首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
We have investigated the interaction of two peptides (ShB — net charge +3 and ShB:E12KD13K — net charge +7) derived from the NH2-terminal domain of the Shaker K+ channel with purified, ryanodine-modified, cardiac Ca2+-release channels (RyR). Both peptides produced well resolved blocking events from the cytosolic face of the channel. At a holding potential of +60 mV the relationship between the probability of block and peptide concentration was described by a single-site binding scheme with 50% saturation occurring at 5.92 ± 1.06 μm for ShB and 0.59 ± 0.14 nm for ShB:E12KD13K. The association rates of both peptides varied with concentration (4.0 ± 0.4 sec−1μm −1 for ShB and 2000 ± 200 sec−1μm −1 for ShB:E12KD13K); dissociation rates were independent of concentration. The interaction of both peptides was influenced by applied potential with the bulk of the voltage-dependence residing in Koff. The effectiveness of the inactivation peptides as blockers of RyR is enhanced by an increase in net positive charge. As is the case with inactivation and block of K+ channels, this is mediated by a large increase in Kon. These observations are consistent with the proposal that the conduction pathway of RyR contains negatively charged sites which will contribute to the ion handling properties of this channel. Received: 15 December 1997/Revised: 13 March 1998  相似文献   

2.
Single-channel properties of a delayed rectifier voltage-gated K+ channel (I-type) were investigated in peripheral myelinated axons from Xenopus laevis. Channels activated between −60 and −40 mV with a potential of half-maximal activation, E50, at −47.5 mV. Averaged single-channel currents activated with a time delay at all membrane potentials tested. Time to half-maximal activation decreased from 80 to 1.6 msec between −60 and +40 mV. The channel inactivated monoexponentially with a time constant of 10.9 sec at −40 mV. The time constant of deactivation was 126 msec at −80 mV and 16.9 msec at −110 mV. In symmetrical 105 mm K+, the single-channel conductance (γ) was 22 and 13 pS at negative and positive membrane potentials, respectively, at 13–15°C. In Na+-rich solution with 2.5 mm extracellular K+γ was 7 pS and the reversal potential was negative to −80 mV, indicating a high selectivity for K+ over Na+. γ depended on extracellular K+ concentration (K D = 19.6 mm) and temperature (Q 10= 1.45). External tetraethylammonium (TEA) reduced the apparent single-channel current amplitude at all potentials tested with a half-maximal inhibiting concentration (IC50) of 0.6 mm. Open probability of the channel, but not single-channel current amplitude was decreased by extracellular dendrotoxin (DTX, IC50= 6.8 nm) and mast cell degranulating peptide (MCDP, IC50= 41.9 nm). In Ringer solution the membrane potential of macroscopic I-channel patches was about −65 mV and depolarized under TEA and DTX. It is concluded that besides their activation during action potentials, I-channels may also stabilize the resting membrane potential. Received: 2 June 1995/Revised: 13 October 1995  相似文献   

3.
The action of Mg2+ on the putative xKv1.1 channel in the myelinated axon of Xenopus laevis was analyzed in voltage clamp experiments. The main effect was a shift in positive direction of the open probability curve (16 mV at 20 mm Mg2+), calculated from measurements of the instantaneous current at Na reversal potential after 50–100 msec steps to different potentials. The shift was measured at an open probability level of 25% to separate it from shifts of other K channel populations in the nodal region. The results could be explained in terms of screening effects on fixed charges located on the surface of the channel protein. Using the Grahame equation the functional charge density was estimated to −0.45 e nm−2. Analyzing this value, together with previously estimated values from other K channels, with reference to the charge of different extracellular loops of the channel protein, we conclude that the loop between the transmembrane S5 segment and the pore forming P segment determines the functional charge density of voltage-gated K channels. Received: 11 December 1997/Revised: 24 April 1998  相似文献   

4.
Properties of large conductance Ca2+-activated K+ channels were studied in the soma of motoneurones visually identified in thin slices of neonatal rat spinal cord. The channels had a conductance of 82 ± 5 pS in external Ringer solution (5.6 mm K+ o //155 mm K+ i ) and 231 ± 4 pS in external high-K o solution (155 mm K+ o //155 mm K+ i ). The channels were activated by depolarization and by an increase in internal Ca2+ concentration. Potentials of half-maximum channel activation (E50) were −13, −34, −64 and −85 mV in the presence of 10−6, 10−5, 10−4 and 10−3 m internal Ca2+, respectively. Using an internal solution containing 10−4 m Ca2+, averaged KCa currents showed fast activation within 2–3 msec after a voltage step to +50 mV. Averaged KCa currents did not inactivate during 400 msec voltage pulses. External TEA reduced the apparent single-channel amplitude with a 50% blocking concentration (IC50) of 0.17 ± 0.02 mm. KCa channels were completely suppressed by externally applied 100 mm charybdotoxin. It is concluded that KCa channels activated by Ca2+ entry during the action potential play an important role in the excitability of motoneurones. Received: 7 November 1996/Revised: 29 October 1997  相似文献   

5.
The reactive disulfide 4,4′-dithiodipyridine (4,4′DTDP) was added to single cardiac ryanodine receptors (RyRs) in lipid bilayers. The activity of native RyRs, with cytoplasmic (cis) [Ca2+] of 10−7 m (in the absence of Mg2+ and ATP), increased within ∼1 min of addition of 1 mm 4,4′-DTDP, and then irreversibly ceased 5 to 6 min after the addition. Channels, inhibited by either 1 mm cis Mg2+ (10−7 m cis Ca2+) or by 10 mm cis Mg2+ (10−3 m cis Ca2+), or activated by 4 mm ATP (10−7 m cis Ca2+), also responded to 1 mm cis 4,4′-DTDP with activation and then loss of activity. P o and mean open time (T o ) of the maximally activated channels were lower in the presence of Mg2+ than in its absence, and the number of openings within the long time constant components of the open time distribution was reduced. In contrast to the reduced activation by 1 mm 4,4′-DTDP in channels inhibited by Mg2+, and the previously reported enhanced activation by 4,4′-DTDP in channels activated by Ca2+ or caffeine (Eager et al., 1997), the activation produced by 1 mm cis 4,4′-DTDP was the same in the presence and absence of ATP. These results suggest that there is a physical interaction between the ATP binding domain of the cardiac RyR and the SH groups whose oxidation leads to channel activation. Received: 8 September 1997/Revised: 20 January 1998  相似文献   

6.
To study vacuolar chloride (Cl) transport in the halophilic plant Mesembryanthemum crystallinum L., Cl uptake into isolated tonoplast vesicles was measured using the Cl-sensitive fluorescent dye lucigenin (N,N′-dimethyl-9,9′-bisacridinium dinitrate). Lucigenin was used at excitation and emission wavelengths of 433 nm and 506 nm, respectively, and showed a high sensitivity towards Cl, with a Stern-Volmer constant of 173 m −1 in standard assay buffer. While lucigenin fluorescence was strongly quenched by all halides, it was only weakly quenched, if at all, by other anions. However, the fluorescence intensity and Cl-sensitivity of lucigenin was shown to be strongly affected by alkaline pH and was dependent on the conjugate base used as the buffering ion. Chloride transport into tonoplast vesicles of M. crystallinum loaded with 10 mm lucigenin showed saturation-type kinetics with an apparent K m of 17.2 mm and a V max of 4.8 mm min−1. Vacuolar Cl transport was not affected by sulfate, malate, or nitrate. In the presence of 250 μm p-chloromercuribenzene sulfonate, a known anion-transport inhibitor, vacuolar Cl transport was actually significantly increased by 24%. To determine absolute fluxes of Cl using this method, the average surface to volume ratio of the tonoplast vesicles was measured by electron microscopy to be 1.13 × 107 m−1. After correcting for a 4.4-fold lower apparent Stern-Volmer constant for intravesicular lucigenin, a maximum rate of Cl transport of 31 nmol m−2 sec−1 was calculated, in good agreement with values obtained for the plant vacuolar membrane using other techniques. Received: 18 February 2000/Revised: 30 June 2000  相似文献   

7.
This combined study of patch-clamp and intracellular Ca2+ ([Ca2+] i ) measurement was undertaken in order to identify signaling pathways that lead to activation of Ca2+-dependent Cl channels in cultured rat retinal pigment epithelial (RPE) cells. Intracellular application of InsP3 (10 μm) led to an increase in [Ca2+] i and activation of Cl currents. In contrast, intracellular application of Ca2+ (10 μm) only induced transient activation of Cl currents. After full activation by InsP3, currents were insensitive to removal of extracellular Ca2+ and to the blocker of I CRAC, La3+ (10 μm), despite the fact that both maneuvers led to a decline in [Ca2+] i . The InsP3-induced rise in Cl conductance could be prevented either by thapsigargin-induced (1 μm) depletion of intracellular Ca2+ stores or by removal of Ca2+ prior to the experiment. The effect of InsP3 could be mimicked by intracellular application of the Ca2+-chelator BAPTA (10 mm). Block of PKC (chelerythrine, 1 μm) had no effect. Inhibition of Ca2+/calmodulin kinase (KN-63, KN-92; 5 μm) reduced Cl-conductance in 50% of the cells investigated without affecting [Ca2+] i . Inhibition of protein tyrosine kinase (50 μm tyrphostin 51, 5 μm genistein, 5 μm lavendustin) reduced an increase in [Ca2+] i and Cl conductance. In summary, elevation of [Ca] i by InsP3 leads to activation of Cl channels involving cytosolic Ca2+ stores and Ca2+ influx from extracellular space. Tyrosine kinases are essential for the Ca2+-independent maintenance of this conductance. Received: 15 October 1998/Revised: 3 March 1999  相似文献   

8.
Voltage-activated Ca2+ currents, in zona fasciculata cells isolated from calf adrenal gland, were characterized using perforated patch-clamp recording. In control solution (Ca2+: 2.5 mm) a transient inward current was followed, in 40% of the cells, by a sustained one. In 20 mm Ba2+, 61% of the cells displayed an inward current, which consisted of transient and sustained components. The other cells produced either a sustained or a transient inward current. These different patterns were dependent upon time in culture. Current-voltage relationships show that both the transient and sustained components activated, peaked and reversed at similar potentials: −40, 0 and +60 mV, respectively. The two components, fully inactivated at −10 mV, were separated by double-pulse protocols from different holding potentials where the transient component could be inactivated or reactivated. The decaying phase of the sustained component was fitted by a double exponential (time constants: 1.9 and 20 sec at +10 mV); that of the transient component was fitted by a single exponential (time constant: 19 msec at +10 mV). Steady-state activation and inactivation curves of the two components were superimposed. Their half activation and inactivation potentials were similar, about −15 and −34 mV, respectively. The sustained component was larger in Ba2+ than in Sr2+ and Ca2+. Ni2+ (20 μm) selectively blocked the transient component while Cd2+ (10 μm) selectively blocked the sustained one. (±)Bay K 8644 (0.5 μm) increased the sustained component and nitrendipine (0.5–1 μm) blocked it selectively. The sustained component was inhibited by calciseptine (1 μm). Both components were unaffected by ω-conotoxin GVIA and MVIIC (0.5 μm). These results show that two distinct populations of Ca2+ channels coexist in this cell type. Although the voltage dependence of their activation and inactivation are comparable, these two components of the inward current are similar to T- and L-type currents described in other cells. Received: 12 July 1999/Revised: 5 October 1999  相似文献   

9.
The gating and conduction properties of a channel activated by intracellular Na+ were studied by recording unitary currents in inside-out patches excised from lobster olfactory receptor neurons. Channel openings to a single conductance level of 104 pS occurred in bursts. The open probability of the channel increased with increasing concentrations of Na+. At 210 mm Na+, membrane depolarization increased the open probability e-fold per 36.6 mV. The distribution of channel open times could be fit by a single exponential with a time constant of 4.09 msec at −60 mV and 90 mm Na+. The open time constant was not affected by the concentration of Na+, but was increased by membrane depolarization. At 180 mm Na+ and −60 mV, the distribution of channel closed times could be fit by the sum of four exponentials with time constants of 0.20, 1.46, 8.92 and 69.9 msec, respectively. The three longer time constants decreased, while the shortest time constant did not vary with the concentration of Na+. Membrane depolarization decreased all four closed time constants. Burst duration was unaffected by the concentration of Na+, but was increased by membrane depolarization. Permeability for monovalent cations relative to that of Na+ (P X /P Na ), calculated from the reversal potential, was: Li+ (1.11) > Na+ (1.0) > K+ (0.54) > Rb+ (0.36) > Cs+ (0.20). Extracellular divalent cations (10 mm) blocked the inward Na+ current at −60 mV according to the following sequence: Mn2+ > Ca2+ > Sr2+ > Mg2+ > Ba2+. Relative permeabilities for divalent cations (P Y /P Na ) were Ca2+ (39.0) > Mg2+ (34.1) > Mn2+ (15.5) > Ba2+ (13.8) > Na+ (1.0). Both the reversal potential and the conductance determined in divalent cation-free mixtures of Na+ and Cs+ or Li+ were monotonic functions of the mole fraction, suggesting that the channel is a single-ion pore that behaves as a multi-ion pore when the current is carried exclusively by divalent cations. The properties of the channel are consistent with the channel playing a role in odor activation of these primary receptor neurons. Received: 17 September 1996/Revised: 15 November 1996  相似文献   

10.
Primary cultures containing a high percentage of lactotrophs were obtained by dissociating the pituitary of rats following 14–18 days of lactation. Lactotrophs with a distinctive appearance were recorded after 1–35 days in vitro and identified by immunocytochemical staining for prolactin. Whole-cell voltage clamp measurements in isotonic KCl solution from a holding potential of −40 mV revealed the presence of inward-rectifying K currents with a time-dependent, Na+-independent inactivation at potentials negative to −60 mV. The time for complete inactivation was strikingly different between lactotrophs, varying between 1 sec and more than 5 sec at −120 mV, and was not related to time in culture. The reversal potential shifted 59 mV (25°C) for a tenfold change in external K+ concentration, demonstrating the selectivity of the channel for K+ over Na+. The inward-rectifying K current was blocked by 5 mm Ba2+ and partially blocked by 10 mm TEA. Chloramine-T (1 and 2 mm) produced a total block of the inward-rectifying K current in lactotrophs. Thyrotropin-releasing hormone (500 nm) significantly reduced the inward-rectifying K current in about half of the lactotrophs. This current is similar to the inward-rectifying K current previously characterized in clonal somatomammotrophic pituitary cells (GH3B6). The variability of the rate of inactivation of this current in lactotrophs and its responsiveness to TRH is discussed. Received: 28 September 1995/Revised: 11 December 1995  相似文献   

11.
Chloride (Cl) conductances were studied in primary cultures of the bright part of rabbit distal convoluted tubule (DCTb) by the whole cell patch clamp technique. The bath solution (33°C) contained (in mm): 140 NaCl, 1 CaCl2, 10 N-2-hydroxy-ethylpiperazine-N′-2-ethanesulfonic acid (HEPES), pH 7.4 and the pipette solution 140 N-methyl-d-glucamine (NMDG)-Cl, 5 MgATP, 1 ethylene-glycol-bis(b-aminoethyl ether)-N,N,N,N′-tetraacetic acid (EGTA), 10 HEPES, pH 7.4. We identified a Cl current activated by 10−5 m forskolin, 10−3 m 8-bromo adenosine 3′,5′-cyclic monophophosphate (8 Br-cAMP), 10−6 m phorbol 12-myristate 13-acetate (PMA), 10−3 m intracellular adenosine 3′,5′-cyclic monophophosphate (cAMP) and 10−7 m calcitonin. The current-voltage relationship was linear and the relative ion selectivity was Br > Cl≫ I > glutamate. This current was inhibited by 10−3 m diphenylamine-2-carboxylate (DPC) and 10−4 m 5-nitro-2-(3-phenylpropylamino)-benzoate (NPPB) and was insensitive to 10−3 m 4,4′-diisothiocyanostilbene-2,2′-disulfonic acid (DIDS). These characteristics are similar to those described for the cystic fibrosis transmembrane conductance regulator (CFTR) Cl conductance. In a few cases, forskolin and calcitonin induced an outwardly rectifying Cl current blocked by DIDS. To determine the exact location of the Cl conductance 6-methoxy-1-(3-sulfonatopropyl) quinolinium (SPQ) fluorescence experiments were carried out. Cultures seeded on collagen-coated permeable filters were loaded overnight with 5 mm SPQ and the emitted fluorescence analyzed by laser-scan cytometry. Cl removal from the apical solution induced a Cl efflux which was stimulated by 10−5 m forskolin, 10−7 calcitonin and inhibited by 10−5 m NPPB. In 140 mm NaBr, forskolin stimulated an apical Br influx through the Cl pathway. Forskolin and calcitonin had no effect on the basolateral Cl permeability. Thus in DCTb cultured cells, exposure to calcitonin activates a Cl conductance in the apical membrane through a cAMP-dependent mechanism. Received: 5 July 1995/Revised: 21 December 1995  相似文献   

12.
Plant growth requires a continuous supply of intracellular solutes in order to drive cell elongation. Ion fluxes through the plasma membrane provide a substantial portion of the required solutes. Here, patch clamp techniques have been used to investigate the electrical properties of the plasma membrane in protoplasts from the rapid growing tip of maize coleoptiles. Inward currents have been measured in the whole cell configuration from protoplasts of the outer epidermis and from the cortex. These currents are essentially mediated by K+ channels with a unitary conductance of about 12 pS. The activity of these channels was stimulated by negative membrane voltage and inhibited by extracellular Ca2+ and/or tetraethylammonium-CI (TEA). The kinetics of voltage- and Ca2+-gating of these channels have been determined experimentally in some detail (steady-state and relaxation kinetics). Various models have been tested for their ability to describe these experimental data in straightforward terms of mass action. As a first approach, the most appropriate model turned out to consist of an active state which can equilibrate with two inactive states via independent first order reactions: a fast inactivation/activation by Ca2+-binding and -release, respectively (rate constants >>103 sec−1) and a slower inactivation/activation by positive/negative voltage, respectively (voltage-dependent rate constants in the range of 103 sec−1). With 10 mm K+ and 1 mm Ca2+ in the external solution, intact coleoptile cells have a membrane voltage (V) of −105 ± 7 mV. At this V, the density and open probability of the inward-rectifying channels is sufficient to mediate K+ uptake required for cell elongation. Extracellular TEA or Ca2+, which inhibit the K+ inward conductance, also inhibit elongation of auxin-depleted coleoptile segments in acidic solution. The comparable effects of Ca2+ and TEA on both processes and the similar Ca2+ concentration required for half maximal inhibition of growth (4.3 mm Ca2+) and for conductance (1.2 mm Ca2+) suggest that K+ uptake through the inward rectifier provides essential amounts of solute for osmotic driven elongation of maize coleoptiles. Received: 6 June 1995/Revised: 12 September 1995  相似文献   

13.
The two electrode voltage clamp technique was used to investigate the steady-state and presteady-state kinetic properties of the type II Na+/P i cotransporter NaPi-5, cloned from the kidney of winter flounder (Pseudopleuronectes americanus) and expressed in Xenopus laevis oocytes. Steady-state P i -induced currents had a voltage-independent apparent K m for P i of 0.03 mm and a Hill coefficient of 1.0 at neutral pH, when superfusing with 96 mm Na+. The apparent K m for Na+ at 1 mm P i was strongly voltage dependent (increasing from 32 mm at −70 mV to 77 mm at −30 mV) and the Hill coefficient was between 1 and 2, indicating cooperative binding of more than one Na+ ion. The maximum steady-state current was pH dependent, diminishing by 50% or more for a change from pH 7.8 to pH 6.3. Voltage jumps elicited presteady-state relaxations in the presence of 96 mm Na+ which were suppressed at saturating P i (1 mm). Relaxations were absent in non-injected oocytes. Charge was balanced for equal positive and negative steps, saturated at extremes of potential and reversed at the holding potential. Fitting the charge transfer to a Boltzmann relationship typically gave a midpoint voltage (V 0.5) close to zero and an apparent valency of approximately 0.6. The maximum steady-state transport rate correlated linearly with the maximum P i -suppressed charge movement, indicating that the relaxations were NaPi-5-specific. The apparent transporter turnover was estimated as 35 sec−1. The voltage dependence of the relaxations was P i -independent, whereas changes in Na+ shifted V 0.5 to −60 mV at 25 mm Na+. Protons suppressed relaxations but contributed to no detectable charge movement in zero external Na+. The voltage dependent presteady-state behavior of NaPi-5 could be described by a 3 state model in which the partial reactions involving reorientation of the unloaded carrier and binding of Na+ contribute to transmembrane charge movement. Received: 11 March 1997/Revised: 3 June 1997  相似文献   

14.
Swelling-activated Cl currents (I Cl,swell ) have been characterized in a mouse renal inner medullary collecting duct cell line (mIMCD-K2). Currents activated by exposing the cells to hypotonicity exhibited characteristic outward rectification and time- and voltage-dependent inactivation at positive potentials and showed an anion selectivity of I > Br > Cl > Asp. NPPB (100 μm) inhibited the current in a voltage independent manner, as did exposure to 10 μm tamoxifen and 500 μm niflumic acid (NFA). In contrast, DIDS (100 μm) blocked the current with a characteristic voltage dependency. These characteristics of I Cl,swell in mIMCD-K2 cells are essentially identical to those of heterologously expressed cardiac CLC-3. A defining feature of CLC-3 is that activation of PKC by PDBu inhibits the conductance. In mIMCD-K2 cells preincubation with PDBu (100 nm) prevented the activation of I Cl,swell by hypotonicity. However, PDBu inhibition of I Cl,swell was reversed after PDBu withdrawal, but this was refractory to subsequent PDBu inhibition. Activation of either the cystic fibrosis transmembrane conductance regulator (CFTR) or Ca2+ activated Cl conductance (CaCC), which are coexpressed in mIMCD-K2 cells prior to PDBu treatment, abolished the PDBu inhibition of I Cl,swell . Control of I Cl,swell by PKC therefore depends on the physiological status of the cell. In intact mIMCD-K2 layers in Ussing chambers, forskolin stimulation of an inward short-circuit current (due to transepithelial Cl secretion via apical CFTR) was inhibited by cell swelling upon hypotonic exposure at the basolateral surface. Activation of I Cl,swell is therefore capable of regulating transepithelial Cl secretion and suggests that I Cl,swell is located at the basolateral membrane. PDBu exposure prior to or during hypotonic challenge was ineffective in reversing the swelling-activated inhibition of Cl secretion, but tamoxifen (100 μm) abolished the hypotonic inhibition of forskolin-stimulated short-circuit current (I sc ). RT-PCR analysis confirmed expression of mRNA for members of the CLC family, including both CLC-2 and 3, in the mIMCD-K2 cell line. Received: 24 February 2000/Revised: 26 May 2000  相似文献   

15.
Extracellular acidosis affects both permeation and gating of the expressed rat skeletal muscle Na+ channel (μ1). Reduction of the extracellular pH produced a progressive decrease in the maximal whole-cell conductance and a depolarizing shift in the whole-cell current-voltage relationship. A smaller depolarizing shift in the steady-state inactivation curve was observed. The pK of the reduction of maximal conductance was 6.1 over the pH range studied. An upper limit estimate of the pK of the shift of the half-activation voltage was 6.1. The relative reduction in the maximal whole-cell conductance did not change with higher [Na+] o . The conductance of single fenvalerate-modified Na+ channels was reduced by extracellular protons. Although the single-channel conductance increased with higher [Na+] o , the maximal conductances at pH 7.6, 7.0 and 6.0 did not converge at [Na+] o up to 280 mm, inconsistent with a simple electrostatic effect. A model incorporating both Na+ and H+ binding in the pore and cation binding to a Gouy-Chapman surface charge provided a robust fit to the single-channel conductance data with an estimated surface charge density of 1e/439?2. Neither surface charge nor proton block alone suffices to explain the effects of extracellular acidosis on Na+ channel permeation; both effects play major roles in mediating the response to extracellular pH. Received: 14 May 1996/Revised: 19 September 1996  相似文献   

16.
Brush-border membrane vesicles (BBMV) were prepared from superficial rat renal cortex by a divalent2+-precipitation technique using either CaCl2 or MgCl2. The dependence of the initial [14C]-d-glucose (or [3H]-l-proline) uptake rate and the extent of the overshoot of d-glucose or l-proline uphill accumulation from solutions containing 100 mm Na+ salt, was found to be dependent upon the precipitating divalent cation. With Mg2+ precipitation the initial uptake and overshoot accumulation of either d-glucose or l-proline were enhanced compared to BBMV prepared by Ca2+ precipitation. When the anion composition of the media was varied (uptake in Cl media in comparison to gluconate-containing media) it was found that the Cl-dependent component of the initial uptake was markedly depressed with Ca2+-prepared BBMV (104.99 ± 33.31 vs. 13.83 ± 1.44 pmoles/sec/mg protein for Mg2+ and Ca2+ prepared vesicles respectively). When Ca2+ was loaded into Mg2+ prepared BBMV using a freeze-thaw technique, it was found that the magnitude and Cl enhancement of d-glucose transport was reduced in a dose-dependent manner. Neomycin, an inhibitor of phospholipase C, had no effect on the reduction of d-glucose uptake by Ca2+ in Mg2+ prepared vesicles. In contrast, phosphatase inhibitors such as vanadate and fluoride were able to partially reverse the Ca2+ inhibition of d-glucose uptake and restore the enhancement due to Cl media. In addition, inhibitors of protein phosphatase 2B, deltamethrin (50 nm) and trifluoperazine (10 μm), caused partial reversal of Ca2+-dependent inhibition of d-glucose uptake. Direct measurement of changes in the bi-ionic (Cl vs. gluconate) transmembrane electrical potential differences using the cyanine dye, 3,3′-dipropylthiodicarbocyanine iodide DiSC3-(5) confirmed that Cl conductance was reduced in Ca2+-prepared vesicles. We conclude that a Cl conductance coexists with Na+ cotransport in rat renal BBMV and this may be subject to negative regulation by Ca2+ via stimulation of protein phosphatase (PP2B). Received: 14 December 1994/Revised: 27 November 1995  相似文献   

17.
Large Conductance Ca2+-Activated K+ Channels in Human Meningioma Cells   总被引:2,自引:0,他引:2  
Cells from ten human meningiomas were electrophysiologically characterized in both living tissue slices and primary cultures. In whole cells, depolarization to voltages higher than +80 mV evoked a large K+ outward current, which could be blocked by iberiotoxin (100 nm) and TEA (half blocking concentration IC50= 5.3 mm). Raising the internal Ca2+ from 10 nm to 2 mm shifted the voltage of half-maximum activation (V 1/2) of the K+ current from +106 to +4 mV. Respective inside-out patch recordings showed a voltage- and Ca2+-activated (BK Ca ) K+ channel with a conductance of 296 pS (130 mm K+ at both sides of the patch). V 1/2 of single-channel currents was +6, −12, −46, and −68 mV in the presence of 1, 10, 100, and 1000 μm Ca2+, respectively, at the internal face of the patch. In cell-attached patches the open probability (P o ) of BK Ca channels was nearly zero at potentials below +80 mV, matching the activation threshold for whole-cell K+ currents with 10 nm Ca2+ in the pipette. Application of 20 μm cytochalasin D increased P o of BK Ca channels in cell-attached patches within minutes. These data suggest that the activation of BK Ca channels in meningioma cells does not only depend on voltage and internal Ca2+ but is also controlled by the cytoskeleton. Received 18 June 1999/Revised: 18 January 2000  相似文献   

18.
Using the whole-cell patch-clamp technique, we examined Cl-selective currents manifested by strial marginal cells isolated from the inner ear of gerbils. A large Cl-selective conductance of ∼18 nS/pF was found from nonswollen cells in isotonic buffer containing 150 mm Cl. Under a quasi-symmetrical Cl condition, the `instantaneous' current-voltage relation was close to linear, while the current-voltage relation obtained at the end of command pulses of duration 400 msec showed weak outward rectification. The permeability sequence for anionic currents was as SCN > Br≅ Cl > F > NO 3≅ I > gluconate, corresponding to Eisenmann's sequence V. When whole-cell voltage clamped in isotonic bathing solutions, the cells exhibited volume changes that were accounted for by the Cl currents driven by the imposed electrochemical potential gradients. The volume change was elicited by lowered extracellular Cl concentration, anion substitution and altered holding potentials. The Cl conductance varied in parallel with cell volume when challenged by bath anisotonicity. The whole-cell Cl current was only partially blocked by both 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB, 0.5 mm) and diphenylamine-2-carboxylic acid (DPC, 1.0 mm), but 4-acetamido-4′-isothiocyanato-stilbene-2,2′-disulfonic acid (SITS, 0.5 mm) was without effect. The properties of the present whole-cell Cl current resembled those of the single Cl channel previously found in the basolateral membrane of the marginal cell (Takeuchi et al., Hearing Res. 83:89–100, 1995), suggesting that the volume-correlated Cl conductance could be ascribed predominantly to the basolateral membrane. This Cl conductance may function not only in cell volume regulation but also for the transport of Cl and the setting of membrane potential in marginal cells under physiological conditions. Received: 15 August 1995/Revised: 3 November 1995  相似文献   

19.
Twin-electrode voltage-clamp techniques were used to study the effect of calcium and calcium channel blockers on the transient outward current in isolated F76 and D1 neurones of Helix aspersa subesophageal ganglia in vitro (soma only preparation with no cell processes). On lowering extracellular Ca2+ concentration from 10 to 2 mm or removing extracellular calcium from the bathing medium, the threshold for this current shifted in a negative direction by 11.5 and 20 mV, respectively. On the other hand, increasing the extracellular Ca2+ concentration from 10 to 20 and to 40 mm shifted the steady-state inactivation curves in positive directions on the voltage axis by 7 and 15 mV, respectively. Upon application of calcium channel blockers, Co2+, La3+, Ni2+ and Cd2+, transient potassium current amplitude was reduced in a voltage-dependent manner, being more effective at voltages close to the threshold. The current was elicited even at a holding potential of −34 mV. The specific calcium channel blockers, amiloride and nifedipine did not shift the activation and steady-state inactivation curves and did not reduce the transient outward current amplitude. It was concluded that the transient outward current is not dependent on intracellular Ca2+ but that it is modulated by Ca2+ and di- and trivalent ions extracellularly. The effects of these ions are very unlikely to be due to a surface charge effect because the addition of La3+ (200 μm) completely reverses the shift in a hyperpolarizing direction when the extracellular Ca2+ concentration was reduced from 10 to 1 mm and additionally shifts the kinetics further still in a depolarizing direction. The responses seen here are consistent with a specific effect of di- and trivalent ions on the transient outward current channels leading to a modification of gating. Received: 30 March 1999/Revised: 5 October 1999  相似文献   

20.
The Ca2+-activated maxi K+ channel was found in the apical membrane of everted rabbit connecting tubule (CNT) with a patch-clamp technique. The mean number of open channels (NP o ) was markedly increased from 0.007 ± 0.004 to 0.189 ± 0.039 (n= 7) by stretching the patch membrane in a cell-attached configuration. This activation was suggested to be coupled with the stretch-activation of Ca2+-permeable cation channels, because the maxi K+ channel was not stretch-activated in both the cell-attached configuration using Ca2+-free pipette and in the inside-out one in the presence of 10 mm EGTA in the cytoplasmic side. The maxi K+ channel was completely blocked by extracellular 1 μm charybdotoxin (CTX), but was not by cytoplasmic 33 μm arachidonic acid (AA). On the other hand, the low-conductance K+ channel, which was also found in the same membrane, was completely inhibited by 11 μm AA, but not by 1 μm CTX. The apical K+ conductance in the CNT was estimated by the deflection of transepithelial voltage (ΔV t ) when luminal K+ concentration was increased from 5 to 15 mEq. When the tubule was perfused with hydraulic pressure of 0.5 KPa, the ΔV t was only −0.7 ± 0.4 mV. However, an increase in luminal fluid flow by increasing perfusion pressure to 1.5 KPa markedly enhanced ΔV t to −9.4 ± 0.9 mV. Luminal application of 1 μm CTX reduced the ΔV t to −1.3 ± 0.6 mV significantly in 6 tubules, whereas no significant change of ΔV t was recorded by applying 33 μm AA into the lumen of 5 tubules (ΔV t =−7.2 ± 0.5 mV in control vs.ΔV t =−6.7 ± 0.6 mV in AA). These results suggest that the Ca2+-activated maxi K+ channel is responsible for flow-dependent K+ secretion by coupling with the stretch-activated Ca2+-permeable cation channel in the rabbit CNT. Received: 21 August 1997/Revised: 20 March 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号