首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Apoptotic death can be induced in T cell hybridomas by glucocorticoids or the stimulation via the TCR/CD3 complex. The two apoptotic processes are mutually antagonistic. We have previously proposed that positive selection of thymocytes for the formation of the T cell repertoire might be based on a similar mechanism. We analyzed the TCR/CD3-mediated signals essential for the regulation of apoptosis in T cell hybridomas. We suggest that both an increase in the intracellular Ca2+ level and an activation of protein kinase C are essential for the TCR/CD3-mediated apoptosis, because we obtained the following results: 1) either reduction of extracellular Ca2+ concentration or addition of a protein kinase inhibitor, 1-(5-isoquinolkinelsulfonyl)-2-methylpiperazine or N-(2-(methylamino)ethyl)-5-isoquinolinesulfonamide, inhibited anti-CD3-induced but not dexamethasone-induced DNA fragmentation. 2) The combination of ionomycin and PMA, but neither one alone nor the combination of ionomycin and cyclic nucleotide analogs, induced DNA fragmentation. On the contrary, we suggest that only an increase in the intracellular Ca2+ level is essential for the inhibition of glucocorticoid-induced apoptosis, because ionomycin alone as well as the combination of ionomycin and PMA inhibited dexamethasone- but not anti-CD3-induced DNA fragmentation.  相似文献   

2.
3.
Programmed death in bacteria.   总被引:11,自引:0,他引:11  
Programmed cell death (PCD) in bacteria plays an important role in developmental processes, such as lysis of the mother cell during sporulation of Bacillus subtilis and lysis of vegetative cells in fruiting body formation of Myxococcus xanthus. The signal transduction pathway leading to autolysis of the mother cell includes the terminal sporulation sigma factor Esigma(K), which induces the synthesis of autolysins CwlC and CwlH. An activator of autolysin in this and other PCD processes is yet to be identified. Autolysis plays a role in genetic exchange in Streptococcus pneumoniae, and the gene for the major autolysin, lytA, is located in the same operon with recA. DNA from lysed cells is picked up by their neighbors and recombined into the chromosome by RecA. LytA requires an unknown activator controlled by a sensory kinase, VncS. Deletion of vncS inhibits autolysis and also decreases killing by unrelated antibiotics. This observation suggests that PCD in bacteria serves to eliminate damaged cells, similar to apoptosis of defective cells in metazoa. The presence of genes affecting survival without changing growth sensitivity to antibiotics (vncS, lytA, hipAB, sulA, and mar) indicates that bacteria are able to control their fate. Elimination of defective cells could limit the spread of a viral infection and donate nutrients to healthy kin cells. An altruistic suicide would be challenged by the appearance of asocial mutants without PCD and by the possibility of maladaptive total suicide in response to a uniformly present lethal factor or nutrient depletion. It is proposed that a low rate of mutation serves to decrease the probability that asocial mutants without PCD will take over the population. It is suggested that PCD is disabled in persistors, rare cells that are resistant to killing, to ensure population survival. It is suggested that lack of nutrients leads to the stringent response that suppresses PCD, producing a state of tolerance to antibiotics, allowing cells to discriminate between nutrient deprivation and unrepairable damage. High levels of persistors are apparently responsible for the extraordinary survival properties of bacterial biofilms, and genes affecting persistence appear to be promising targets for development of drugs aimed at eradicating recalcitrant infections. PCD in unicellular eukaryotes is also considered, including aging in Saccharomyces cerevisiae. Apoptosis-like elimination of defective cells in S. cerevisiae and protozoa suggests that all unicellular life forms evolved altruistic programmed death that serves a variety of useful functions.  相似文献   

4.
5.
6.
Nasirudeen AM  Tan KS 《Biochimie》2005,87(6):489-497
We demonstrated previously that a cytotoxic monoclonal antibody (MAb) 1D5 elicits a programmed cell death (PCD) response in Blastocystis hominis and showed that caspase-3-like protease influences but is not essential for PCD in MAb 1D5-treated B. hominis. We also showed that mitochondrial dysregulation played a role in cell death. In the current study, we further analyzed the signaling pathways involved in PCD mediated by MAb 1D5. B. hominis cells were treated with MAb 1D5 or control MAb 5, either with or without pretreatment with a pan-caspase inhibitor, zVAD.fmk, and/or a mitochondrial transition pore blocker, cyclosporine A (CA). Flow cytometric examination of cell size, mitochondrial membrane potential (delta psi(m)), caspase activation and in situ DNA fragmentation showed that zVAD.fmk and CA, used independently or in combination, failed to inhibit MAb 1D5-mediated PCD. Interestingly, cell exposure to either inhibitor resulted in partial inhibition of DNA fragmentation while combined exposure of cells to inhibitors abolished DNA fragmentation completely. This study sheds new light on the conserved nature of PCD pathways in parasitic protozoa and is also the first report describing caspase- and mitochondria-independent cell death pathways in a protozoan parasite.  相似文献   

7.
Bacterial rod morphogenesis was studied in synchronously growing cells of Escherichia coli C600 during the reshaping process that follows the removal of mecillinam, a β-lactam antibiotic that specifically inhibits lateral wall formation of gram-negative rods and causes transition to coccal shape. Removal of mecillinam after 30 min of action did not affect the timing of subsequent cell division, but removal after 50 min delayed resumption of cell division for approximately one generation time. In order to study the interplay between lateral wall elongation and septum formation in determining and maintaining the bacterial rod shape, we evaluated the effect of re-adding mecillinam or of adding aztreonam (a specific inhibitor of septum formation) at various stages of the reshaping process. We conclude that mecillinam was active only during the reshaping process, while aztreonam was active only later when the cells were close to dividing again. These results provide further evidence for our previous proposal according to which elongation and septation are two alternating and competing events of the cell cycle and are linked to each other to force bacterial rods to grow to a given length. Received: 23 January 1997 / Accepted: 2 May 1997  相似文献   

8.
Apoptosis, Golgi fragmentation and elevated ceramide levels occur in Juvenile Neuronal Ceroid Lipofuscinosis (JNCL) neurons, lymphoblasts and fibroblasts. Our purpose was to examine whether apoptosis is the mechanism of cell death in JNCL. This was tested by analyzing caspase-dependent/independent pathways and autophagy, and caspase effects on ceramide and Golgi fragmentation. zVAD prevented caspase activation, but not all cell death. Inhibiting caspase-8 suppressed caspases more than inhibition of any other caspase. Inhibiting caspase-8/6 was synergistic. zVAD suppressed autophagy. 3-methyladenine suppressed caspase activation less than zVAD did. Blocking autophagy/caspase-8/or-6 was synergistic. Blocking autophagy/caspase-3/or-9 was not. Inhibiting caspase-9/3 suppressed autophagy. Golgi fragmentation was suppressed by zVAD, and blocked by CLN3. CLN3, not zVAD, prevented ceramide elevation. In conclusion: caspase-dependent/independent apoptosis and autophagy occur caspase-dependent pathways initiate autophagy Golgi fragmentation results from apoptosis ceramide elevation is independent of caspases, and CLN3 blocks all cell death, prevents Golgi fragmentation and elevation of ceramide in JNCL.  相似文献   

9.
Patients with sepsis are immune compromised, as evidenced by their failure to clear their primary infection and their propensity to develop secondary infections with pathogens that are often not particularly virulent in normal healthy individuals. A potential mechanism for immunosuppression in sepsis is lymphocyte apoptosis, which may occur by either a death receptor or a mitochondrial-mediated pathway. A prospective study of blood samples from 71 patients with sepsis, 55 nonseptic patients, and 6 healthy volunteers was undertaken to quantitate lymphocyte apoptosis and determine cell death pathways and mechanisms of apoptosis. Apoptosis was evaluated by flow cytometry and Western blotting. Lymphocyte apoptosis was increased in CD4 and CD8 T cells, B cells (CD20), and NK cells (CD56) in septic vs nonseptic patients. Samples taken sequentially from 10 patients with sepsis showed that the degree of CD3 T cell apoptosis correlated with the activity of his/her sepsis. In septic patients, apoptotic lymphocytes were positive for active caspases 8 and 9, consistent with death occurring by both mitochondrial-mediated and receptor-mediated pathways. In support of the concept that both death pathways were operative, lymphocyte apoptosis occurred in cells with markedly decreased Bcl-2 (an inhibitor of mitochondrial-mediated apoptosis) as well as cells with normal concentrations of Bcl-2. In conclusion, apoptosis occurs in a broad range of lymphocyte subsets in patients with sepsis and correlates with the activity of the disease. Lymphocyte loss occurs by both death receptor and mitochondrial-mediated apoptosis, suggesting that there may be multiple triggers for lymphocyte apoptosis.  相似文献   

10.
Programmed cell death: apoptosis and oncogenesis.   总被引:105,自引:0,他引:105  
G T Williams 《Cell》1991,65(7):1097-1098
  相似文献   

11.
Programmed death in the developing nervous system of insects serves to remove obsolete neurons, generate segmental specializations and sexual dimorphism, as well as adjust neuronal number. This diversity is also reflected in the mechanisms which control the death of these neurons. In general, but not without exception, these deaths occur independent of target fate, while endocrine cues, segmental identity, and neural signalling often play critical roles. In addition, the programmed death of at least some neurons can be delayed by behavioral feedback. The study of neuronal death in Drosophila and the cloning of an ecdysteroid receptor bring the promise of understanding the genetic factors and molecular events that regulate this phenomenon.  相似文献   

12.
Short-term culture of activated T cells with IL-2 renders them highly susceptible to apoptotic death triggered by TCR cross-linking. Activation-induced apoptosis is contingent upon caspase activation and this is mediated primarily by Fas/Fas ligand (FasL) interactions that, in turn, are optimized by p38 mitogen-activated protein kinase (MAPK)-regulated signals. Although T cells from mice bearing mutations in Fas (lpr) or FasL (gld) are more resistant to activation-induced cell death (AICD) than normal T cells, a significant proportion of CD8(+) T cells and to a lesser extent CD4(+) T cells from mutant mice die after TCR religation. Little is known about this Fas-independent death process. In this study, we demonstrate that AICD in lpr and gld CD4(+) and CD8(+) T cells occurs predominantly by a novel mechanism that is TNF-alpha-, caspase-, and p38 MAPK-independent and has morphologic features more consistent with oncosis/primary necrosis than apoptosis. A related Fas- and caspase-independent, nonapoptotic death process is revealed in wild-type (WT) CD8(+) T cell blasts following TCR ligation and treatment with caspase inhibitors, the p38 MAPK inhibitor, SB203580, or neutralizing anti-FasL mAb. In parallel studies with WT CD4(+) T cells, two minor pathways leading to nonapoptotic, caspase-independent AICD were identified, one contingent upon Fas ligation and p38 MAPK activation and the other Fas- and p38 MAPK-independent. These data indicate that TCR ligation can activate nonapoptotic death programs in WT CD8(+) and CD8(+) T blasts that normally are masked by Fas-mediated caspase activation. Selective use of potentially proinflammatory oncotic death programs by activated lpr and gld T cells may be an etiologic factor in autosensitization.  相似文献   

13.
赵萍  王攀  王筱冰 《生命科学》2011,(4):329-334
程序性细胞死亡(programmed cell death,PCD)是指由基因控制的细胞自主的有序性死亡方式,涉及一系列基因的激活、表达以及调控等。目前,经典细胞凋亡被称为Ⅰ型PCD,而自噬性细胞死亡称为Ⅱ型PCD,坏死样程序性细胞死亡则被称为Ⅲ型PCD,它们在肿瘤的发生、发展及治疗过程中起非常重要的作用。该文结合国内外最新研究进展主要针对不同细胞死亡模式及其相互作用、关键作用蛋白,细胞自噬与肿瘤发生,细胞自噬、凋亡与肿瘤治疗作一简要综述,并展望发展前景,提出在肿瘤治疗中如何利用不同死亡模式的协同作用最大限度地发挥其临床应用价值。  相似文献   

14.
细胞程序性死亡与生态适应   总被引:3,自引:1,他引:3  
林久生  王根轩 《生命科学》2002,14(4):232-233,207
细胞程序性死亡是多细胞有机生命周期中正常的组成部分,细胞程序性死亡过程的存在对生物体是一种保护机制。它是在生物进化过程中形成的,也是生物对环境的适应方式之一。  相似文献   

15.
Human mature erythrocytes have been considered as unable to undergo programmed cell death (PCD), due to their lack of mitochondria, nucleus and other organelles, and to the finding that they survive two conditions that induce PCD in vitro in all human nucleated cells, treatment with staurosporine and serum deprivation. Here we report that mature erythrocytes can undergo a rapid self-destruction process sharing several features with apoptosis, including cell shrinkage, plasma membrane microvesiculation, phosphatidylserine externalization, and leading to erythrocyte disintegration, or, in the presence of macrophages, to macrophage ingestion of dying erythrocytes. This regulated form of PCD was induced by Ca(2+) influx, and prevented by cysteine protease inhibitors that allowed erythrocyte survival in vitro and in vivo. The cysteine proteinases involved seem not to be caspases, since (i) proforms of caspase 3, while present in erythrocytes, were not activated during erythrocyte death; (ii) cytochrome c, a critical component of the apoptosome, was lacking; and (iii) cell-free assays did not detect activated effectors of nuclear apoptosis in dying erythrocytes. Our findings provide the first identification that a death program can operate in the absence of mitochondria. They indicate that mature erythrocytes share with all other mammalian cell types the capacity to self-destruct in response to environmental signals, and imply that erythrocyte survival may be modulated by therapeutic intervention.  相似文献   

16.
Some osteoblasts in the expanded population of periosteal cells that occurs following bone injury are removed from the callus by apoptosis. Our objective was to study whether the consequences of activation of the death program could include feedback control of the healing response. Transforming growth factor beta and interleukin-1beta were delivered together continuously to a standardized tibial defect in rats for 3 days using implanted micro-osmotic pumps. The bones were recovered at 1, 2, 3, 5, 7, 10 and 14 days after injury (n = 6 in each treated and control group) and concentrations of proliferating cells, osteoblasts and apoptotic bodies were determined. The injury-induced apoptotic component of the healing response was shifted in time due to the combined cytokines, compared with vehicle only, with the result that the peak in the concentration of apoptotic bodies occurred 2-3 days earlier in the treated animals. Neither osteoprogenitor proliferation nor osteoblast concentration was affected by addition of the cytokines. The results suggested that activation of apoptosis during injury repair was not necessarily a passive consequence of the cellular response to injury. Programmed cell death could therefore have an active role in modulating bone repair.  相似文献   

17.
Programmed cell death, or apoptosis, is a highly regulated process used to eliminate unwanted or damaged cells from multicellular organisms. The morphology of cells undergoing apoptosis is similar to cells undergoing both normal mitosis and an aberrant form of mitosis called mitotic catastrophe. During each of these processes, cells release substrate attachments, lose cell volume, condense their chromatin, and disassemble the nuclear lamina. The morphological similarities among cells undergoing these processes suggest that the underlying biochemical changes also may be related. The susceptibility of cells to apoptosis frequently depends on the differentiation state of the cell. Additionally, cell cycle checkpoints appear to link the cell cycle to apoptosis. Deregulation of the cell cycle components has been shown to induce mitotic catastrophe and also may be involved in triggering apoptosis. Some apoptotic cells express abnormal levels of cell cycle proteins and often contain active Cdc2, the primary kinase active during mitosis. Although cell cycle components may not be involved in all forms of apoptosis, in many instances cell proliferation and cell death may share common pathways.  相似文献   

18.
19.
Programmed cell death and the proteasome   总被引:2,自引:0,他引:2  
A characteristic feature of apoptotic cell death is the activation of a cascade of cytoplasmic proteases that results in the cleavage of a limited number of target proteins. A central role in these proteolytic events has been assigned to members of the capase family. However, the use of low molecular weight proteasomal inhibitors has also demonstrated that protein degradation or processing by the ubiquitin-proteasome system of the cell has a decisive impact on cell survival and death as well, depending on the cell type and/or the proliferative status of the cells studied. Treatment of proliferating cells with proteasome inhibitors leads to cell death, potentially involving an internal signalling conflict between accumulating levels of the cdk inhibitor p27Kip1 and c-myc. In contrast, in terminally differentiated cells the same compounds have the opposite effect of blocking apoptosis, possibly by preventing proteasome-mediated degradation of a capase inhibitor. In this review the role of proteasome-mediated proteolysis in the dying cell is discussed and apparently conflicting results are integrated into a working hypothesis which functionally locates the proteasome upstream of capase3-like enzymes.  相似文献   

20.
Programmed cell death (PCD), referring to apoptosis, autophagy and programmed necrosis, is proposed to be death of a cell in any pathological format, when mediated by an intracellular program. These three forms of PCD may jointly decide the fate of cells of malignant neoplasms; apoptosis and programmed necrosis invariably contribute to cell death, whereas autophagy can play either pro‐survival or pro‐death roles. Recent bulk of accumulating evidence has contributed to a wealth of knowledge facilitating better understanding of cancer initiation and progression with the three distinctive types of cell death. To be able to decipher PCD signalling pathways may aid development of new targeted anti‐cancer therapeutic strategies. Thus in this review, we present a brief outline of apoptosis, autophagy and programmed necrosis pathways and apoptosis‐related microRNA regulation, in cancer. Taken together, understanding PCD and the complex interplay between apoptosis, autophagy and programmed necrosis may ultimately allow scientists and clinicians to harness the three types of PCD for discovery of further novel drug targets, in the future cancer treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号