首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In vivo near-infrared fluorescence imaging   总被引:12,自引:0,他引:12  
Photon penetration into living tissue is highly dependent on the absorption and scattering properties of tissue components. The near-infrared region of the spectrum offers certain advantages for photon penetration, and both organic and inorganic fluorescence contrast agents are now available for chemical conjugation to targeting molecules. This review focuses on those parameters that affect image signal and background during in vivo imaging with near-infrared light and exogenous contrast agents. Recent examples of in vivo near-infrared fluorescence imaging of animals and humans are presented, including imaging of normal and diseased vasculature, tissue perfusion, protease activity, hydroxyapatite and cancer.  相似文献   

2.
Fluorescence imaging is increasingly used to probe protein function and gene expression in live animals. This technology could enhance the study of pathogenesis, drug development, and therapeutic intervention. In this article, we focus on three-dimensional fluorescence observations using fluorescence-mediated molecular tomography (FMT), a novel imaging technique that can resolve molecular function in deep tissues by reconstructing fluorescent probe distributions in vivo. We have compared FMT findings with conventional fluorescence reflectance imaging (FRI) to study protease function in nude mice with subsurface implanted tumors. This validation of FMT with FRI demonstrated the spatial congruence of fluorochrome activation as determined by the two techniques.  相似文献   

3.
4.
In vivo near-infrared fluorescence imaging of osteoblastic activity.   总被引:9,自引:0,他引:9  
In vertebrates, the development and integrity of the skeleton requires hydroxyapatite (HA) deposition by osteoblasts. HA deposition is also a marker of, or a participant in, processes as diverse as cancer and atherosclerosis. At present, sites of osteoblastic activity can only be imaged in vivo using gamma-emitting radioisotopes. The scan times required are long, and the resultant radioscintigraphic images suffer from relatively low resolution. We have synthesized a near-infrared (NIR) fluorescent bisphosphonate derivative that exhibits rapid and specific binding to HA in vitro and in vivo. We demonstrate NIR light-based detection of osteoblastic activity in the living animal, and discuss how this technology can be used to study skeletal development, osteoblastic metastasis, coronary atherosclerosis, and other human diseases.  相似文献   

5.
We have developed a method to image tumor-associated lysosomal protease activity in a xenograft mouse model in vivo using autoquenched near-infrared fluorescence (NIRF) probes. NIRF probes were bound to a long circulating graft copolymer consisting of poly-L-lysine and methoxypolyethylene glycol succinate. Following intravenous injection, the NIRF probe carrier accumulated in solid tumors due to its long circulation time and leakage through tumor neovasculature. Intratumoral NIRF signal was generated by lysosomal proteases in tumor cells that cleave the macromolecule, thereby releasing previously quenched fluorochrome. In vivo imaging showed a 12-fold increase in NIRF signal, allowing the detection of tumors with submillimeter-sized diameters. This strategy can be used to detect such early stage tumors in vivo and to probe for specific enzyme activity.  相似文献   

6.
The biodistribution of two near-infrared fluorescent agents was assessed in vivo by time-resolved diffuse optical imaging. Bacteriochlorophyll a (BC) and cypate-glysine-arginine-aspartic acid-serine-proline-lysine-OH (Cyp-GRD) were administered separately or combined to mice with subcutaneous xenografts of human breast adenocarcinoma and slow-release estradiol pellets for improved tumor growth. The same excitation (780 nm) and emission (830 nm) wavelengths were used to image the distinct fluorescence lifetime distribution of the fluorescent molecular probes in the mouse cancer model. Fluorescence intensity and lifetime maps were reconstructed after raster-scanning whole-body regions of interest by time-correlated single-photon counting. Each captured temporal point-spread function (TPSF) was deconvolved using both a single and a multiexponental decay model to best determine the measured fluorescence lifetimes. The relative signal from each fluorophore was estimated for any region of interest included in the scanned area. Deconvolution of the individual TPSFs from whole-body fluorescence intensity scans provided corresponding lifetime images for comparing individual component biodistribution. In vivo fluorescence lifetimes were determined to be 0.8 ns (Cyp-GRD) and 2 ns (BC). This study demonstrates that the relative biodistribution of individual fluorophores with similar spectral characteristics can be compartmentalized by using the time-domain fluorescence lifetime gating method.  相似文献   

7.
Zhang Y  Fan S  Yao Y  Ding J  Wang Y  Zhao Z  Liao L  Li P  Zang F  Teng GJ 《PloS one》2012,7(1):e30262

Objectives

Thrombus and secondary thrombosis plays a key role in stroke. Recent molecular imaging provides in vivo imaging of activated factor XIII (FXIIIa), an important mediator of thrombosis or fibrinolytic resistance. The present study was to investigate the fibrin deposition in a thromboembolic stroke mice model by FXIIIa–targeted near-infrared fluorescence (NIRF) imaging.

Materials and Methods

The experimental protocol was approved by our institutional animal use committee. Seventy-six C57B/6J mice were subjected to thromboembolic middle cerebral artery occlusion or sham operation. Mice were either intravenously injected with the FXIIIa-targeted probe or control probe. In vivo and ex vivo NIRF imaging were performed thereafter. Probe distribution was assessed with fluorescence microscopy by spectral imaging and quantification system. MR scans were performed to measure lesion volumes in vivo, which were correlated with histology after animal euthanasia.

Results

In vivo significant higher fluorescence intensity over the ischemia-affected hemisphere, compared to the contralateral side, was detected in mice that received FXIIIa-targeted probe, but not in the controlled mice. Significantly NIRF signals showed time-dependent processes from 8 to 96 hours after injection of FXIIIa-targeted probes. Ex vivo NIRF image showed an intense fluorescence within the ischemic territory only in mice injected with FXIIIa-targeted probe. The fluorescence microscopy demonstrated distribution of FXIIIa-targeted probe in the ischemic region and nearby micro-vessels, and FXIIIa-targeted probe signals showed good overlap with immune-fluorescent fibrin staining images. There was a significant correlation between total targeted signal from in vivo or ex vivo NIRF images and lesion volume.

Conclusion

Non-invasive detection of fibrin deposition in ischemic mouse brain using NIRF imaging is feasible and this technique may provide an in vivo experimental tool in studying the role of fibrin in stroke.  相似文献   

8.
As Alzheimer's disease pathogenesis is associated with the formation of insoluble aggregates of amyloid beta-peptide, approaches allowing the direct, noninvasive visualization of plaque growth in vivo would be beneficial for biomedical research. Here we describe the synthesis and characterization of the near-infrared fluorescence oxazine dye AOI987, which readily penetrates the intact blood-brain barrier and binds to amyloid plaques. Using near-infrared fluorescence imaging, we demonstrated specific interaction of AOI987 with amyloid plaques in APP23 transgenic mice in vivo, as confirmed by postmortem analysis of brain slices. Quantitative analysis revealed increasing fluorescence signal intensity with increasing plaque load of the animals, and significant binding of AOI987 was observed for APP23 transgenic mice aged 9 months and older. Thus, AOI987 is an attractive probe to noninvasively monitor disease progression in animal models of Alzheimer disease and to evaluate effects of potential Alzheimer disease drugs on the plaque load.  相似文献   

9.
We have investigated mammary gland tissues of female rats treated with 7,12-dimethylbenz[a]anthracene in sesame oil by a near infrared (NIR) spectroscopy finding that the DNA and water contents in the cancerous tissues were larger than those in the normal tissues but that the lipid content in the former was less than that in the latter. With protein contents, however, little difference was observed between the two. Thus, we used a lipid band around 1725 nm (the first overtone of n-alkane) and a protein band around 2054 nm (a combination band of amide A and amide II of polypeptides) for a quantitative evaluation of malignant changes in the mammary gland tissues. The lipid/protein band intensity ratios were calculated from the spectra of the mammary glands in the control animals and those of the noncancerous and cancerous sites in the treated animals. The lipid/protein ratios in the control animals, in the noncancerous sites, and in the cancerous sites were 1.452 +/- 0.221 (n = 5), 0.728 +/- 0.069 (n = 5), and 0.362 +/- 0.060 (n = 5), respectively. These values were significantly different from each other (P < 0.001). The lipid changes observed by near-infrared (NIR) spectroscopy were confirmed by the results obtained from chemical methods for the evaluation of lipid levels in the same samples. Thus, our NIR spectroscopic method would be able not only to discriminate between cancerous and normal tissues but also to distinguish animals with cancers from normal animals. In addition, as the cancer grew, the lipid band intensity decreased, this band was shifted to higher wavelengths, and collagen peaks appeared in the tissues. These findings were supported by histological examinations of the cancerous and normal tissues. The present study indicates that NIR spectroscopy has high specificity and sensitivity in discriminating cancerous tissues from normal mammary glands in animals and it may offer potential for noninvasive, in vivo diagnosis of female breast cancer in the near future.  相似文献   

10.
11.
Human epidermal growth factor receptor type 2 (HER2) is a well-known biomarker that is overexpressed in many breast carcinomas. HER2 expression level is an important factor to optimize the therapeutic strategy and monitor the treatment. We used albumin binding domain-fused HER2-specific Affibody molecules, labeled with Alexa Fluor750 dye, to characterize HER2 expression in vivo. Near-infrared optical imaging studies were carried out using mice with subcutaneous HER2-positive tumors. Animals were divided into groups of five: no treatment and 12 hours and 1 week after treatment of the tumors with the Hsp90 inhibitor 17-dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG). The compartmental ligands-receptor model, describing binding kinetics, was used to evaluate HER2 expression from the time sequence of the fluorescence images after the intravenous probe injection. The normalized rate of accumulation of the specific fluorescent biomarkers, estimated from this time sequence, linearly correlates with the conventional ex vivo enzyme-linked immunosorbent assay (ELISA) readings for the same tumor. Such correspondence makes properly arranged fluorescence imaging an excellent candidate for estimating HER2 overexpression in tumors, complementing ELISA and other ex vivo assays. Application of this method to the fluorescence data from HER2-positive xenografts reveals that the 17-DMAG treatment results in downregulation of HER2. Application of the AngioSense 750 probe confirmed the antiangiogenic effect of 17-DMAG found with Affibody-Alexa Fluor 750 conjugate.  相似文献   

12.
13.
Optical coherence tomography (OCT) and laser-induced fluorescence (LIF) spectroscopy each have clinical potential in identifying human gastrointestinal (GI) pathologies, yet their diagnostic capability in mouse models is unknown. In this study, we combined the 2 modalities to survey the GI tract of a variety of mouse strains and ages and to sample dysplasias and inflammatory bowel disease (IBD) of the intestines. Segments (length, 2.5 cm) of duodenum and lower colon and the entire esophagus were imaged ex-vivo with combined OCT and LIE We evaluated 30 normal mice (A/J and 10- and 21-wk-old and retired breeder C57BL/6J) and 10 mice each of 2 strains modeling colon cancer and IBD (Apc(Min) and IL2-deficient mice, respectively). Histology was used to classify tissue regions as normal, Peyer patch, dysplasia, adenoma, or IBD. Features in corresponding OCT images were analyzed. Spectra from each category were averaged and compared via Student t tests. OCT provided structural information that led to identification of the imaging characteristics of healthy mouse GI. With histology as the 'gold standard,' we developed preliminary image criteria for early disease in the form of adenomas, dysplasias, and IBD. LIF characterized the endogenous fluorescence of mouse GI tract, with spectral features corresponding to collagen, NADH, and hemoglobin. In the IBD sample, LIF emission spectra displayed potentially diagnostic peaks at 635 and 670 nm, which we attributed to increased porphyrin production by bacteria associated with IBD. OCT and LIF appear to be useful and complementary modalities for ex vivo imaging of mouse GI tissues.  相似文献   

14.
15.
A method that provides maps of absolute concentrations of oxygenated and deoxygenated myoglobin (Mb), its oxygenation, and its near-infrared (NIR) optical pathlength in cardiac tissue was developed. These parameters are available simultaneously. The method is based on NIR diffuse reflectance spectroscopic imaging and specific processing of the NIR images, which included a first derivative of the diffuse reflectance spectrum. Mb oxygenation, total Mb concentration, and NIR light pathlength were found to be in the range of 92%, 0.3 mM, and 12.5 mm, respectively, in beating isolated buffer-perfused and arrested pig hearts. The charge-coupled device camera enables sub-millimeter spatial resolution and spectroscopic imaging in 1.5 to 2.0 min. The technique is noninvasive and nondestructive. The equipment has no mechanical contact with the tissue of interest, leaving it undisturbed.  相似文献   

16.
Objective: We studied ob/ob and wild‐type (WT) mice to characterize the adipose tissues depots and other visceral organs and to establish an experimental paradigm for in vivo phenotyping. Research Methods and Procedures: An in vivo evaluation was conducted using magnetic resonance imaging and 1H‐magnetic resonance spectroscopy (1H‐MRS). We used T1‐weighted images and three‐dimensional spin echo T1‐weighted images for the morphological analysis and 1H‐MRS spectra on all body mass, as well as 1H‐MRS spectra focalized on specific lipid depots [triglyceride (TG) depots] for a molecular analysis. Results: In ob/ob mice, three‐dimensional evaluation of the trunk revealed that ~64% of the volume consists of white adipose tissue, which is 72% subcutaneous and 28% visceral. In vivo 1H‐MRS showed that 20.00 ± 6.92% in the WT group and 58.67 ± 6.65% in the ob/ob group of the total proton content is composed of TG protons. In in vivo‐localized spectra of ob/ob mice, we found a polyunsaturation degree of 0.5247 in subcutaneous depots. In the liver, we observed that 48.7% of the proton signal is due to water, whereas in the WT group, the water signal amounted to 82.8% of the total proton signal. With the sequences used, the TG amount was not detectable in the brain or kidneys. Discussion: The present study shows that several parameters can be obtained by in vivo examination of ob/ob mice by magnetic resonance imaging and 1H‐MRS and that the accumulated white adipose tissue displays low polyunsaturation degree and low hydrolipidic ratio. Relevant anatomical alterations observed in urinary and digestive apparatuses should be considered when ob/ob mice are used in experimental paradigms.  相似文献   

17.
18.
We report here the in vivo diagnostic use of a peptide-dye conjugate consisting of a cyanine dye and the somatostatin analog octreotate as a contrast agent for optical tumor imaging. When used in whole-body in vivo imaging of mouse xenografts, indotricarbocyanine-octreotate accumulated in tumor tissue. Tumor fluorescence rapidly increased and was more than threefold higher than that of normal tissue from 3 to 24 h after application. The targeting conjugate was also specifically internalized by primary human neuroendocrine tumor cells. This imaging approach, combining the specificity of ligand/receptor interaction with near-infrared fluorescence detection, may be applied in various other fields of cancer diagnosis.  相似文献   

19.
Lederman L 《BioTechniques》2008,45(4):375, 377, 379
  相似文献   

20.
In vivo bioluminescence imaging   总被引:3,自引:0,他引:3  
In vivo bioluminescent imaging (BLI) is a versatile and sensitive tool that is based on detection of light emission from cells or tissues. Bioluminescence, the biochemical generation of light by a living organism, is a naturally occurring phenomenon. Luciferase enzymes, such as that from the North American firefly (Photinus pyralis), catalyze the oxidation of a substrate (luciferin), and photons of light are a product of the reaction. Optical imaging by bioluminescence allows a low-cost, noninvasive, and real-time analysis of disease processes at the molecular level in living organisms. Bioluminescence has been used to track tumor cells, bacterial and viral infections, gene expression, and treatment response. Bioluminescence in vivo imaging allows longitudinal monitoring of a disease course in the same animal, a desirable alternative to analyzing a number of animals at many time points during the course of the disease. We provide a brief introduction to BLI technology, specific examples of in vivo BLI studies investigating bacterial/viral pathogenesis and tumor growth in animal models, and highlight some future perspectives of BLI as a molecular imaging tool.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号