are separated by a gap. It is discussed whether single glucan chains or small bundles of them are released from the plasmalemma. The elongation rate of the spikes indicates that about 1000 glycosidic linkages per glucan chain per minute are formed.  相似文献   

18.
Summary The gross structure of the cell wall and the organization of the plasmalemma of the filamentous brown algaAsteronema rhodochortonoides were examined in replicas of freeze-fractured cells. The protoplasmic fracture face (PF) of the plasmalemma, apart from the single particles, exhibits two particular particle complexes, i.e., single linear arrays of closely packed particles, and well defined particle pentads. The former display a consistent relationship with the ends of microfibril imprints and therefore are considered as terminal complexes (TCs). They seem to be composed of subunits, each one consisting of two particles. The average diameter of the particles is 7 nm. The number of the subunits forming the TCs varies between 2 and 40. Short TCs, consisting of 3–5 subunits were also found on the PF of dictyosome vesicles, a fact suggesting the involvement of the Golgi apparatus in exocytosis of preformed TC portions. The occurrence, distribution and size of the TCs appear to be related to the developmental stage of the cell. A large number of TCs occur in actively growing cells, while a few or no TCs are found in differentiated cells. The pentads are rectangular structures consisting of five particles, four in the corners and one in the centre. Their dimensions are very constant, but their occurrence and distribution varies. They occur in young developing cells where TCs are few or absent, but were also observed in areas showing many TCs. In differentiated cells no pentads were found. Pentad-like structures were rarely observed on the PF of dictyosome vesicles or cisternae. The observations support the hypothesis that pentads are involved in the synthesis of matrix polysaccharides, which are the major components of brown algal cell wall and their synthesis begins before that of cellulose.Dedicated to Prof. Dr. Dr. h.c. Eberhard Schnepf on the occasion of his retirement  相似文献   

19.
Polarotropism was induced inAdiantum (fern) protonemata grown under polarized red light by turning the electrical vector 45 or 70 degrees. One hour after the light treatment, tropic responses became apparent in many cells as a slight distortion of the apical dome. Changes in the position of the circumferentially-arranged cortical microtubule band (Mt-band) (Murataet al., 1987) and the arrangement of microfibrils around the subapical part of protonemata were investigated in relation to the polarotropic responses. Twenty minutes after turning the electrical vector, preceding the morphological change of cell shape, the Mt-band began to change its orientation from perpendicular to oblique to the initial growing axis. After 30 min, the Mt-band changed its orientation further under 45 degrees polarized light, but under light rotated 70 degrees, it began to disappear. In phototropic responses induced by local irradiation of a side of the subapical part of a protonema with a non-polarized red microbeam, the Mt-band on the irradiated side disappeared or became faint within 20 min, but neither disappearance nor a change of orientation of Mts occurred on the non-irradiated side. One hour after turning the electrical vector 45 degrees, in half of the cells tested, the innermost layer of microfibrils in the subapical part of the protonema changed its orientation from perpendicular to oblique to the growing axis, corresponding to the changes in the orientation of the Mt-band. After 2 hr, those changes were obvious in all cells examined. The same basic results on the orientation of microfibrils were obtained with protonemata cultured for 2 hr under 70 degrees polarized light. The role of the Mt-band in tropic responses is discussed.  相似文献   

20.
The amount and distribution of wall microfibril synthesis were investigated in the cell-division cycle ofClosterium acerosum. Electron-microscopic examination and a methylation analysis of alkali-extracted wall fragments showed that alkali-extracted wall was mainly composed of microfibrils and that the microfibrils ofC. acerosum were 4-linked glucans, i.e., cellulose. Cellulose synthesis was measured as incorporation of14C, fed to cells as NaHCO3, into extracted wall fragments. Extensive cellulose synthesis was coincident with septum formation, continued for more than 6 h and then ceased. It was found by microautoradiography that cellulose synthesis after cell division was essentially restricted to the expanding new semicells. Such a restricted distribution of cellulose synthesis was maintained for more than 6 h after septum formation, i.e., for more than 2 h after the cessation of expansion; afterwards, cellulose synthesis in some, but not all, cells became extended to the old semicells, and then ceased. Considerable cellulose synthesis also took place in the band-like expanding part of non-divided cells, indicating that cell division was not necessarily required for the induction of cellulose synthesis and the latter was coupled with cell expansion. Extension of cellulose synthesis to old semicells was brought about in divided cells by treatment with 3 mM colchicine, 28 M vinblastine, 50 M isopropyl-N-phenylcarbamate or 1 M isopropyl-N(3-chlorophenyl)carbamate, indicating that microtubules are involved in the limitation of cellulose synthesis to the new semicells.Abbreviations CIPC isopropyl-N(3-chlorophenyl)carbamate - DPO 2,5-diphenyloxazole - IPC isopropyl-N-phenylcarbamate  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号